1
|
Algarni S, Foley SL, Tang H, Zhao S, Gudeta DD, Khajanchi BK, Ricke SC, Han J. Development of an antimicrobial resistance plasmid transfer gene database for enteric bacteria. FRONTIERS IN BIOINFORMATICS 2023; 3:1279359. [PMID: 38033626 PMCID: PMC10682676 DOI: 10.3389/fbinf.2023.1279359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Type IV secretion systems (T4SSs) are integral parts of the conjugation process in enteric bacteria. These secretion systems are encoded within the transfer (tra) regions of plasmids, including those that harbor antimicrobial resistance (AMR) genes. The conjugal transfer of resistance plasmids can lead to the dissemination of AMR among bacterial populations. Methods: To facilitate the analyses of the conjugation-associated genes, transfer related genes associated with key groups of AMR plasmids were identified, extracted from GenBank and used to generate a plasmid transfer gene dataset that is part of the Virulence and Plasmid Transfer Factor Database at FDA, serving as the foundation for computational tools for the comparison of the conjugal transfer genes. To assess the genetic feature of the transfer gene database, genes/proteins of the same name (e.g., traI/TraI) or predicted function (VirD4 ATPase homologs) were compared across the different plasmid types to assess sequence diversity. Two analyses tools, the Plasmid Transfer Factor Profile Assessment and Plasmid Transfer Factor Comparison tools, were developed to evaluate the transfer genes located on plasmids and to facilitate the comparison of plasmids from multiple sequence files. To assess the database and associated tools, plasmid, and whole genome sequencing (WGS) data were extracted from GenBank and previous WGS experiments in our lab and assessed using the analysis tools. Results: Overall, the plasmid transfer database and associated tools proved to be very useful for evaluating the different plasmid types, their association with T4SSs, and increased our understanding how conjugative plasmids contribute to the dissemination of AMR genes.
Collapse
Affiliation(s)
- Suad Algarni
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
- Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, United States
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Hailin Tang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Shaohua Zhao
- Office of Applied Science, Center for Veterinary Medicine, Food and Drug Administration, Laurel, MD, United States
| | - Dereje D. Gudeta
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Bijay K. Khajanchi
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Animal and Dairy Sciences Department, University of Wisconsin, Madison, WI, United States
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
2
|
Ryan ME, Damke PP, Bryant C, Sheedlo MJ, Shaffer CL. Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550604. [PMID: 37546756 PMCID: PMC10402047 DOI: 10.1101/2023.07.25.550604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Structural asymmetry within secretion system architecture is fundamentally important for apparatus diversification and biological function. However, the mechanism by which symmetry mismatch contributes to nanomachine assembly and interkingdom effector translocation are undefined. Here, we show that architectural asymmetry orchestrates dynamic substrate selection and enables trans-kingdom DNA conjugation through the Helicobacter pylori cag type IV secretion system (cag T4SS). Structural analyses of asymmetric units within the cag T4SS periplasmic ring complex (PRC) revealed intermolecular π-π stacking interactions that coordinate DNA binding and license trans-kingdom conjugation without disrupting the translocation of protein and peptidoglycan effector molecules. Additionally, we identified a novel proximal translocation channel gating mechanism that regulates cargo loading and governs substrate transport across the outer membrane. We thus propose a model whereby the organization and geometry of architectural symmetry mismatch exposes π-π interfaces within the PRC to facilitate DNA transit through the cag T4SS translocation channel.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Caitlynn Bryant
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Michael J. Sheedlo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| |
Collapse
|
3
|
Quezada-Aguiluz M, Opazo-Capurro A, Lincopan N, Esposito F, Fuga B, Mella-Montecino S, Riedel G, Lima CA, Bello-Toledo H, Cifuentes M, Silva-Ojeda F, Barrera B, Hormazábal JC, González-Rocha G. Novel Megaplasmid Driving NDM-1-Mediated Carbapenem Resistance in Klebsiella pneumoniae ST1588 in South America. Antibiotics (Basel) 2022; 11:antibiotics11091207. [PMID: 36139987 PMCID: PMC9494972 DOI: 10.3390/antibiotics11091207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) is a critical public health problem in South America, where the prevalence of NDM metallo-betalactamases has increased substantially in recent years. In this study, we used whole genome sequencing to characterize a multidrug-resistant (MDR) Klebsiella pneumoniae (UCO-361 strain) clinical isolate from a teaching hospital in Chile. Using long-read (Nanopore) and short-read (Illumina) sequence data, we identified a novel un-typeable megaplasmid (314,976 kb, pNDM-1_UCO-361) carrying the blaNDM-1 carbapenem resistance gene within a Tn3000 transposon. Strikingly, conjugal transfer of pNDM-1_UCO-361 plasmid only occurs at low temperatures with a high frequency of 4.3 × 10−6 transconjugants/receptors at 27 °C. UCO-361 belonged to the ST1588 clone, previously identified in Latin America, and harbored aminoglycoside, extended-spectrum β-lactamases (ESBLs), carbapenem, and quinolone-resistance determinants. These findings suggest that blaNDM-1-bearing megaplasmids can be adapted to carriage by some K. pneumoniae lineages, whereas its conjugation at low temperatures could contribute to rapid dissemination at the human–environmental interface.
