1
|
Flores P, McBride SA, Galazka JM, Varanasi KK, Zea L. Biofilm formation of Pseudomonas aeruginosa in spaceflight is minimized on lubricant impregnated surfaces. NPJ Microgravity 2023; 9:66. [PMID: 37587131 PMCID: PMC10432549 DOI: 10.1038/s41526-023-00316-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
The undesirable, yet inevitable, presence of bacterial biofilms in spacecraft poses a risk to the proper functioning of systems and to astronauts' health. To mitigate the risks that arise from them, it is important to understand biofilms' behavior in microgravity. As part of the Space Biofilms project, biofilms of Pseudomonas aeruginosa were grown in spaceflight over material surfaces. Stainless Steel 316 (SS316) and passivated SS316 were tested for their relevance as spaceflight hardware components, while a lubricant impregnated surface (LIS) was tested as potential biofilm control strategy. The morphology and gene expression of biofilms were characterized. Biofilms in microgravity are less robust than on Earth. LIS strongly inhibits biofilm formation compared to SS. Furthermore, this effect is even greater in spaceflight than on Earth, making LIS a promising option for spacecraft use. Transcriptomic profiles for the different conditions are presented, and potential mechanisms of biofilm reduction on LIS are discussed.
Collapse
Affiliation(s)
- Pamela Flores
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | | | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Kripa K Varanasi
- Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| | - Luis Zea
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
2
|
Ding Y, Hao J, Xiao W, Ye C, Xiao X, Jian C, Tang M, Li G, Liu J, Zeng Z. Role of efflux pumps, their inhibitors, and regulators in colistin resistance. Front Microbiol 2023; 14:1207441. [PMID: 37601369 PMCID: PMC10436536 DOI: 10.3389/fmicb.2023.1207441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Colistin is highly promising against multidrug-resistant and extensively drug-resistant bacteria clinically. Bacteria are resistant to colistin mainly through mcr and chromosome-mediated lipopolysaccharide (LPS) synthesis-related locus variation. However, the current understanding cannot fully explain the resistance mechanism in mcr-negative colistin-resistant strains. Significantly, the contribution of efflux pumps to colistin resistance remains to be clarified. This review aims to discuss the contribution of efflux pumps and their related transcriptional regulators to colistin resistance in various bacteria and the reversal effect of efflux pump inhibitors on colistin resistance. Previous studies suggested a complex regulatory relationship between the efflux pumps and their transcriptional regulators and LPS synthesis, transport, and modification. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), 1-(1-naphthylmethyl)-piperazine (NMP), and Phe-Arg-β-naphthylamide (PAβN) all achieved the reversal of colistin resistance, highlighting the role of efflux pumps in colistin resistance and their potential for adjuvant development. The contribution of the efflux pumps to colistin resistance might also be related to specific genetic backgrounds. They can participate in colistin tolerance and heterogeneous resistance to affect the treatment efficacy of colistin. These findings help understand the development of resistance in mcr-negative colistin-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Sun H, Wang M, Liu Y, Wu P, Yao T, Yang W, Yang Q, Yan J, Yang B. Regulation of flagellar motility and biosynthesis in enterohemorrhagic Escherichia coli O157:H7. Gut Microbes 2022; 14:2110822. [PMID: 35971812 PMCID: PMC9387321 DOI: 10.1080/19490976.2022.2110822] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTARCTEnterohemorrhagic Escherichia coli (EHEC) O157:H7 is a human pathogen that causes a variety of diseases, such as hemorrhagic colitis and lethal hemolytic uremic syndrome. Flagellum-dependent motility plays diverse roles in the pathogenesis of EHEC O157:H7, including its migration to an optimal host site, adherence and colonization, survival at the infection site, and post-infection dispersal. However, it is very expensive for cellular economy in terms of the number of genes and the energy required for flagellar biosynthesis and functioning. Furthermore, the flagellar filament bears strong antigenic properties that induce a strong host immune response. Consequently, the flagellar gene expression and biosynthesis are highly regulated to occur at the appropriate time and place by different regulatory influences. The present review focuses on the regulatory mechanisms of EHEC O157:H7 motility and flagellar biosynthesis, especially in terms of flagellar gene regulation by environmental factors, regulatory proteins, and small regulatory RNAs.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Ting Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Qian Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China,CONTACT Bin Yang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin300457, P. R. China
| |
Collapse
|
4
|
Dubern JF, Romero M, Mai-Prochnow A, Messina M, Trampari E, Gijzel HNV, Chan KG, Carabelli AM, Barraud N, Lazenby J, Chen Y, Robertson S, Malone JG, Williams P, Heeb S, Cámara M. ToxR is a c-di-GMP binding protein that modulates surface-associated behaviour in Pseudomonas aeruginosa. NPJ Biofilms Microbiomes 2022; 8:64. [PMID: 35982053 PMCID: PMC9388670 DOI: 10.1038/s41522-022-00325-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa uses multiple protein regulators that work in tandem to control the production of a wide range of virulence factors and facilitate rapid adaptation to diverse environmental conditions. In this opportunistic pathogen, ToxR was known to positively regulate the production of the major virulence factor exotoxin A and now, through analysis of genetic changes between two sublines of P. aeruginosa PAO1 and functional complementation of swarming, we have identified a previously unknown role of ToxR in surface-associated motility in P. aeruginosa. Further analysis revealed that ToxR had an impact on swarming motility by regulating the Rhl quorum sensing system and subsequent production of rhamnolipid surfactants. Additionally, ToxR was found to tightly bind cyclic diguanylate (c-di-GMP) and negatively affect traits controlled by this second messenger including reducing biofilm formation and the expression of Psl and Pel exopolysaccharides, necessary for attachment and sessile communities matrix scaffolding, in P. aeruginosa. Moreover, a link between the post-transcriptional regulator RsmA and toxR expression via the alternative sigma factor PvdS, induced under iron-limiting conditions, is established. This study reveals the importance of ToxR in a sophisticated regulation of free-living and biofilm-associated lifestyles, appropriate for establishing acute or chronic P. aeruginosa infections.
Collapse
Affiliation(s)
- Jean-Frédéric Dubern
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Manuel Romero
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Anne Mai-Prochnow
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | - Marco Messina
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Science, University Roma Tre, Rome, Italy
| | - Eleftheria Trampari
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Hardeep Naghra-van Gijzel
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Genomic Sciences, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Kok-Gan Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Alessandro M Carabelli
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nicolas Barraud
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
- Genetics of Biofilms Unit, Institut Pasteur, Paris, France
| | - James Lazenby
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ye Chen
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Q Squared Solutions, Crystal Plaza, Pudong, Shanghai, China
| | - Shaun Robertson
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephan Heeb
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
5
|
Sivakumar R, Gunasekaran P, Rajendhran J. Extracytoplasmic sigma factor AlgU contributes to fitness of Pseudomonas aeruginosa PGPR2 during corn root colonization. Mol Genet Genomics 2022; 297:1537-1552. [PMID: 35980488 DOI: 10.1007/s00438-022-01938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
Abstract
In bacteria, sigma factors are crucial in determining the plasticity of core RNA polymerase (RNAP) while promoter recognition during transcription initiation. This process is modulated through an intricate regulatory network in response to environmental cues. Previously, an extracytoplasmic function (ECF) sigma factor, AlgU, was identified to positively influence the fitness of Pseudomonas aeruginosa PGPR2 during corn root colonization. In this study, we report that the inactivation of the algU gene encoded by PGPR2_23995 hampers the root colonization ability of PGPR2. An insertion mutant in the algU gene was constructed by allele exchange mutagenesis. The mutant strains displayed threefold decreased root colonization efficiency compared with the wild-type strain when inoculated individually and in the competition assay. The mutant strain was more sensitive to osmotic and antibiotic stresses and showed higher resistance to oxidative stress. On the other hand, the mutant strain showed increased biofilm formation on the abiotic surface, and the expression of the pelB and pslA genes involved in the biofilm matrix formation were up-regulated. In contrast, the expression of algD, responsible for alginate production, was significantly down-regulated in the mutant strain, which is directly regulated by the AlgU sigma factor. The mutant strain also displayed altered motility. The expression of RNA binding protein RsmA was also impeded in the mutant strain. Further, the transcript levels of genes associated with the type III secretion system (T3SS) were analyzed, which revealed a significant down-regulation in the mutant strain. These results collectively provide evidence for the regulatory role of the AlgU sigma factor in modulating gene expression during root colonization.
Collapse
Affiliation(s)
- Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
6
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
7
|
Zhao H, Clevenger AL, Coburn PS, Callegan MC, Rybenkov V. Condensins are essential for Pseudomonas aeruginosa corneal virulence through their control of lifestyle and virulence programs. Mol Microbiol 2022; 117:937-957. [PMID: 35072315 PMCID: PMC9512581 DOI: 10.1111/mmi.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/01/2022]
Abstract
Pseudomonas aeruginosa is a significant opportunistic pathogen responsible for numerous human infections. Its high pathogenicity resides in a diverse array of virulence factors and an ability to adapt to hostile environments. We report that these factors are tied to the activity of condensins, SMC and MksBEF, which primarily function in structural chromosome maintenance. This study revealed that both proteins are required for P. aeruginosa virulence during corneal infection. The reduction in virulence was traced to broad changes in gene expression. Transcriptional signatures of smc and mksB mutants were largely dissimilar and non-additive, with the double mutant displaying a distinct gene expression profile. Affected regulons included those responsible for lifestyle control, primary metabolism, surface adhesion and biofilm growth, iron and sulfur assimilation, and numerous virulence factors, including type 3 and type 6 secretion systems. The in vitro phenotypes of condensin mutants mirrored their transcriptional profiles and included impaired production and secretion of multiple virulence factors, growth deficiencies under nutrient limiting conditions, and altered c-di-GMP signaling. Notably, c-di-GMP mediated some but not all transcriptional responses of the mutants. Thus, condensins are integrated into the control of multiple genetic programs related to epigenetic and virulent behavior of P. aeruginosa.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - April L. Clevenger
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Phillip S. Coburn
- Department of Ophthalmology, the University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., PA-418, Oklahoma City, OK73104, USA
| | - Michelle C. Callegan
- Department of Ophthalmology, the University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., PA-418, Oklahoma City, OK73104, USA
| | - Valentin Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| |
Collapse
|
8
|
Allsopp LP, Collins ACZ, Hawkins E, Wood TE, Filloux A. RpoN/Sfa2-dependent activation of the Pseudomonas aeruginosa H2-T6SS and its cognate arsenal of antibacterial toxins. Nucleic Acids Res 2022; 50:227-243. [PMID: 34928327 PMCID: PMC8855297 DOI: 10.1093/nar/gkab1254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa uses three type six secretion systems (H1-, H2- and H3-T6SS) to manipulate its environment, subvert host cells and for microbial competition. These T6SS machines are loaded with a variety of effectors/toxins, many being associated with a specific VgrG. How P. aeruginosa transcriptionally coordinates the main T6SS clusters and the multiple vgrG islands spread through the genome is unknown. Here we show an unprecedented level of control with RsmA repressing most known T6SS-related genes. Moreover, each of the H2- and H3-T6SS clusters encodes a sigma factor activator (SFA) protein called, Sfa2 and Sfa3, respectively. SFA proteins are enhancer binding proteins necessary for the sigma factor RpoN. Using a combination of RNA-seq, ChIP-seq and molecular biology approaches, we demonstrate that RpoN coordinates the T6SSs of P. aeruginosa by activating the H2-T6SS but repressing the H1- and H3-T6SS. Furthermore, RpoN and Sfa2 control the expression of the H2-T6SS-linked VgrGs and their effector arsenal to enable very effective interbacterial killing. Sfa2 is specific as Sfa3 from the H3-T6SS cannot complement loss of Sfa2. Our study further delineates the regulatory mechanisms that modulate the deployment of an arsenal of T6SS effectors likely enabling P. aeruginosa to adapt to a range of environmental conditions.
Collapse
Affiliation(s)
- Luke P Allsopp
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
- National Heart and Lung Institute, Imperial College
London, London, UK
| | - Alice C Z Collins
- National Heart and Lung Institute, Imperial College
London, London, UK
| | - Eleanor Hawkins
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
| | - Thomas E Wood
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
| |
Collapse
|
9
|
López-Pliego L, Lara-Flores N, Molina-Romero D, May-Compañ G, Carreño-López R, Núñez CE, Castañeda M. The GacS/A-Rsm Pathway Positively Regulates Motility and Flagella Synthesis in Azotobacter vinelandii. Curr Microbiol 2021; 79:17. [PMID: 34905080 DOI: 10.1007/s00284-021-02695-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Azotobacter vinelandii is a motile bacterium that possesses an unusual pattern of peritrichous flagellation for members of the Pseudomonadaceae family. Unlike what has been reported for Pseudomonas spp. FleQ is not the master regulator of motility in A. vinelandii, this role is performed by FlhDC. Other factors involved in the regulation of motility are AlgU (σE) and CydR which act as negative regulators. In some members of the Enterobacteriaceae and Pseudomonadaceae families, the GacS/A-Rsm pathway is another important factor regulating motility. In the present study, the involvement of the GacS/A-Rsm pathway in regulating the motility of A. vinelandii was explored; we found that contrary to what has been reported for most of the strains studied of Pseudomonas species, GacS/A, through the Rsm system, positively controlled swimming motility. We show that the target of this regulation is the synthesis of flagella, which most likely occurs in an FlhDC-independent manner.
Collapse
Affiliation(s)
- Liliana López-Pliego
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria, Apdo, Postal 1622, C. P. 72000, Puebla, Pue, México
| | - Norarizbeth Lara-Flores
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria, Apdo, Postal 1622, C. P. 72000, Puebla, Pue, México.,Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, C. P. 72410, Puebla, Pue, México
| | - Dalia Molina-Romero
- Facultad de Ciencias Biológicas, BIO-1 Ciudad Universitaria, C. P. 72000, Puebla, Pue, México
| | - Gabriela May-Compañ
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria, Apdo, Postal 1622, C. P. 72000, Puebla, Pue, México.,Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, C. P. 72410, Puebla, Pue, México
| | - Ricardo Carreño-López
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria, Apdo, Postal 1622, C. P. 72000, Puebla, Pue, México
| | - Cinthia E Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Postal 510-3, C. P. 62250, Cuernavaca, Mor, México
| | - Miguel Castañeda
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria, Apdo, Postal 1622, C. P. 72000, Puebla, Pue, México.
| |
Collapse
|
10
|
Pusic P, Sonnleitner E, Bläsi U. Specific and Global RNA Regulators in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:8632. [PMID: 34445336 PMCID: PMC8395346 DOI: 10.3390/ijms22168632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa (Pae) is an opportunistic pathogen showing a high intrinsic resistance to a wide variety of antibiotics. It causes nosocomial infections that are particularly detrimental to immunocompromised individuals and to patients suffering from cystic fibrosis. We provide a snapshot on regulatory RNAs of Pae that impact on metabolism, pathogenicity and antibiotic susceptibility. Different experimental approaches such as in silico predictions, co-purification with the RNA chaperone Hfq as well as high-throughput RNA sequencing identified several hundreds of regulatory RNA candidates in Pae. Notwithstanding, using in vitro and in vivo assays, the function of only a few has been revealed. Here, we focus on well-characterized small base-pairing RNAs, regulating specific target genes as well as on larger protein-binding RNAs that sequester and thereby modulate the activity of translational repressors. As the latter impact large gene networks governing metabolism, acute or chronic infections, these protein-binding RNAs in conjunction with their cognate proteins are regarded as global post-transcriptional regulators.
Collapse
Affiliation(s)
- Petra Pusic
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Elisabeth Sonnleitner
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Udo Bläsi
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
11
|
Cocotl-Yañez M, Soto-Aceves MP, González-Valdez A, Servín-González L, Soberón-Chávez G. Virulence factors regulation by the quorum-sensing and Rsm systems in the marine strain Pseudomonas aeruginosa ID4365, a natural mutant in lasR. FEMS Microbiol Lett 2021; 367:5851744. [PMID: 32501479 DOI: 10.1093/femsle/fnaa092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/03/2020] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is able to produce several virulence factors such as pyocyanin, rhamnolipids and elastase. In the clinical reference strain PAO1, synthesis of these virulence factors is regulated transcriptionally by quorum sensing (QS) and post-transcriptionally by the Rsm system. Herein, we investigated the role of these systems in the control of the pyocyanin, rhamnolipids and elastase production in the marine strain ID4365. We found that this strain carries a nonsense mutation in lasR that makes it a natural mutant in the Las QS system. However, its QS response is still functional with the Rhl system activating virulence factors synthesis. We found that the Rsm system affects virulence factors production, since overexpression of RsmA reduces pyocyanin production whereas RsmY overexpression increases its synthesis. Unexpectedly, and in contrast to the type strain PAO1, inactivation of rsmA increases pyocyanin but reduces elastase and rhamnolipids production by a reduction of RhlR levels. Thus, QS and Rsm systems are involved in regulating virulence factors production, but this regulation is different to the PAO1 strain even though their genomes are highly conserved. It is likely that these differences are related to the different ecological niches in which these strains lived.