Collapse
Affiliation(s)
- Mario Quezada-Aguiluz
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA-UdeC), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción 4030000, Chile
- Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 8320000, Chile
- Centro Regional de Telemedicina y Telesalud del Biobío (CRT Biobío), Concepción 4030000, Chile
| | - Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA-UdeC), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
- Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 8320000, Chile
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo 05508-000, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo 05508-000, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo 05508-000, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Sergio Mella-Montecino
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción 4030000, Chile
- Unidad de Infectología, Hospital Regional “Dr. Guillermo Grant Benavente”, Concepción 4030000, Chile
| | - Gisela Riedel
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción 4030000, Chile
- Unidad de Infectología, Hospital Regional “Dr. Guillermo Grant Benavente”, Concepción 4030000, Chile
| | - Celia A. Lima
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA-UdeC), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA-UdeC), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Marcela Cifuentes
- Servicio de Laboratorio Clínico, Hospital Clínico Universidad de Chile, Santiago 8320000, Chile
| | - Francisco Silva-Ojeda
- Servicio de Laboratorio Clínico, Hospital Clínico Universidad de Chile, Santiago 8320000, Chile
| | - Boris Barrera
- Servicio de Laboratorio Clínico, Hospital Clínico Universidad de Chile, Santiago 8320000, Chile
| | - Juan C. Hormazábal
- Subdepartamento de Enfermedades Infecciosas, Instituto de Salud Pública de Chile (ISP), Santiago 8320000, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA-UdeC), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
- Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 8320000, Chile
- Correspondence: ; Tel.: +56-41-2661527; Fax: +56-41-2245975
| |
Collapse
|
4
|
Carranza G, Menguiano T, Valenzuela-Gómez F, García-Cazorla Y, Cabezón E, Arechaga I. Monitoring Bacterial Conjugation by Optical Microscopy. Front Microbiol 2021; 12:750200. [PMID: 34671336 PMCID: PMC8521088 DOI: 10.3389/fmicb.2021.750200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Bacterial conjugation is the main mechanism for horizontal gene transfer, conferring plasticity to the genome repertoire. This process is also the major instrument for the dissemination of antibiotic resistance genes. Hence, gathering primary information of the mechanism underlying this genetic transaction is of a capital interest. By using fluorescent protein fusions to the ATPases that power conjugation, we have been able to track the localization of these proteins in the presence and absence of recipient cells. Moreover, we have found that more than one copy of the conjugative plasmid is transferred during mating. Altogether, these findings provide new insights into the mechanism of such an important gene transfer device.
Collapse
Affiliation(s)
- Gerardo Carranza
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Tamara Menguiano
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Fernando Valenzuela-Gómez
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Yolanda García-Cazorla
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Elena Cabezón
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Ignacio Arechaga
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| |
Collapse
|
5
|
Álvarez-Rodríguez I, Arana L, Ugarte-Uribe B, Gómez-Rubio E, Martín-Santamaría S, Garbisu C, Alkorta I. Type IV Coupling Proteins as Potential Targets to Control the Dissemination of Antibiotic Resistance. Front Mol Biosci 2020; 7:201. [PMID: 32903459 PMCID: PMC7434980 DOI: 10.3389/fmolb.2020.00201] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
The increase of infections caused by multidrug-resistant bacteria, together with the loss of effectiveness of currently available antibiotics, represents one of the most serious threats to public health worldwide. The loss of human lives and the economic costs associated to the problem of the dissemination of antibiotic resistance require immediate action. Bacteria, known by their great genetic plasticity, are capable not only of mutating their genes to adapt to disturbances and environmental changes but also of acquiring new genes that allow them to survive in hostile environments, such as in the presence of antibiotics. One of the major mechanisms responsible for the horizontal acquisition of new genes (e.g., antibiotic resistance genes) is bacterial conjugation, a process mediated by mobile genetic elements such as conjugative plasmids and integrative conjugative elements. Conjugative plasmids harboring antibiotic resistance genes can be transferred from a donor to a recipient bacterium in a process that requires physical contact. After conjugation, the recipient bacterium not only harbors the antibiotic resistance genes but it can also transfer the acquired plasmid to other bacteria, thus contributing to the spread of antibiotic resistance. Conjugative plasmids have genes that encode all the proteins necessary for the conjugation to take place, such as the type IV coupling proteins (T4CPs) present in all conjugative plasmids. Type VI coupling proteins constitute a heterogeneous family of hexameric ATPases that use energy from the ATP hydrolysis for plasmid transfer. Taking into account their essential role in bacterial conjugation, T4CPs are attractive targets for the inhibition of bacterial conjugation and, concomitantly, the limitation of antibiotic resistance dissemination. This review aims to compile present knowledge on T4CPs as a starting point for delving into their molecular structure and functioning in future studies. Likewise, the scientific literature on bacterial conjugation inhibitors has been reviewed here, in an attempt to elucidate the possibility of designing T4CP-inhibitors as a potential solution to the dissemination of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Itxaso Álvarez-Rodríguez
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Lide Arana
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Begoña Ugarte-Uribe
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Elena Gómez-Rubio