Collapse
Affiliation(s)
- Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. Av. Universidad 3000, Cd. Universitaria, C.P. 04510, Coyoacán, Ciudad de México, México
| | - Martín Paolo Soto-Aceves
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, México
| | - Abigail González-Valdez
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, México
| | - Luis Servín-González
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, México
| | - Gloria Soberón-Chávez
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, México
| |
Collapse
|
12
|
Liu J, Yu M, Ge Y, Tian Y, Hu B, Zhao Y. The RsmA RNA-Binding Proteins in Pseudomonas syringae Exhibit Distinct and Overlapping Roles in Modulating Virulence and Survival Under Different Nutritional Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:637595. [PMID: 33719314 PMCID: PMC7952654 DOI: 10.3389/fpls.2021.637595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The post-transcriptional regulator RsmA globally controls gene expression in bacteria. Previous studies showed that RsmA2 and RsmA3 played critical roles in regulating type III secretion system (T3SS), motility, syringafactin, and alginate productions in Pseudomonas syringae pv. tomato strain DC3000 (PstDC3000). In this study, we investigated global gene expression profiles of the wild-type PstDC3000, the rsmA3 mutant, and the rsmA2/A3 double mutant in the hrp-inducing minimum medium (HMM) and King's B (KB) medium. By comparing the rsmA2/A3 and rsmA3 mutants to PstDC3000, a total of 1358 and 1074 differentially expressed genes (DEGs) in HMM, and 870 and 1463 DEGs in KB were uncovered, respectively. When comparing the rsmA2/A3 mutant with the rsmA3 mutant, 277 and 741 DEGs in HMM and KB, respectively, were revealed. Transcriptomic analysis revealed that the rsmY, rsmZ, and rsmX1-5 non-coding small RNAs (ncsRNAs) were positively affected by RsmA2 and RsmA3, while RsmA3 positively regulates the expression of the rsmA2 gene and negatively regulates both rsmA1 and rsmA5 gene expression. Comparative transcriptomic analysis showed that RsmA2 and RsmA3 synergistically influenced the expression of genes involved in T3SS and alginate biosynthesis in HMM and chemotaxis in KB. RsmA2 and RsmA3 inversely affected genes involved in syringafactin production in HMM and ribosomal protein biosynthesis in KB. In addition, RsmA2 played a major role in influencing genes involved in sarcosine and thiamine biosynthesis in HMM and in mannitol and phosphate metabolism in KB. On the other hand, genes involved in fatty acid metabolism, cellulose biosynthesis, signal transduction, and stress responses were mainly impacted by RsmA3 in both HMM and KB; whereas RsmA3 played a major role in controlling genes involved in c-di-GMP, phosphate metabolism, chemotaxis, and capsular polysaccharide in HMM. Furthermore, regulation of syringafactin production and oxidative stress by RsmA2 and RsmA3 was experimentally verified. Our results suggested the potential interplay among the RsmA proteins, which exhibit distinct and overlapping roles in modulating virulence and survival in P. syringae under different nutritional conditions.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yixin Ge
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
13
|
Two Polyketides Intertwined in Complex Regulation: Posttranscriptional CsrA-Mediated Control of Colibactin and Yersiniabactin Synthesis in Escherichia coli. mBio 2021; 13:e0381421. [PMID: 35100864 PMCID: PMC8805033 DOI: 10.1128/mbio.03814-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bacteria have to process several levels of gene regulation and coordination of interconnected regulatory networks to ensure the most adequate cellular response to specific growth conditions. Especially, expression of complex and costly fitness and pathogenicity-associated traits is coordinated and tightly regulated at multiple levels. We studied the interconnected regulation of the expression of the colibactin and yersiniabactin polyketide biosynthesis machineries, which are encoded by two pathogenicity islands found in many phylogroup B2 Escherichia coli isolates. Comparative phenotypic and genotypic analyses identified the BarA-UvrY two-component system as an important regulatory element involved in colibactin and yersiniabactin expression. The carbon storage regulator (Csr) system controls the expression of a wide range of central metabolic and virulence-associated traits. The availability of CsrA, the key translational regulator of the Csr system, depends on BarA-UvrY activity. We employed reporter gene fusions to demonstrate UvrY- and CsrA-dependent expression of the colibactin and yersiniabactin determinants and confirmed a direct interaction of CsrA with the 5' untranslated leader transcripts of representative genes of the colibactin and yersiniabactin operons by RNA electrophoretic mobility shift assays. This posttranscriptional regulation adds an additional level of complexity to control mechanisms of polyketide expression, which is also orchestrated at the level of ferric uptake regulator (Fur)-dependent regulation of transcription and phosphopantetheinyl transferase-dependent activation of polyketide biosynthesis. Our results emphasize the interconnection of iron- and primary metabolism-responsive regulation of colibactin and yersiniabactin expression by the fine-tuned action of different regulatory mechanisms in response to variable environmental signals as a prerequisite for bacterial adaptability, fitness, and pathogenicity in different habitats. IMPORTANCE Secondary metabolite expression is a widespread strategy among bacteria to improve their fitness in habitats where they constantly compete for resources with other bacteria. The production of secondary metabolites is associated with a metabolic and energetic burden. Colibactin and yersiniabactin are two polyketides, which are expressed in concert and promote the virulence of different enterobacterial pathogens. To maximize fitness, they should be expressed only in microenvironments in which they are required. Accordingly, precise regulation of colibactin and yersiniabactin expression is crucial. We show that the expression of these two polyketides is also interconnected via primary metabolism-responsive regulation at the posttranscriptional level by the CsrA RNA-binding protein. Our findings may help to optimize (over-)expression and further functional characterization of the polyketide colibactin. Additionally, this new aspect of concerted colibactin and yersiniabactin expression extends our knowledge of conditions that favor the expression of these virulence- and fitness-associated factors in different Enterobacterales members.
Collapse
|
14
|
Fu J, Hall S, Boon EM. Recent evidence for multifactorial biofilm regulation by heme sensor proteins NosP and H-NOX. CHEM LETT 2021; 50:1095-1103. [PMID: 36051866 PMCID: PMC9432776 DOI: 10.1246/cl.200945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Heme is involved in signal transduction by either acting as a cofactor of heme-based gas/redox sensors or binding reversely to heme-responsive proteins. Bacteria respond to low concentrations of nitric oxide (NO) to modulate group behaviors such as biofilms through the well-characterized H-NOX family and the newly discovered heme sensor protein NosP. NosP shares functional similarities with H-NOX as a heme-based NO sensor; both regulate two-component systems and/or cyclic-di-GMP metabolizing enzymes, playing roles in processes such as quorum sensing and biofilm regulation. Interestingly, aside from its role in NO signaling, recent studies suggest that NosP may also sense labile heme. In this Highlight Review, we briefly summarize H-NOX-dependent NO signaling in bacteria, then focus on recent advances in NosP-mediated NO signaling and labile heme sensing.
Collapse
Affiliation(s)
| | | | - Elizabeth M. Boon
- To whom correspondence should be addressed: Elizabeth M. Boon: Tel.: (631) 632-7945. Fax: (631) 632-7960.
| |
Collapse
|
15
|
Pseudomonas aeruginosa as a Model To Study Chemosensory Pathway Signaling. Microbiol Mol Biol Rev 2021; 85:85/1/e00151-20. [PMID: 33441490 DOI: 10.1128/mmbr.00151-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria have evolved a variety of signal transduction mechanisms that generate different outputs in response to external stimuli. Chemosensory pathways are widespread in bacteria and are among the most complex signaling mechanisms, requiring the participation of at least six proteins. These pathways mediate flagellar chemotaxis, in addition to controlling alternative functions such as second messenger levels or twitching motility. The human pathogen Pseudomonas aeruginosa has four different chemosensory pathways that carry out different functions and are stimulated by signal binding to 26 chemoreceptors. Recent research employing a diverse range of experimental approaches has advanced enormously our knowledge on these four pathways, establishing P. aeruginosa as a primary model organism in this field. In the first part of this article, we review data on the function and physiological relevance of chemosensory pathways as well as their involvement in virulence, whereas the different transcriptional and posttranscriptional regulatory mechanisms that govern pathway function are summarized in the second part. The information presented will be of help to advance the understanding of pathway function in other organisms.
Collapse
|
16
|
Soberón‐Chávez G, González‐Valdez A, Soto‐Aceves MP, Cocotl‐Yañez M. Rhamnolipids produced by Pseudomonas: from molecular genetics to the market. Microb Biotechnol 2021; 14:136-146. [PMID: 33151628 PMCID: PMC7888470 DOI: 10.1111/1751-7915.13700] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022] Open
Abstract
Rhamnolipids are biosurfactants with a wide range of industrial applications that entered into the market a decade ago. They are naturally produced by Pseudomonas aeruginosa and some Burkholderia species. Occasionally, some strains of different bacterial species, like Pseudomonas chlororaphis NRRL B-30761, which have acquired RL-producing ability by horizontal gene transfer, have been described. P. aeruginosa, the ubiquitous opportunistic pathogenic bacterium, is the best rhamnolipids producer, but Pseudomonas putida has been used as heterologous host for the production of this biosurfactant with relatively good yields. The molecular genetics of rhamnolipids production by P. aeruginosa has been widely studied not only due to the interest in developing overproducing strains, but because it is coordinately regulated with the expression of different virulence-related traits by the quorum-sensing response. Here, we highlight how the research of the molecular mechanisms involved in rhamnolipid production have impacted the development of strains that are suitable for industrial production of this biosurfactant, as well as some perspectives to improve these industrial useful strains.
Collapse
Affiliation(s)
- Gloria Soberón‐Chávez
- Departamento de Biología Molecular y BiotecnologíaInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria, CDMXCoyoacanMéxico
| | - Abigail González‐Valdez
- Departamento de Biología Molecular y BiotecnologíaInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria, CDMXCoyoacanMéxico
| | - Martín P. Soto‐Aceves
- Departamento de Biología Molecular y BiotecnologíaInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria, CDMXCoyoacanMéxico
| | - Miguel Cocotl‐Yañez
- Departamento de Microbiología y ParasitologíaFacultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad Universitaria, CDMXCoyoacanMéxico
| |
Collapse
|
17
|
Irie Y, La Mensa A, Murina V, Hauryliuk V, Tenson T, Shingler V. Hfq-Assisted RsmA Regulation Is Central to Pseudomonas aeruginosa Biofilm Polysaccharide PEL Expression. Front Microbiol 2020; 11:482585. [PMID: 33281751 PMCID: PMC7705225 DOI: 10.3389/fmicb.2020.482585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/08/2020] [Indexed: 12/05/2022] Open
Abstract
To appropriately switch between sessile and motile lifestyles, bacteria control expression of biofilm-associated genes through multiple regulatory elements. In Pseudomonas aeruginosa, the post-transcriptional regulator RsmA has been implicated in the control of various genes including those related to biofilms, but much of the evidence for these links is limited to transcriptomic and phenotypic studies. RsmA binds to target mRNAs to modulate translation by affecting ribosomal access and/or mRNA stability. Here, we trace a global regulatory role of RsmA to inhibition of the expression of Vfr—a transcription factor that inhibits transcriptional regulator FleQ. FleQ directly controls biofilm-associated genes that encode the PEL polysaccharide biosynthesis machinery. Furthermore, we show that RsmA alone cannot bind vfr mRNA but requires the assistance of RNA chaperone protein Hfq. This is the first example where a RsmA protein family member requires another protein for binding to its target RNA.
Collapse
Affiliation(s)
- Yasuhiko Irie
- Institute of Technology, University of Tartu, Tartu, Estonia.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Agnese La Mensa
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Victoriia Murina
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Vasili Hauryliuk
- Institute of Technology, University of Tartu, Tartu, Estonia.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
18
|
Peng J, Chen G, Xu X, Wang T, Liang H. Iron facilitates the RetS-Gac-Rsm cascade to inversely regulate protease IV (piv) expression via the sigma factor PvdS in Pseudomonas aeruginosa. Environ Microbiol 2020; 22:5402-5413. [PMID: 33015962 DOI: 10.1111/1462-2920.15270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa produces several proteases, such as an elastase (LasB protease), a LasA protease, and protease IV (PIV), which are thought as significant virulence factors during infection. Regulators of LasA and LasB expression have been identified and well characterized; however, the molecular details of this regulation of protease IV (PIV) remained largely unknown. Here, we describe the interaction between protease IV and the RetS/Rsm signalling pathway, which plays a central role in controlling the production of multiple virulence factors and the switch from planktonic to biofilm lifestyle. We show that the expression of piv was reduced in ΔretS or ΔrsmA strain grown under restrictive conditions but was induced in ΔretS or ΔrsmA mutant grown under rich conditions as compared with wild-type parent. We compare the expression of piv under various conditions and found that iron facilitates RetS/Rsm system to lead this inverse regulation. Moreover, we reveal that the RetS/Rsm pathway regulates PIV production dependent on the alternative sigma factor PvdS. Collectively, this study extends the understanding of the RetS/Rsm regulatory cascade in response to environmental signals and provides insights into how P. aeruginosa adapts to the complex conditions.
Collapse
Affiliation(s)
- Juan Peng
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Gukui Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xuejie Xu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Tietao Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| |
Collapse
|
19
|
Janssen KH, Corley JM, Djapgne L, Cribbs JT, Voelker D, Slusher Z, Nordell R, Regulski EE, Kazmierczak BI, McMackin EW, Yahr TL. Hfq and sRNA 179 Inhibit Expression of the Pseudomonas aeruginosa cAMP-Vfr and Type III Secretion Regulons. mBio 2020; 11:e00363-20. [PMID: 32546612 PMCID: PMC7298702 DOI: 10.1128/mbio.00363-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen causing skin and soft tissue, respiratory, and bloodstream infections. The type III secretion system (T3SS) is one important virulence factor. Production of the T3SS is controlled by ExsA, a transcription factor that activates expression of the entire T3SS regulon. Global regulators including Vfr, RsmA, and Hfq also contribute to regulation of the T3SS. Vfr is a cAMP-responsive transcription factor that activates exsA transcription. RsmA, an RNA-binding protein, inversely controls expression of the T3SS and the type VI secretion system (T6SS). Hfq is an RNA chaperone that functions by stabilizing small noncoding RNAs (sRNAs) and/or facilitating base pairing between sRNAs and mRNA targets. A previous study identified sRNA 1061, which directly targets the exsA mRNA and likely inhibits ExsA synthesis. In this study, we screened an sRNA expression library and identified sRNA 179 as an Hfq-dependent inhibitor of T3SS gene expression. Further characterization revealed that sRNA 179 inhibits the synthesis of both ExsA and Vfr. The previous finding that RsmA stimulates ExsA and Vfr synthesis suggested that sRNA 179 impacts the Gac/Rsm system. Consistent with that idea, the inhibitory activity of sRNA 179 is suppressed in a mutant lacking rsmY and rsmZ, and sRNA 179 expression stimulates rsmY transcription. RsmY and RsmZ are small noncoding RNAs that sequester RsmA from target mRNAs. Our combined findings show that Hfq and sRNA 179 indirectly regulate ExsA and Vfr synthesis by reducing the available pool of RsmA, leading to reduced expression of the T3SS and cAMP-Vfr regulons.IMPORTANCE Control of gene expression by small noncoding RNA (sRNA) is well documented but underappreciated. Deep sequencing of mRNA preparations from Pseudomonas aeruginosa suggests that >500 sRNAs are generated. Few of those sRNAs have defined roles in gene expression. To address that knowledge gap, we constructed an sRNA expression library and identified sRNA 179 as a regulator of the type III secretion system (T3SS) and the cAMP-Vfr regulons. The T3SS- and cAMP-Vfr-controlled genes are critical virulence factors. Increased understanding of the signals and regulatory mechanisms that control these important factors will enhance our understanding of disease progression and reveal potential approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Kayley H Janssen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Jodi M Corley
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Louise Djapgne
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - J T Cribbs
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Deven Voelker
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Zachary Slusher
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Robert Nordell
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Elizabeth E Regulski
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Barbara I Kazmierczak
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Timothy L Yahr
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
20
|
Multidrug Adaptive Resistance of Pseudomonas aeruginosa Swarming Cells. Antimicrob Agents Chemother 2020; 64:AAC.01999-19. [PMID: 31844008 DOI: 10.1128/aac.01999-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/10/2019] [Indexed: 01/25/2023] Open
Abstract
Swarming surface motility is a complex adaptation leading to multidrug antibiotic resistance and virulence factor production in Pseudomonas aeruginosa Here, we expanded previous studies to demonstrate that under swarming conditions, P. aeruginosa PA14 is more resistant to multiple antibiotics, including aminoglycosides, β-lactams, chloramphenicol, ciprofloxacin, tetracycline, trimethoprim, and macrolides, than swimming cells, but is not more resistant to polymyxin B. We investigated the mechanism(s) of swarming-mediated antibiotic resistance by examining the transcriptomes of swarming cells and swarming cells treated with tobramycin by transcriptomics (RNA-Seq) and reverse transcriptase quantitative PCR (qRT-PCR). RNA-Seq of swarming cells (versus swimming) revealed 1,581 dysregulated genes, including 104 transcriptional regulators, two-component systems, and sigma factors, numerous upregulated virulence and iron acquisition factors, and downregulated ribosomal genes. Strain PA14 mutants in resistome genes that were dysregulated under swarming conditions were tested for their ability to swarm in the presence of tobramycin. In total, 41 mutants in genes dysregulated under swarming conditions were shown to be more resistant to tobramycin under swarming conditions, indicating that swarming-mediated tobramycin resistance was multideterminant. Focusing on two genes downregulated under swarming conditions, both prtN and wbpW mutants were more resistant to tobramycin, while the prtN mutant was additionally resistant to trimethoprim under swarming conditions; complementation of these mutants restored susceptibility. RNA-Seq of swarming cells treated with subinhibitory concentrations of tobramycin revealed the upregulation of the multidrug efflux pump MexXY and downregulation of virulence factors.
Collapse
|
21
|
Wang XL, Dai SY, Wang QJ, Xu HN, Shi HQ, Kang YB, Zha DM. Efficient markerless gene deletions in Pseudomonas protegens Pf-5 using a upp-based counterselective system. Biotechnol Lett 2019; 42:277-285. [DOI: 10.1007/s10529-019-02772-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/21/2019] [Indexed: 02/01/2023]
|
22
|
Sharp JS, Rietsch A, Dove SL. RNase E Promotes Expression of Type III Secretion System Genes in Pseudomonas aeruginosa. J Bacteriol 2019; 201:e00336-19. [PMID: 31481542 PMCID: PMC6805110 DOI: 10.1128/jb.00336-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen that employs a type III secretion system (T3SS) to inject effector proteins into host cells. Using a protein depletion system, we show that the endoribonuclease RNase E positively regulates expression of the T3SS genes. We also present evidence that RNase E antagonizes the expression of genes of the type VI secretion system and limits biofilm production in P. aeruginosa Thus, RNase E, which is thought to be the principal endoribonuclease involved in the initiation of RNA degradation in P. aeruginosa, plays a key role in controlling the production of factors involved in both acute and chronic stages of infection. Although the posttranscriptional regulator RsmA is also known to positively regulate expression of the T3SS genes, we find that RNase E does not appreciably influence the abundance of RsmA in P. aeruginosa Moreover, we show that RNase E still exerts its effects on T3SS gene expression in cells lacking all four of the key small regulatory RNAs that function by sequestering RsmA.IMPORTANCE The type III secretion system (T3SS) is a protein complex produced by many Gram-negative pathogens. It is capable of injecting effector proteins into host cells that can manipulate cell metabolism and have toxic effects. Understanding how the T3SS is regulated is important in understanding the pathogenesis of bacteria with such systems. Here, we show that RNase E, which is typically thought of as a global regulator of RNA stability, plays a role in regulating the T3SS in Pseudomonas aeruginosa Depleting RNase E results in the loss of T3SS gene expression as well as a concomitant increase in biofilm formation. These observations are reminiscent of the phenotypes associated with the loss of activity of the posttranscriptional regulator RsmA. However, RNase E-mediated regulation of these systems does not involve changes in the abundance of RsmA and is independent of the known small regulatory RNAs that modulate RsmA activity.