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Carlos Garbisu
- Department of Conservation of Natural Resources, Soil Microbial Ecology Group, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Cient fico y Tecnológico de Bizkaia, Derio, Spain
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
6
|
Álvarez-Rodríguez I, Ugarte-Uribe B, de la Arada I, Arrondo JLR, Garbisu C, Alkorta I. Conjugative Coupling Proteins and the Role of Their Domains in Conjugation, Secondary Structure and in vivo Subcellular Location. Front Mol Biosci 2020; 7:185. [PMID: 32850972 PMCID: PMC7431656 DOI: 10.3389/fmolb.2020.00185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
Type IV Coupling Proteins (T4CPs) are essential elements in many type IV secretion systems (T4SSs). The members of this family display sequence, length, and domain architecture heterogeneity, being the conserved Nucleotide-Binding Domain the motif that defines them. In addition, most T4CPs contain a Transmembrane Domain (TMD) in the amino end and an All-Alpha Domain facing the cytoplasm. Additionally, a few T4CPs present a variable domain at the carboxyl end. The structural paradigm of this family is TrwBR388, the T4CP of conjugative plasmid R388. This protein has been widely studied, in particular the role of the TMD on the different characteristics of TrwBR388. To gain knowledge about T4CPs and their TMD, in this work a chimeric protein containing the TMD of TraJpKM101 and the cytosolic domain of TrwBR388 has been constructed. Additionally, one of the few T4CPs of mobilizable plasmids, MobBCloDF13 of mobilizable plasmid CloDF13, together with its TMD-less mutant MobBΔTMD have been studied. Mating studies showed that the chimeric protein is functional in vivo and that it exerted negative dominance against the native proteins TrwBR388 and TraJpKM101. Also, it was observed that the TMD of MobBCloDF13 is essential for the mobilization of CloDF13 plasmid. Analysis of the secondary structure components showed that the presence of a heterologous TMD alters the structure of the cytosolic domain in the chimeric protein. On the contrary, the absence of the TMD in MobBCloDF13 does not affect the secondary structure of its cytosolic domain. Subcellular localization studies showed that T4CPs have a unipolar or bipolar location, which is enhanced by the presence of the remaining proteins of the conjugative system. Unlike what has been described for TrwBR388, the TMD is not an essential element for the polar location of MobBCloDF13. The main conclusion is that the characteristics described for the paradigmatic TrwBR388 T4CP should not be ascribed to the whole T4CP family. Specifically, it has been proven that the mobilizable plasmid-related MobBCloDF13 presents different characteristics regarding the role of its TMD. This work will contribute to better understand the T4CP family, a key element in bacterial conjugation, the main mechanism responsible for antibiotic resistance spread.
Collapse
Affiliation(s)
- Itxaso Álvarez-Rodríguez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), Spanish Research Council (CSIC), Leioa, Spain
| | - Begoña Ugarte-Uribe
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Igor de la Arada
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), Spanish Research Council (CSIC), Leioa, Spain
| | - José Luis R Arrondo
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), Spanish Research Council (CSIC), Leioa, Spain
| | - Carlos Garbisu
- NEIKER, Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Derio, Spain
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), Spanish Research Council (CSIC), Leioa, Spain
| |
Collapse
|
7
|
Clostridium sordellii Pathogenicity Locus Plasmid pCS1-1 Encodes a Novel Clostridial Conjugation Locus. mBio 2018; 9:mBio.01761-17. [PMID: 29339424 PMCID: PMC5770547 DOI: 10.1128/mbio.01761-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A major virulence factor in Clostridium sordellii-mediated infection is the toxin TcsL, which is encoded within a region of the genome called the pathogenicity locus (PaLoc). C. sordellii isolates carry the PaLoc on the pCS1 family of plasmids, of which there are four characterized members. Here, we determined the potential mobility of pCS1 plasmids and characterized a fifth unique pCS1 member. Using a derivative of the pCS1-1 plasmid from strain ATCC 9714 which had been marked with the ermB erythromycin resistance gene, conjugative transfer into a recipient C. sordellii isolate, R28058, was demonstrated. Bioinformatic analysis of pCS1-1 identified a novel conjugation gene cluster defined as the C. sordellii transfer (cst) locus. Interruption of genes within the cst locus resulted in loss of pCS1-1 transfer, which was restored upon complementation in trans. These studies provided clear evidence that genes within the cst locus are essential for the conjugative transfer of pCS1-1. The cst locus is present on all pCS1 subtypes, and homologous loci were identified on toxin-encoding plasmids from Clostridium perfringens and Clostridium botulinum and also carried within genomes of Clostridium difficile isolates, indicating that it is a widespread clostridial conjugation locus. The results of this study have broad implications for the dissemination of toxin genes and, potentially, antibiotic resistance genes among members of a diverse range of clostridial pathogens, providing these microorganisms with a survival advantage within the infected host. C. sordellii is a bacterial pathogen that causes severe infections in humans and animals, with high mortality rates. While the pathogenesis of C. sordellii infections is not well understood, it is known that the toxin TcsL is an important virulence factor. Here, we have shown the ability of a plasmid carrying the tcsL gene to undergo conjugative transfer between distantly related strains of C. sordellii, which has far-reaching implications for the ability of C. sordellii to acquire the capacity to cause disease. Plasmids that carry tcsL encode a previously uncharacterized conjugation locus, and individual genes within this locus were shown to be required for conjugative transfer. Furthermore, homologues on toxin plasmids from other clostridial species were identified, indicating that this region represents a novel clostridial conjugation locus. The results of this study have broad implications for the dissemination of virulence genes among members of a diverse range of clostridial pathogens.
Collapse
|
8
|
Abstract
Type IV coupling proteins (T4CPs) are essential constituents of most type IV secretion systems (T4SSs), and probably the most intriguing component in terms of their evolutionary origin and functional role. Coupling proteins have coevolved with their cognate secretion system and translocated substrates. They are present in all conjugative systems, leading to the suggestion that they play a specific role in DNA transfer. However, they are also part of many T4SSs involved in bacterial virulence, where they are required for protein translocation, with no apparent involvement in DNA secretion. Their name reflects genetic and biochemical evidence of a connecting role between the substrate and the T4SS, thus probably playing a major role in substrate recruitment. Increasing evidence supports also a role in signal transmission leading to activation of secretion. Most studies have addressed conjugative coupling proteins of the VirD4-like protein family. Their conserved features include a nucleotide-binding domain, essential for substrate translocation, a C-terminal domain involved in substrate interactions, and a transmembrane domain anchoring them to the inner membrane, which is an important regulator of protein function. Purified soluble deletion mutants display ATP hydrolysis activity and unspecific DNA binding. Elucidation of the 3D structure of the soluble deletion mutant of the conjugative coupling protein TrwB, TrwBΔN70, provided the basis for further mutagenesis studies rendering interesting insights into the structure-function of these proteins. Their key role as couplers between substrate and transporter provides biotechnological potential as targets for anti-virulence strategies, as well as for customization of substrate delivery through heterologous secretion systems.
Collapse
Affiliation(s)
- Matxalen Llosa
- Departamento de Biología Molecular, Universidad de Cantabria (UC), and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), UC-CSIC-SODERCAN, C/Albert Einstein 22, 39011, Santander, Spain.
| | - Itziar Alkorta
- Departamento de Bioquímica y Biología Molecular (UPV/EHU), Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena S/N, 48940, Leioa, Spain
| |
Collapse
|
9
|
Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res 2015; 126:11-51. [PMID: 25727145 DOI: 10.1016/bs.acr.2014.11.001] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glycosylation is catalyzed by various glycosyltransferase enzymes which are mostly located in the Golgi apparatus in cells. These enzymes glycosylate various complex carbohydrates such as glycoproteins, glycolipids, and proteoglycans. The enzyme activity of glycosyltransferases and their gene expression are altered in various pathophysiological situations including cancer. Furthermore, the activity of glycosyltransferases is controlled by various factors such as the levels of nucleotide sugars, acceptor substrates, nucleotide sugar transporters, chaperons, and endogenous lectin in cancer cells. The glycosylation results in various functional changes of glycoproteins including cell surface receptors and adhesion molecules such as E-cadherin and integrins. These changes confer the unique characteristic phenotypes associated with cancer cells. Therefore, glycans play key roles in cancer progression and treatment. This review focuses on glycan structures, their biosynthetic glycosyltransferases, and their genes in relation to their biological significance and involvement in cancer, especially cancer biomarkers, epithelial-mesenchymal transition, cancer progression and metastasis, and therapeutics. Major N-glycan branching structures which are directly related to cancer are β1,6-GlcNAc branching, bisecting GlcNAc, and core fucose. These structures are enzymatic products of glycosyltransferases, GnT-V, GnT-III, and Fut8, respectively. The genes encoding these enzymes are designated as MGAT5 (Mgat5), MGAT3 (Mgat3), and FUT8 (Fut8) in humans (mice in parenthesis), respectively. GnT-V is highly associated with cancer metastasis, whereas GnT-III is associated with cancer suppression. Fut8 is involved in expression of cancer biomarker as well as in the treatment of cancer. In addition to these enzymes, GnT-IV and GnT-IX (GnT-Vb) will be also discussed in relation to cancer.