Collapse
Affiliation(s)
- Josh S Sharp
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Biology Department, Northern Michigan University, Marquette, Michigan, USA
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Lee JH, Ancona V, Chatnaparat T, Yang HW, Zhao Y. The RNA-Binding Protein CsrA Controls Virulence in Erwinia amylovora by Regulating RelA, RcsB, and FlhD at the Posttranscriptional Level. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1448-1459. [PMID: 31140921 DOI: 10.1094/mpmi-03-19-0077-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
CsrA, an RNA-binding protein, binds to target transcripts and alters their translation or stability. In Erwinia amylovora, CsrA positively regulates the expression of type III secretion system (T3SS), exopolysaccharide amylovoran, and motility. In this study, the global effect of CsrA and its noncoding small RNA (ncsRNA) csrB in E. amylovora was determined by RNA-seq, and potential molecular mechanisms of CsrA-dependent virulence regulation were examined. Transcriptomic analyses under the T3SS-inducing condition revealed that mutation in the csrA gene led to differential expression of more than 20% of genes in the genome. Among them, T3SS genes and those required for cell growth and viability were significantly downregulated. On the other hand, the csrB mutant exhibited significant upregulation of most major virulence genes, suggesting an antagonistic effect of csrB on CsrA targets. Direct interaction between CsrA protein and csrB was further confirmed through the RNA electrophoretic mobility shift assay (REMSA). However, no direct interaction between CsrA and hrpL and hrpS transcripts was detected, suggesting that HrpL and HrpS are not targets of CsrA, whereas three CsrA targets (relA, rcsB, and flhD) were identified and confirmed by REMSA, site-directed mutagenesis, and LacZ reporter gene assays. These findings might partially explain how CsrA positively controls E. amylovora virulence by targeting major regulators at the posttranscriptional level.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Veronica Ancona
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Ho-Wen Yang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| |
Collapse
|
24
|
García-Fontana C, Vílchez JI, González-Requena M, González-López J, Krell T, Matilla MA, Manzanera M. The involvement of McpB chemoreceptor from Pseudomonas aeruginosa PAO1 in virulence. Sci Rep 2019; 9:13166. [PMID: 31511598 PMCID: PMC6739360 DOI: 10.1038/s41598-019-49697-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen causing infections in a variety of plant and animal hosts. The gene mcpB, part of the chemosensory gene cluster II, encodes a soluble chemoreceptor whose function remains unknown. Previous studies show that the cheB2 gene, also located in the chemosensory cluster II, is involved in a specific response during infection and it is required for full pathogenicity of P. aeruginosa. To determine whether the McpB (or Aer2) chemoreceptor is involved in virulence processes, we generated a mcpB mutant and tested its phenotype using a virulence-measuring system. This system was developed by our group and is based on different bioassays using organisms living at different soil trophic levels, including microbial, nematode, arthropod, annelid, and plant model systems. The deletion of mcpB resulted in an attenuation of bacterial virulence in different infection models, and wild-type virulence was restored following genetic complementation of the mutant strain. Our study indicates that the McpB chemoreceptor is linked to virulence processes and may constitute the basis for the development of alternative strategies against this pathogen.
Collapse
Affiliation(s)
- Cristina García-Fontana
- Institute for Water Research and Department of Microbiology, University of Granada, Granada, Spain
| | - Juan I Vílchez
- Institute for Water Research and Department of Microbiology, University of Granada, Granada, Spain
| | - Marta González-Requena
- Institute for Water Research and Department of Microbiology, University of Granada, Granada, Spain
| | - Jesús González-López
- Institute for Water Research and Department of Microbiology, University of Granada, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008, Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008, Granada, Spain
| | - Maximino Manzanera
- Institute for Water Research and Department of Microbiology, University of Granada, Granada, Spain.
| |
Collapse
|
25
|
Ge Y, Lee JH, Liu J, Yang H, Tian Y, Hu B, Zhao Y. Homologues of the RNA binding protein RsmA in Pseudomonas syringae pv. tomato DC3000 exhibit distinct binding affinities with non-coding small RNAs and have distinct roles in virulence. MOLECULAR PLANT PATHOLOGY 2019; 20:1217-1236. [PMID: 31218814 PMCID: PMC6715622 DOI: 10.1111/mpp.12823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 (PstDC3000) contains five RsmA protein homologues. In this study, four were functionally characterized, with a focus on RsmA2, RsmA3 and RsmA4. RNA electrophoretic mobility shift assays demonstrated that RsmA1 and RsmA4 exhibited similar low binding affinities to non-coding small RNAs (ncsRNAs), whereas RsmA2 and RsmA3 exhibited similar, but much higher, binding affinities to ncsRNAs. Our results showed that both RsmA2 and RsmA3 were required for disease symptom development and bacterial growth in planta by significantly affecting virulence gene expression. All four RsmA proteins, especially RsmA2 and RsmA3, influenced γ-amino butyric acid utilization and pyoverdine production to some degree, whereas RsmA2, RsmA3 and RsmA4 influenced protease activities. A single RsmA, RsmA3, played a dominant role in regulating motility. Furthermore, reverse transcription quantitative real-time PCR and western blot results showed that RsmA proteins, especially RsmA2 and RsmA3, regulated target genes and possibly other RsmA proteins at both transcriptional and translational levels. These results indicate that RsmA proteins in PstDC3000 exhibit distinct binding affinities to ncsRNAs and have distinct roles in virulence. Our results also suggest that RsmA proteins in PstDC3000 interact with each other, where RsmA2 and RsmA3 play a major role in regulating various functions in a complex manner.
Collapse
Affiliation(s)
- Yixin Ge
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Jae Hoon Lee
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Ho‐wen Yang
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
| | - Youfu Zhao
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
26
|
Elabed H, González-Tortuero E, Ibacache-Quiroga C, Bakhrouf A, Johnston P, Gaddour K, Blázquez J, Rodríguez-Rojas A. Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC Microbiol 2019; 19:142. [PMID: 31234794 PMCID: PMC6591848 DOI: 10.1186/s12866-019-1499-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Background In nature, microorganisms have to adapt to long-term stressful conditions often with growth limitations. However, little is known about the evolution of the adaptability of new bacteria to such environments. Pseudomonas aeruginosa, an opportunistic pathogen, after natural evaporation of seawater, was shown to be trapped in laboratory-grown halite crystals and to remain viable after entrapment for years. However, how this bacterium persists and survives in such hypersaline conditions is not understood. Results In this study, we aimed to understand the basis of survival, and to characterise the physiological changes required to develop salt tolerance using P. aeruginosa as a model. Several clones of P. aeruginosa were rescued after 14 years in naturally evaporated marine salt crystals. Incubation of samples in nutrient-rich broth allowed re-growth and subsequent plating yielded observable colonies. Whole genome sequencing of the P. aeruginosa isolates confirmed the recovery of the original strain. The re-grown strains, however, showed a new phenotype consisting of an enhanced growth in growing salt concentration compared to the ancestor strain. The intracellular accumulation of K+ was elicited by high concentration of Na+ in the external medium to maintain the homeostasis. Whole transcriptomic analysis by microarray indicated that 78 genes had differential expression between the parental strain and its derivative clones. Sixty-one transcripts were up-regulated, while 17 were down-regulated. Based on a collection of single-gene knockout mutants and gene ontology analysis, we suggest that the adaptive response in P. aeruginosa to hyper-salinity relies on multiple gene product interactions. Conclusions The individual gene contributions build up the observed phenotype, but do not ease the identification of salinity-related metabolic pathways. The long-term inclusion of P. aeruginosa in salt crystals primes the bacteria, mediating a readjustment of the bacterial physiology to growth in higher salt concentrations. Our findings provide a starting point to understand how P. aeruginosa, a relevant environmental and pathogenic bacterium, survives to long-term salt stress. Electronic supplementary material The online version of this article (10.1186/s12866-019-1499-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hamouda Elabed
- Laboratory of Contagious Diseases and Biologically Active Substances LR99-ES27 Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain
| | - Enrique González-Tortuero
- Department of Veterinary and Animal Sciences, Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Ibacache-Quiroga
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain.,Centro de Micro-Bioinnovación, Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Amina Bakhrouf
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Paul Johnston
- Institute of Biology, FreieUniversität Berlin, Berlin, Germany
| | - Kamel Gaddour
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Jesús Blázquez
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain
| | | |
Collapse
|
27
|
Francis VI, Porter SL. Multikinase Networks: Two-Component Signaling Networks Integrating Multiple Stimuli. Annu Rev Microbiol 2019; 73:199-223. [PMID: 31112439 DOI: 10.1146/annurev-micro-020518-115846] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria depend on two-component systems to detect and respond to threats. Simple pathways comprise a single sensor kinase (SK) that detects a signal and activates a response regulator protein to mediate an appropriate output. These simple pathways with only a single SK are not well suited to making complex decisions where multiple different stimuli need to be evaluated. A recently emerging theme is the existence of multikinase networks (MKNs) where multiple SKs collaborate to detect and integrate numerous different signals to regulate a major lifestyle switch, e.g., between virulence, sporulation, biofilm formation, and cell division. In this review, the role of MKNs and the phosphosignaling mechanisms underpinning their signal integration and decision making are explored.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| | - Steven L Porter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| |
Collapse
|
28
|
Abstract
The sequence-specific RNA binding protein CsrA is employed by diverse bacteria in the posttranscriptional regulation of gene expression. Its binding interactions with RNA have been documented at atomic resolution and shown to alter RNA secondary structure, RNA stability, translation, and/or Rho-mediated transcription termination through a growing number of molecular mechanisms. In Gammaproteobacteria, small regulatory RNAs (sRNAs) that contain multiple CsrA binding sites compete with mRNA for binding to CsrA, thereby sequestering and antagonizing this protein. Both the synthesis and turnover of these sRNAs are regulated, allowing CsrA activity to be rapidly and efficiently adjusted in response to nutritional conditions and stresses. Feedback loops between the Csr regulatory components improve the dynamics of signal response by the Csr system. The Csr system of Escherichia coli is intimately interconnected with other global regulatory systems, permitting it to contribute to regulation by those systems. In some species, a protein antagonist of CsrA functions as part of a checkpoint for flagellum biosynthesis. In other species, a protein antagonist participates in a mechanism in which a type III secretion system is used for sensing interactions with host cells. Recent transcriptomics studies reveal vast effects of CsrA on gene expression through direct binding to hundreds of mRNAs, and indirectly through its effects on the expression of dozens of transcription factors. CsrA binding to base-pairing sRNAs and novel mRNA segments, such as the 3' untranslated region and deep within coding regions, predict its participation in yet-to-be-discovered regulatory mechanisms.