Collapse
|
10
|
Segura RL, Aguila-Arcos S, Ugarte-Uribe B, Vecino AJ, de la Cruz F, Goñi FM, Alkorta I. Subcellular location of the coupling protein TrwB and the role of its transmembrane domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:223-30. [PMID: 24016550 DOI: 10.1016/j.bbamem.2013.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/01/2022]
Abstract
Conjugation is the most important mechanism for horizontal gene transfer and it is the main responsible for the successful adaptation of bacteria to the environment. Conjugative plasmids are the DNA molecules transferred and a multiprotein system encoded by the conjugative plasmid itself is necessary. The high number of proteins involved in the process suggests that they should have a defined location in the cell and therefore, they should be recruited to that specific point. One of these proteins is the coupling protein that plays an essential role in bacterial conjugation. TrwB is the coupling protein of R388 plasmid that is divided in two domains: i) The N-terminal domain referred as transmembrane domain and ii) a large cytosolic domain that contains a nucleotide-binding motif similar to other ATPases. To investigate the role of these domains in the subcellular location of TrwB, we constructed two mutant proteins that comprised the transmembrane (TrwBTM) or the cytoplasmic (TrwBΔN70) domain of TrwB. By immunofluorescence and GFP-fusion proteins we demonstrate that TrwB and TrwBTM mutant protein were localized to the cell pole independently of the remaining R388 proteins. On the contrary, a soluble mutant protein (TrwBΔN70) was localized to the cytoplasm in the absence of R388 proteins. However, in the presence of other R388-encoded proteins, TrwBΔN70 localizes uniformly to the cell membrane, suggesting that interactions between the cytosolic domain of TrwB and other membrane proteins of R388 plasmid may happen. Our results suggest that the transmembrane domain of TrwB leads the protein to the cell pole.
Collapse
Affiliation(s)
- Rosa L Segura
- Unidad de Biofísica (CSIC, UPV/EHU), and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Segura RL, Águila-Arcos S, Ugarte-Uribe B, Vecino AJ, de la Cruz F, Goñi FM, Alkorta I. The transmembrane domain of the T4SS coupling protein TrwB and its role in protein–protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2015-25. [DOI: 10.1016/j.bbamem.2013.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 11/15/2022]
|
12
|
Dolejska M, Villa L, Poirel L, Nordmann P, Carattoli A. Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. J Antimicrob Chemother 2012; 68:34-9. [PMID: 22969080 DOI: 10.1093/jac/dks357] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To characterize the pNDM-CIT plasmid identified in Citrobacter freundii carrying genes encoding the metallo-β-lactamase NDM-1 and the 16S RNA methylase ArmA. METHODS The complete DNA sequence of pNDM-CIT was obtained by using the 454-Genome Sequencer FLX procedure on a library obtained using plasmid DNA purified from the pNDM-CIT Escherichia coli J53 transconjugant. Contig assembly and predicted gaps were confirmed and filled by PCR-based gap closure. Comparative analysis with IncHI1 incompatibility group plasmids was performed using BLASTN and BLASTP algorithms. RESULTS Plasmid pNDM-CIT was 288::920 bp and revealed an IncHI1 plasmid scaffold, showing novel resistance and potential virulence determinants. The bla(NDM-1) gene was identified within a novel genetic context, flanked by a duplication of the class 1 integron on both sides. The replicase gene repAciN, originating from Acinetobacter spp. plasmids, was identified in a close association with the Tn1548::armA transposon and the macrolide resistance mel-mph2 cluster. The same structure was identified in silico from a series of enterobacterial plasmids carrying the armA gene. The repAciN gene probably represents a remnant sign of the original occurrence of the armA gene in Acinetobacter plasmids. A CP4-like prophage sequence was identified in pNDM-CIT, containing a resistance-nodulation-cell division/multidrug resistance (RND/MDR) efflux pump cluster surrounded by two IS1-like elements. This resistance determinant, associated with such a prophage sequence, has never been reported on plasmids. CONCLUSIONS Plasmid pNDM-CIT differed significantly from all known bla(NDM-1)-carrying plasmids identified in Enterobacteriaceae, since it combines the metallo-β-lactamase NDM-1, the 16S RNA methylase ArmA and a cryptic prophage carrying the RND/MDR efflux pump.
Collapse
Affiliation(s)
- Monika Dolejska
- Department of Infectious, Parasitic and Immuno-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
13
|
Aguilar J, Cameron TA, Zupan J, Zambryski P. Membrane and core periplasmic Agrobacterium tumefaciens virulence Type IV secretion system components localize to multiple sites around the bacterial perimeter during lateral attachment to plant cells. mBio 2011; 2:e00218-11. [PMID: 22027007 PMCID: PMC3202754 DOI: 10.1128/mbio.00218-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/30/2011] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Type IV secretion systems (T4SS) transfer DNA and/or proteins into recipient cells. Here we performed immunofluorescence deconvolution microscopy to localize the assembled T4SS by detection of its native components VirB1, VirB2, VirB4, VirB5, VirB7, VirB8, VirB9, VirB10, and VirB11 in the C58 nopaline strain of Agrobacterium tumefaciens, following induction of virulence (vir) gene expression. These different proteins represent T4SS components spanning the inner membrane, periplasm, or outer membrane. Native VirB2, VirB5, VirB7, and VirB8 were also localized in the A. tumefaciens octopine strain A348. Quantitative analyses of the localization of all the above Vir proteins in nopaline and octopine strains revealed multiple foci in single optical sections in over 80% and 70% of the bacterial cells, respectively. Green fluorescent protein (GFP)-VirB8 expression following vir induction was used to monitor bacterial binding to live host plant cells; bacteria bind predominantly along their lengths, with few bacteria binding via their poles or subpoles. vir-induced attachment-defective bacteria or bacteria without the Ti plasmid do not bind to plant cells. These data support a model where multiple vir-T4SS around the perimeter of the bacterium maximize effective contact with the host to facilitate efficient transfer of DNA and protein substrates. IMPORTANCE Transfer of DNA and/or proteins to host cells through multiprotein type IV secretion system (T4SS) complexes that span the bacterial cell envelope is critical to bacterial pathogenesis. Early reports suggested that T4SS components localized at the cell poles. Now, higher-resolution deconvolution fluorescence microscopy reveals that all structural components of the Agrobacterium tumefaciens vir-T4SS, as well as its transported protein substrates, localize to multiple foci around the cell perimeter. These results lead to a new model of A. tumefaciens attachment to a plant cell, where A. tumefaciens takes advantage of the multiple vir-T4SS along its length to make intimate lateral contact with plant cells and thereby effectively transfer DNA and/or proteins through the vir-T4SS. The T4SS of A. tumefaciens is among the best-studied T4SS, and the majority of its components are highly conserved in different pathogenic bacterial species. Thus, the results presented can be applied to a broad range of pathogens that utilize T4SS.