Collapse
|
29
|
Romero M, Silistre H, Lovelock L, Wright VJ, Chan KG, Hong KW, Williams P, Cámara M, Heeb S. Genome-wide mapping of the RNA targets of the Pseudomonas aeruginosa riboregulatory protein RsmN. Nucleic Acids Res 2018; 46:6823-6840. [PMID: 29718466 PMCID: PMC6061880 DOI: 10.1093/nar/gky324] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 01/01/2023] Open
Abstract
Pseudomonads typically carry multiple non-identical alleles of the post-transcriptional regulator rsmA. In Pseudomonas aeruginosa, RsmN is notable in that its structural rearrangement confers distinct and overlapping functions with RsmA. However, little is known about the specificities of RsmN for its target RNAs and overall impact on the biology of this pathogen. We purified and mapped 503 transcripts directly bound by RsmN in P. aeruginosa. About 200 of the mRNAs identified encode proteins of demonstrated function including some determining acute and chronic virulence traits. For example, RsmN reduces biofilm development both directly and indirectly via multiple pathways, involving control of Pel exopolysaccharide biosynthesis and c-di-GMP levels. The RsmN targets identified are also shared with RsmA, although deletion of rsmN generally results in less pronounced phenotypes than those observed for ΔrsmA or ΔrsmArsmNind mutants, probably as a consequence of different binding affinities. Targets newly identified for the Rsm system include the small non-coding RNA CrcZ involved in carbon catabolite repression, for which differential binding of RsmN and RsmA to specific CrcZ regions is demonstrated. The results presented here provide new insights into the intricacy of riboregulatory networks involving multiple but distinct RsmA homologues.
Collapse
Affiliation(s)
- Manuel Romero
- School of Life Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Hazel Silistre
- School of Life Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Laura Lovelock
- School of Life Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Victoria J Wright
- School of Life Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University,Zhenjiang, China
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kar-Wai Hong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Miguel Cámara
- School of Life Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stephan Heeb
- School of Life Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
30
|
Francis VI, Waters EM, Finton-James SE, Gori A, Kadioglu A, Brown AR, Porter SL. Multiple communication mechanisms between sensor kinases are crucial for virulence in Pseudomonas aeruginosa. Nat Commun 2018; 9:2219. [PMID: 29880803 PMCID: PMC5992135 DOI: 10.1038/s41467-018-04640-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Bacteria and many non-metazoan Eukaryotes respond to stresses and threats using two-component systems (TCSs) comprising sensor kinases (SKs) and response regulators (RRs). Multikinase networks, where multiple SKs work together, detect and integrate different signals to control important lifestyle decisions such as sporulation and virulence. Here, we study interactions between two SKs from Pseudomonas aeruginosa, GacS and RetS, which control the switch between acute and chronic virulence. We demonstrate three mechanisms by which RetS attenuates GacS signalling: RetS takes phosphoryl groups from GacS-P; RetS has transmitter phosphatase activity against the receiver domain of GacS-P; and RetS inhibits GacS autophosphorylation. These mechanisms play important roles in vivo and during infection, and exemplify an unprecedented degree of signal processing by SKs that may be exploited in other multikinase networks.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Elaine M Waters
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Sutharsan E Finton-James
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Andrea Gori
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Alan R Brown
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
31
|
Abstract
Piscirickettsia salmonis, a fastidious Gram-negative intracellular facultative bacterium, is the causative agent o Piscirickettsiosis. P. salmonis has broad host range with a nearly worldwide distribution, causing significant mortality. The molecular regulatory mechanisms of P. salmonis pathogenesis are relatively unknown, mainly due to its difficult in vitro culture and genomic differences between genogroups. Bacterial non-coding RNAs (ncRNAs) are important post-transcriptional regulators of bacterial physiology and virulence that are predominantly transcribed from intergenic regions (trans-acting) or antisense strand of open reading frames (cis-acting). The repertoire of ncRNAs present in the genome of P. salmonis and its possible role in bacterial physiology and pathogenesis are unknown. Here, we predicted and analyzed the core ncRNAs of P. salmonis base on structure and correlate this prediction to RNA sequencing data. We identified a total of 69 ncRNA classes related to tRNAs, rRNA, thermoregulators, antitoxins, ribozymes, riboswitches, miRNAs and antisense-RNAs. Among these ncRNAs, 29 classes of ncRNAs are shared between all P. salmonis genomes, constituting the core ncRNAs of P. salmonis. The ncRNA core of P. salmonis could serve to develop diagnostic tools and explore the role of ncRNA in fish pathogenesis.
Collapse
|
32
|
Functional Analyses of the RsmY and RsmZ Small Noncoding Regulatory RNAs in Pseudomonas aeruginosa. J Bacteriol 2018; 200:JB.00736-17. [PMID: 29463606 DOI: 10.1128/jb.00736-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/14/2018] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen with distinct acute and chronic virulence phenotypes. Whereas acute virulence is typically associated with expression of a type III secretion system (T3SS), chronic virulence is characterized by biofilm formation. Many of the phenotypes associated with acute and chronic virulence are inversely regulated by RsmA and RsmF. RsmA and RsmF are both members of the CsrA family of RNA-binding proteins and regulate protein synthesis at the posttranscriptional level. RsmA activity is controlled by two small noncoding regulatory RNAs (RsmY and RsmZ). Bioinformatic analyses suggest that RsmY and RsmZ each have 3 or 4 putative RsmA binding sites. Each predicted binding site contains a GGA sequence presented in the loop portion of a stem-loop structure. RsmY and RsmZ regulate RsmA, and possibly RsmF, by sequestering these proteins from target mRNAs. In this study, we used selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) chemistry to determine the secondary structures of RsmY and RsmZ and functional assays to characterize the contribution of each GGA site to RsmY/RsmZ activity. Our data indicate that RsmA has two preferential binding sites on RsmY and RsmZ, while RsmF has one preferential binding site on RsmY and two sites on RsmZ. Despite RsmF and RsmA sharing a common consensus site, RsmF binding properties are more restrictive than those of RsmA.IMPORTANCE CsrA homologs are present in many bacteria. The opportunistic pathogen Pseudomonas aeruginosa uses RsmA and RsmF to inversely regulate factors associated with acute and chronic virulence phenotypes. RsmA has an affinity for RsmY and RsmZ higher than that of RsmF. The goal of this study was to understand the differential binding properties of RsmA and RsmF by using the RsmY and RsmZ regulatory small RNAs (sRNAs) as a model. Mutagenesis of the predicted RsmA/RsmF binding sites on RsmY and RsmZ revealed similarities in the sites required to control RsmA and RsmF activity in vivo Whereas binding by RsmA was relatively tolerant of binding site mutations, RsmF was sensitive to disruption to all but two of the sites, further demonstrating that the requirements for RsmF binding activity in vivo and in vitro are more stringent than those for RsmA.