Collapse
Affiliation(s)
- Julieta Aguilar
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | | | | | | |
Collapse
|
14
|
Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. THE LANCET. INFECTIOUS DISEASES 2011; 11:355-62. [PMID: 21478057 DOI: 10.1016/s1473-3099(11)70059-7] [Citation(s) in RCA: 849] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Not all patients infected with NDM-1-positive bacteria have a history of hospital admission in India, and extended-spectrum β-lactamases are known to be circulating in the Indian community. We therefore measured the prevalence of the NDM-1 gene in drinking water and seepage samples in New Delhi. METHODS Swabs absorbing about 100 μL of seepage water (ie, water pools in streets or rivulets) and 15 mL samples of public tap water were collected from sites within a 12 km radius of central New Delhi, with each site photographed and documented. Samples were transported to the UK and tested for the presence of the NDM-1 gene, bla(NDM-1), by PCR and DNA probing. As a control group, 100 μL sewage effluent samples were taken from the Cardiff Wastewater Treatment Works, Tremorfa, Wales. Bacteria from all samples were recovered and examined for bla(NDM-1) by PCR and sequencing. We identified NDM-1-positive isolates, undertook susceptibility testing, and, where appropriate, typed the isolates. We undertook Inc typing on bla(NDM-1)-positive plasmids. Transconjugants were created to assess plasmid transfer frequency and its relation to temperature. FINDINGS From Sept 26 to Oct 10, 2010, 171 seepage samples and 50 tap water samples from New Delhi and 70 sewage effluent samples from Cardiff Wastewater Treatment Works were collected. We detected bla(NDM-1) in two of 50 drinking-water samples and 51 of 171 seepage samples from New Delhi; the gene was not found in any sample from Cardiff. Bacteria with bla(NDM-1) were grown from 12 of 171 seepage samples and two of 50 water samples, and included 11 species in which NDM-1 has not previously been reported, including Shigella boydii and Vibrio cholerae. Carriage by enterobacteria, aeromonads, and V cholera was stable, generally transmissible, and associated with resistance patterns typical for NDM-1; carriage by non-fermenters was unstable in many cases and not associated with typical resistance. 20 strains of bacteria were found in the samples, 12 of which carried bla(NDM-1) on plasmids, which ranged in size from 140 to 400 kb. Isolates of Aeromonas caviae and V cholerae carried bla(NDM-1) on chromosomes. Conjugative transfer was more common at 30°C than at 25°C or 37°C. INTERPRETATION The presence of NDM-1 β-lactamase-producing bacteria in environmental samples in New Delhi has important implications for people living in the city who are reliant on public water and sanitation facilities. International surveillance of resistance, incorporating environmental sampling as well as examination of clinical isolates, needs to be established as a priority. FUNDING European Union.
Collapse
Affiliation(s)
- Timothy R Walsh
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, Cardiff, UK.
| | | | | | | |
Collapse
|
15
|
Abstract
The conjugative coupling protein TrwB is responsible for connecting the relaxosome to the type IV secretion system during conjugative DNA transfer of plasmid R388. It is directly involved in transport of the relaxase TrwC, and it displays an ATPase activity probably involved in DNA pumping. We designed a conjugation assay in which the frequency of DNA transfer is directly proportional to the amount of TrwB. A collection of point mutants was constructed in the TrwB cytoplasmic domain on the basis of the crystal structure of TrwB Delta N70, targeting the nucleotide triphosphate (NTP)-binding region, the cytoplasmic surface, or the internal channel in the hexamer. An additional set of transfer-deficient mutants was obtained by random mutagenesis. Most mutants were impaired in both DNA and protein transport. We found that the integrity of the nucleotide binding domain is absolutely required for TrwB function, which is also involved in monomer-monomer interactions. Polar residues surrounding the entrance and inside the internal channel were important for TrwB function and may be involved in interactions with the relaxosomal components. Finally, the N-terminal transmembrane domain of TrwB was subjected to random mutagenesis followed by a two-hybrid screen for mutants showing enhanced protein-protein interactions with the related TrwE protein of Bartonella tribocorum. Several point mutants were obtained with mutations in the transmembranal helices: specifically, one proline from each protein may be the key residue involved in the interaction of the coupling protein with the type IV secretion apparatus.
Collapse
|
16
|
Polar positioning of a conjugation protein from the integrative and conjugative element ICEBs1 of Bacillus subtilis. J Bacteriol 2010; 192:38-45. [PMID: 19734305 DOI: 10.1128/jb.00860-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
ICEBs1 is an integrative and conjugative element found in the chromosome of Bacillus subtilis. ICEBs1 encodes functions needed for its excision and transfer to recipient cells. We found that the ICEBs1 gene conE (formerly yddE) is required for conjugation and that conjugative transfer of ICEBs1 requires a conserved ATPase motif of ConE. ConE belongs to the HerA/FtsK superfamily of ATPases, which includes the well-characterized proteins FtsK, SpoIIIE, VirB4, and VirD4. We found that a ConE-GFP (green fluorescent protein) fusion associated with the membrane predominantly at the cell poles in ICEBs1 donor cells. At least one ICEBs1 product likely interacts with ConE to target it to the membrane and cell poles, as ConE-GFP was dispersed throughout the cytoplasm in a strain lacking ICEBs1. We also visualized the subcellular location of ICEBs1. When integrated in the chromosome, ICEBs1 was located near midcell along the length of the cell, a position characteristic of that chromosomal region. Following excision, ICEBs1 was more frequently found near a cell pole. Excision of ICEBs1 also caused altered positioning of at least one component of the replisome. Taken together, our findings indicate that ConE is a critical component of the ICEBs1 conjugation machinery, that conjugative transfer of ICEBs1 from B. subtilis likely initiates at a donor cell pole, and that ICEBs1 affects the subcellular position of the replisome.
Collapse
|
17
|
Schumann W. Chapter 7 Temperature Sensors of Eubacteria. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:213-56. [DOI: 10.1016/s0065-2164(08)01007-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Functional characterization and localization of the TcpH conjugation protein from Clostridium perfringens. J Bacteriol 2008; 190:5075-86. [PMID: 18487333 DOI: 10.1128/jb.00386-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Clostridium perfringens, conjugative plasmids encode important virulence factors, such as toxins and resistance determinants. All of these plasmids carry a conjugation locus that consists of 11 genes: intP and tcpA to tcpJ. Three proteins, TcpA, a potential coupling protein, TcpF, a putative ATPase that is similar to ORF15 from Tn916, and TcpH, which contains VirB6-like domains, are essential for conjugation in the prototype conjugative plasmid pCW3. To analyze the functional domains of TcpH, a putative structural component of the mating-pair formation complex and deletion and site-directed mutants were constructed and analyzed. The results showed that the N-terminal 581 residues and the conserved (242)VQQPW(246) motif were required for conjugative transfer. Bacterial two-hybrid and biochemical studies showed that TcpH interacted with itself and with TcpC. An analysis of the tcpH mutants demonstrated that the region required for these interactions also was localized to the N-terminal 581 residues and that the function of the C-terminal region of TcpH was independent of protein-protein interactions. Finally, immunofluorescence studies showed that TcpH and TcpF were located at both cell poles of donor C. perfringens cells. The results provide evidence that TcpH is located in the cell membrane, where it oligomerizes and interacts with TcpC to form part of the mating-pair formation complex, which is located at the cell poles and is closely associated with TcpF.
Collapse
|
19
|
Entry exclusion in the IncHI1 plasmid R27 is mediated by EexA and EexB. Plasmid 2008; 59:86-101. [DOI: 10.1016/j.plasmid.2007.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 10/04/2007] [Accepted: 11/27/2007] [Indexed: 11/18/2022]
|
20
|
Haft RJF, Gachelet EG, Nguyen T, Toussaint L, Chivian D, Traxler B. In vivo oligomerization of the F conjugative coupling protein TraD. J Bacteriol 2007; 189:6626-34. [PMID: 17631633 PMCID: PMC2045173 DOI: 10.1128/jb.00513-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 07/05/2007] [Indexed: 11/20/2022] Open
Abstract
Type IV secretory systems are a group of bacterial transporters responsible for the transport of proteins and nucleic acids directly into recipient cells. Such systems play key roles in the virulence of some pathogenic organisms and in conjugation-mediated horizontal gene transfer. Many type IV systems require conserved "coupling proteins," transmembrane polypeptides that are critical for transporting secreted substrates across the cytoplasmic membrane of the bacterium. In vitro evidence suggests that the functional form of coupling proteins is a homohexameric, ring-shaped complex. Using a library of tagged mutants, we investigated the structural and functional organization of the F plasmid conjugative coupling protein TraD by coimmunoprecipitation, cross-linking, and genetic means. We present direct evidence that coupling proteins form stable oligomeric complexes in the membranes of bacteria and that the formation of some of these complexes requires other F-encoded functions. Our data also show that different regions of TraD play distinct roles in the oligomerization process. We postulate a model for in vivo oligomerization and discuss the probable participation of individual domains of TraD in each step.