Collapse
|
33
|
Ferreiro MD, Nogales J, Farias GA, Olmedilla A, Sanjuán J, Gallegos MT. Multiple CsrA Proteins Control Key Virulence Traits in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:525-536. [PMID: 29261011 DOI: 10.1094/mpmi-09-17-0232-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000 has a complex Gac-rsm global regulatory pathway that controls virulence, motility, production of secondary metabolites, carbon metabolism, and quorum sensing. However, despite the fact that components of this pathway are known, their physiological roles have not yet been established. Regarding the CsrA/RsmA type proteins, five paralogs, three of which are well conserved within the Pseudomonas genus (csrA1, csrA2, and csrA3), have been found in the DC3000 genome. To decipher their function, mutants lacking the three most conserved CsrA proteins have been constructed and their physiological outcomes examined. We show that they exert nonredundant functions and demonstrate that CsrA3 and, to a lesser extent, CsrA2 but not CsrA1 alter the expression of genes involved in a variety of pathways and systems important for motility, exopolysaccharide synthesis, growth, and virulence. Particularly, alginate synthesis, syringafactin production, and virulence are considerably de-repressed in a csrA3 mutant, whereas growth in planta is impaired. We propose that the linkage of growth and symptom development is under the control of CsrA3, which functions as a pivotal regulator of the DC3000 life cycle, repressing virulence traits and promoting cell division in response to environmental cues.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| | - Joaquina Nogales
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| | - Gabriela A Farias
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
- 2 Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Adela Olmedilla
- 2 Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Juan Sanjuán
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| | - María Trinidad Gallegos
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| |
Collapse
|
34
|
Regulation of host–pathogen interactions via the post-transcriptional Csr/Rsm system. Curr Opin Microbiol 2018; 41:58-67. [DOI: 10.1016/j.mib.2017.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022]
|
35
|
Francis VI, Stevenson EC, Porter SL. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett 2018; 364:3828290. [PMID: 28510688 PMCID: PMC5812489 DOI: 10.1093/femsle/fnx104] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen capable of infecting a broad range of hosts, in addition to thriving in a broad range of environmental conditions outside of hosts. With this versatility comes the need to tightly regulate its genome to optimise its gene expression and behaviour to the prevailing conditions. Two-component systems (TCSs) comprising sensor kinases and response regulators play a major role in this regulation. This minireview discusses the growing number of TCSs that have been implicated in the virulence of P. aeruginosa, with a special focus on the emerging theme of multikinase networks, which are networks comprising multiple sensor kinases working together, sensing and integrating multiple signals to decide upon the best response. The networks covered in depth regulate processes such as the switch between acute and chronic virulence (GacS network), the Cup fimbriae (Roc network and Rcs/Pvr network), the aminoarabinose modification of lipopolysaccharide (a network involving the PhoQP and PmrBA TCSs), twitching motility and virulence (a network formed from the Chp chemosensory pathway and the FimS/AlgR TCS), and biofilm formation (Wsp chemosensory pathway). In addition, we highlight the important interfaces between these systems and secondary messenger signals such as cAMP and c-di-GMP.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Emma C Stevenson
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| |
Collapse
|
36
|
Fakhry CT, Zarringhalam K, Kulkarni RV. Bioinformatic Approach for Prediction of CsrA/RsmA-Regulating Small RNAs in Bacteria. Methods Mol Biol 2018; 1737:47-56. [PMID: 29484586 DOI: 10.1007/978-1-4939-7634-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
CsrA/RsmA is a RNA-binding protein that functions as a global regulator controlling important processes such as virulence, secondary metabolism, motility, and biofilm formation in diverse bacterial species. The activity of CsrA/RsmA is regulated by small RNAs that contain multiple binding sites for the protein. The expression of these noncoding RNAs effectively sequesters the protein and reduces free cellular levels of CsrA/RsmA. While multiple bacterial small RNAs that bind to and regulate CsrA/RsmA levels have been discovered, it is anticipated that there are several such small RNAs that remain undiscovered. To assist in the discovery of these small RNAs, we have developed a bioinformatics approach that combines sequence- and structure-based features to predict small RNA regulators of CsrA/RsmA. This approach analyzes structural motifs in the ensemble of low energy secondary structures of known small RNA regulators of CsrA/RsmA and trains a binary classifier on these features. The proposed machine learning approach leads to several testable predictions for small RNA regulators of CsrA/RsmA, thereby complementing and accelerating experimental efforts aimed at discovery of noncoding RNAs in the CsrA/RsmA pathway.
Collapse
Affiliation(s)
- Carl T Fakhry
- Department of Computer Science, University of Massachusetts Boston, Boston, MA, USA
| | | | - Rahul V Kulkarni
- Department of Physics, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
37
|
Zhang YF, Han K, Chandler CE, Tjaden B, Ernst RK, Lory S. Probing the sRNA regulatory landscape of P. aeruginosa: post-transcriptional control of determinants of pathogenicity and antibiotic susceptibility. Mol Microbiol 2017; 106:919-937. [PMID: 28976035 PMCID: PMC5738928 DOI: 10.1111/mmi.13857] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2017] [Indexed: 01/01/2023]
Abstract
During environmental adaptation bacteria use small regulatory RNAs (sRNAs) to repress or activate expression of a large fraction of their proteome. We extended the use of the in vivo RNA proximity ligation method toward probing global sRNA interactions with their targets in Pseudomonas aeruginosa and verified the method with a known regulon controlled by the PrrF1 sRNA. We also identified two sRNAs (Sr0161 and ErsA) that interact with the mRNA encoding the major porin OprD responsible for the uptake of carbapenem antibiotics. These two sRNAs base pair with the 5' UTR of oprD leading to increase in resistance of the bacteria to meropenem. Additional proximity ligation experiments and enrichment for Sr0161 targets identified the mRNA for the regulator of type III secretion system. Interaction between the exsA mRNA and Sr0161 leads to a block in the synthesis of a component of the T3SS apparatus and an effector. Another sRNA, Sr006, positively regulates, without Hfq, the expression of PagL, an enzyme responsible for deacylation of lipid A, reducing its pro-inflammatory property and resulting in polymyxin resistance. Therefore, an analysis of global sRNA-mRNA interactions can lead to discoveries of novel pathways controlling gene expression that are likely integrated into larger regulatory networks.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Kook Han
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Courtney E. Chandler
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, School of Dentistry, Baltimore, Maryland, USA
| | - Brian Tjaden
- Computer Science Department, Wellesley College, Wellesley, Massachusetts, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, School of Dentistry, Baltimore, Maryland, USA
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Pseudomonas aeruginosa Magnesium Transporter MgtE Inhibits Type III Secretion System Gene Expression by Stimulating rsmYZ Transcription. J Bacteriol 2017; 199:JB.00268-17. [PMID: 28847924 DOI: 10.1128/jb.00268-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa causes numerous acute and chronic opportunistic infections in humans. One of its most formidable weapons is a type III secretion system (T3SS), which injects powerful toxins directly into host cells. The toxins lead to cell dysfunction and, ultimately, cell death. Identification of regulatory pathways that control T3SS gene expression may lead to the discovery of novel therapeutics to treat P. aeruginosa infections. In a previous study, we found that expression of the magnesium transporter gene mgtE inhibits T3SS gene transcription. MgtE-dependent inhibition appeared to interfere with the synthesis or function of the master T3SS transcriptional activator ExsA, although the exact mechanism was unclear. We now demonstrate that mgtE expression acts through the GacAS two-component system to activate rsmY and rsmZ transcription. This event ultimately leads to inhibition of exsA translation. This inhibitory effect is specific to exsA as translation of other genes in the exsCEBA operon is not inhibited by mgtE Moreover, our data reveal that MgtE acts solely through this pathway to regulate T3SS gene transcription. Our study reveals an important mechanism that may allow P. aeruginosa to fine-tune T3SS activity in response to certain environmental stimuli.IMPORTANCE The type III secretion system (T3SS) is a critical virulence factor utilized by numerous Gram-negative bacteria, including Pseudomonas aeruginosa, to intoxicate and kill host cells. Elucidating T3SS regulatory mechanisms may uncover targets for novel anti-P. aeruginosa therapeutics and provide deeper understanding of bacterial pathogenesis. We previously found that the magnesium transporter MgtE inhibits T3SS gene transcription in P. aeruginosa In this study, we describe the mechanism of MgtE-dependent inhibition of the T3SS. Our report also illustrates how MgtE might respond to environmental cues, such as magnesium levels, to fine-tune T3SS gene expression.
Collapse
|
39
|
Lin Chua S, Liu Y, Li Y, Jun Ting H, Kohli GS, Cai Z, Suwanchaikasem P, Kau Kit Goh K, Pin Ng S, Tolker-Nielsen T, Yang L, Givskov M. Reduced Intracellular c-di-GMP Content Increases Expression of Quorum Sensing-Regulated Genes in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2017; 7:451. [PMID: 29090193 PMCID: PMC5650985 DOI: 10.3389/fcimb.2017.00451] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/04/2017] [Indexed: 01/08/2023] Open
Abstract
Cyclic-di-GMP (c-di-GMP) is an intracellular secondary messenger which controls the biofilm life cycle in many bacterial species. High intracellular c-di-GMP content enhances biofilm formation via the reduction of motility and production of biofilm matrix, while low c-di-GMP content in biofilm cells leads to increased motility and biofilm dispersal. While the effect of high c-di-GMP levels on bacterial lifestyles is well studied, the physiology of cells at low c-di-GMP levels remains unclear. Here, we showed that Pseudomonas aeruginosa cells with high and low intracellular c-di-GMP contents possessed distinct transcriptome profiles. There were 535 genes being upregulated and 432 genes downregulated in cells with low c-di-GMP, as compared to cells with high c-di-GMP. Interestingly, both rhl and pqs quorum-sensing (QS) operons were expressed at higher levels in cells with low intracellular c-di-GMP content compared with cells with higher c-di-GMP content. The induced expression of pqs and rhl QS required a functional PqsR, the transcriptional regulator of pqs QS. Next, we observed increased production of pqs and rhl-regulated virulence factors, such as pyocyanin and rhamnolipids, in P. aeruginosa cells with low c-di-GMP levels, conferring them with increased intracellular survival rates and cytotoxicity against murine macrophages. Hence, our data suggested that low intracellular c-di-GMP levels in bacteria could induce QS-regulated virulence, in particular rhamnolipids that cripple the cellular components of the innate immune system.