Collapse
Affiliation(s)
- Rembrandt J F Haft
- Department of Microbiology, University of Washington, Box 357242, Seattle, WA 98195- 7242, USA
| | | | | | | | | | | |
Collapse
|
21
|
Atmakuri K, Cascales E, Burton OT, Banta LM, Christie PJ. Agrobacterium ParA/MinD-like VirC1 spatially coordinates early conjugative DNA transfer reactions. EMBO J 2007; 26:2540-51. [PMID: 17505518 PMCID: PMC1868908 DOI: 10.1038/sj.emboj.7601696] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 03/22/2007] [Indexed: 11/09/2022] Open
Abstract
Agrobacterium tumefaciens translocates T-DNA through a polar VirB/D4 type IV secretion (T4S) system. VirC1, a factor required for efficient T-DNA transfer, bears a deviant Walker A and other sequence motifs characteristic of ParA and MinD ATPases. Here, we show that VirC1 promotes conjugative T-DNA transfer by stimulating generation of multiple copies per cell of the T-DNA substrate (T-complex) through pairwise interactions with the processing factors VirD2 relaxase, VirC2, and VirD1. VirC1 also associates with the polar membrane and recruits T-complexes to cell poles, the site of VirB/D4 T4S machine assembly. VirC1 Walker A mutations abrogate T-complex generation and polar recruitment, whereas the native protein recruits T-complexes to cell poles independently of other polar processing factors (VirC2, VirD1) or T4S components (VirD4 substrate receptor, VirB channel subunits). We propose that A. tumefaciens has appropriated a progenitor ParA/MinD-like ATPase to promote conjugative DNA transfer by: (i) nucleating relaxosome assembly at oriT-like T-DNA border sequences and (ii) spatially positioning the transfer intermediate at the cell pole to coordinate substrate-T4S channel docking.
Collapse
Affiliation(s)
- Krishnamohan Atmakuri
- Departments of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX, USA
| | - Eric Cascales
- Departments of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX, USA
| | - Oliver T Burton
- Department of Biology, Williams College, Williamstown, MA, USA
| | - Lois M Banta
- Department of Biology, Williams College, Williamstown, MA, USA
| | - Peter J Christie
- Departments of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX, USA
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA. Tel.: +1 713 500 5440; Fax: +1 713 500 5499; E-mail:
| |
Collapse
|
22
|
Gunton JE, Gilmour MW, Baptista KP, Lawley TD, Taylor DE. Interaction between the co-inherited TraG coupling protein and the TraJ membrane-associated protein of the H-plasmid conjugative DNA transfer system resembles chromosomal DNA translocases. Microbiology (Reading) 2007; 153:428-441. [PMID: 17259614 DOI: 10.1099/mic.0.2006/001297-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacterial conjugation is a DNA transfer event that requires three plasmid-encoded multi-protein complexes: the membrane-spanning mating pair formation (Mpf) complex, the cytoplasmic nucleoprotein relaxosome complex, and a homo-multimeric coupling protein that links the Mpf and relaxosome at the cytoplasmic membrane. Bacterial two-hybrid (BTH) technology and immunoprecipitation were used to demonstrate an interaction between the IncH plasmid-encoded transfer protein TraJ and the coupling protein TraG. TraJ is essential for conjugative transfer but is not required for the formation of the conjugative pilus, and is therefore not regarded as an Mpf component. Fractionation studies indicated that TraJ shared a similar cellular domain to that of TraG at the cellular membrane. Protein blast analyses have previously identified TraJ homologues encoded in a multitude of plasmid and chromosomal genomes that were also found to encode an adjacent TraG homologue, thus indicating co-inheritance. BTH analysis of these TraJ and cognate TraG homologues demonstrated conservation of the TraJ-TraG interaction. Additional occurrences of the traJ-traG module were also detected in genomic sequence data throughout the Proteobacteria, and phylogenetic comparison of these IncH-like TraG proteins with the coupling proteins encoded by other conjugative transfer systems (including IncP, IncW and IncF) that lack TraJ homologues indicated that the H-like coupling proteins were distinct. Accordingly, the IncP, IncW and IncF coupling proteins were unable to interact with TraJ, but were able to interact with IncH plasmid-encoded TrhB, an Mpf component known to complex with its cognate coupling protein TraG. The divergence of the IncH-type coupling proteins may partly be due to the requirement of TraJ interaction, and notably, TraG and TraJ cumulatively represent the domain architecture of the known translocase family FtsK/SpoIIIE. It is proposed that TraJ is a functional part of the IncH-type coupling protein complex required for translocation of DNA through the cytoplasmic membrane.
Collapse
Affiliation(s)
- James E Gunton
- Department of Medical Microbiology and Immunology, 1-63 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Matthew W Gilmour
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Kelly P Baptista
- Department of Medical Microbiology and Immunology, 1-63 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Trevor D Lawley
- Department of Medical Microbiology, Stanford University, CA 94305, USA
| | - Diane E Taylor
- Department of Medical Microbiology and Immunology, 1-63 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|