Collapse
Affiliation(s)
- Song Lin Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yang Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yingying Li
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hui Jun Ting
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Gurjeet S Kohli
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhao Cai
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pipob Suwanchaikasem
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kelvin Kau Kit Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sean Pin Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Wang S, Yang F, Yang B. Global effect of CsrA on gene expression in enterohemorrhagic Escherichia coli O157:H7. Res Microbiol 2017; 168:700-709. [PMID: 28870757 DOI: 10.1016/j.resmic.2017.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/25/2023]
Abstract
The post-transcriptional regulator CsrA regulates multiple unrelated processes such as central carbon metabolism, motility, biofilm formation and bacterial virulence in different bacteria. However, regulation by CsrA in enterohemorrhagic Escherichia coli (EHEC) O157:H7 is still largely unknown. In this study, we performed a detailed analysis of gene expression differences between the EHEC O157:H7 wild-type strain and a corresponding csrA::kan mutant using RNA-seq technology. Genes whose expression was affected by CsrA were identified and grouped into different clusters of orthologous group categories. Genes located in the locus of enterocyte effacement (LEE) pathogenicity island were significantly upregulated, whereas expression of flagella-related genes was significantly reduced in the csrA::kan mutant. Subsequent bacterial adherence and motility assays showed that inactivation of CsrA in EHEC O157:H7 resulted in a significant increase in bacterial adherence to host epithelial cells, with a concomitant loss of swimming motility on semi-solid agar plates. Furthermore, we also found that CsrA regulates genes not previously identified in other bacterial species, including genes encoding cytochrome oxidases and those required for nitrogen metabolism. Our results provide essential insight into the regulatory function of CsrA.
Collapse
Affiliation(s)
- Shaomeng Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.
| | - Fan Yang
- Department of Neurosurgery, Tianjin First Central Hospital, Tianjin 300192, PR China.
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.
| |
Collapse
|
41
|
A broad range quorum sensing inhibitor working through sRNA inhibition. Sci Rep 2017; 7:9857. [PMID: 28851971 PMCID: PMC5575346 DOI: 10.1038/s41598-017-09886-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/21/2017] [Indexed: 11/15/2022] Open
Abstract
For the last decade, chemical control of bacterial virulence has received considerable attention. Ajoene, a sulfur-rich molecule from garlic has been shown to reduce expression of key quorum sensing regulated virulence factors in the opportunistic pathogen Pseudomonas aeruginosa. Here we show that the repressing effect of ajoene on quorum sensing occurs by inhibition of small regulatory RNAs (sRNA) in P. aeruginosa as well as in Staphylococcus aureus, another important human pathogen that employs quorum sensing to control virulence gene expression. Using various reporter constructs, we found that ajoene lowered expression of the sRNAs RsmY and RsmZ in P. aeruginosa and the small dual-function regulatory RNA, RNAIII in S. aureus, that controls expression of key virulence factors. We confirmed the modulation of RNAIII by RNA sequencing and found that the expression of many QS regulated genes encoding virulence factors such as hemolysins and proteases were lowered in the presence of ajoene in S. aureus. Importantly, our findings show that sRNAs across bacterial species potentially may qualify as targets of anti-virulence therapy and that ajoene could be a lead structure in search of broad-spectrum compounds transcending the Gram negative-positive borderline.
Collapse
|
42
|
Viducic D, Murakami K, Amoh T, Ono T, Miyake Y. RpoN Promotes Pseudomonas aeruginosa Survival in the Presence of Tobramycin. Front Microbiol 2017; 8:839. [PMID: 28553272 PMCID: PMC5427110 DOI: 10.3389/fmicb.2017.00839] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 04/24/2017] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa has developed diverse strategies to respond and adapt to antibiotic stress. Among the factors that modulate survival in the presence of antibiotics, alternative sigma factors play an important role. Here, we demonstrate that the alternative sigma factor RpoN (σ54) promotes survival in the presence of tobramycin. The tobramycin-sensitive phenotype of logarithmic phase ΔrpoN mutant cells is suppressed by the loss of the alternative sigma factor RpoS. Transcriptional analysis indicated that RpoN positively regulates the expression of RsmA, an RNA-binding protein, in the P. aeruginosa stationary growth phase in a nutrient-rich medium. The loss of RpoS led to the upregulation of gacA expression in the nutrient-limited medium-grown stationary phase cells. Conversely, in the logarithmic growth phase, the ΔrpoS mutant demonstrated lower expression of gacA, underscoring a regulatory role of RpoS for GacA. Supplementation of tobramycin to stationary phase ΔrpoN mutant cells grown in nutrient-rich medium resulted in decreased expression of gacA, relA, and rpoS without altering the expression of rsmA relative to wild-type PAO1. The observed downregulation of gacA and relA in the ΔrpoN mutant in the presence of tobramycin could be reversed through the mutation of rpoS in the ΔrpoN mutant background. The tobramycin-tolerant phenotype of the ΔrpoNΔrpoS mutant logarithmic phase cells may be associated with the expression of relA, which remained unresponsive upon addition of tobramycin. The logarithmic phase ΔrpoS and ΔrpoNΔrpoS mutant cells demonstrated increased expression of gacA in response to tobramycin. Together, these results suggest that a complex regulatory interaction between RpoN, RpoS, the Gac/Rsm pathway, and RelA modulates the P. aeruginosa response to tobramycin.
Collapse
Affiliation(s)
- Darija Viducic
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan.,Department of Molecular Microbiology, Institute of Health Biosciences, Tokushima University Graduate SchoolTokushima, Japan
| | - Keiji Murakami
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan
| | - Takashi Amoh
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan
| | - Tsuneko Ono
- Department of Molecular Microbiology, Institute of Health Biosciences, Tokushima University Graduate SchoolTokushima, Japan
| | - Yoichiro Miyake
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan
| |
Collapse
|
43
|
LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa. Nat Microbiol 2016; 2:16184. [DOI: 10.1038/nmicrobiol.2016.184] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/30/2016] [Indexed: 11/08/2022]
|
44
|
Primary and Secondary Sequence Structure Requirements for Recognition and Discrimination of Target RNAs by Pseudomonas aeruginosa RsmA and RsmF. J Bacteriol 2016; 198:2458-69. [PMID: 27381913 DOI: 10.1128/jb.00343-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/27/2016] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED CsrA family RNA-binding proteins are widely distributed in bacteria and regulate gene expression at the posttranscriptional level. Pseudomonas aeruginosa has a canonical member of the CsrA family (RsmA) and a novel, structurally distinct variant (RsmF). To better understand RsmF binding properties, we performed parallel systematic evolution of ligands by exponential enrichment (SELEX) experiments for RsmA and RsmF. The initial target library consisted of 62-nucleotide (nt) RNA transcripts with central cores randomized at 15 sequential positions. Most targets selected by RsmA and RsmF were the expected size and shared a common consensus sequence (CANGGAYG) that was positioned in a hexaloop region of the stem-loop structure. RsmA and RsmF also selected for longer targets (≥96 nt) that were likely generated by rare PCR errors. Most of the long targets contained two consensus-binding sites. Representative short (single consensus site) and long (two consensus sites) targets were tested for RsmA and RsmF binding. Whereas RsmA bound the short targets with high affinity, RsmF was unable to bind the same targets. RsmA and RsmF both bound the long targets. Mutation of either consensus GGA site in the long targets reduced or eliminated RsmF binding, suggesting a requirement for two tandem binding sites. Conversely, RsmA bound long targets containing only a single GGA site with unaltered affinity. The RsmF requirement for two binding sites was confirmed with tssA1, an in vivo regulatory target of RsmA and RsmF. Our findings suggest that RsmF binding requires two GGA-containing sites, while RsmA binding requirements are less stringent. IMPORTANCE The CsrA family of RNA-binding proteins is widely conserved in bacteria and plays important roles in the posttranscriptional regulation of protein synthesis. P. aeruginosa has two CsrA proteins, RsmA and RsmF. Although RsmA and RsmF share a few RNA targets, RsmF is unable to bind to other targets recognized by RsmA. The goal of the present study was to better understand the basis for differential binding by RsmF. Our data indicate that RsmF binding requires target RNAs with two consensus-binding sites, while RsmA recognizes targets with just a single binding site. This information should prove useful to future efforts to define the RsmF regulon and its contribution to P. aeruginosa physiology and virulence.
Collapse
|
45
|
Chan KG, Priya K, Chang CY, Abdul Rahman AY, Tee KK, Yin WF. Transcriptome analysis of Pseudomonas aeruginosa PAO1 grown at both body and elevated temperatures. PeerJ 2016; 4:e2223. [PMID: 27547539 PMCID: PMC4957987 DOI: 10.7717/peerj.2223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/15/2016] [Indexed: 01/15/2023] Open
Abstract
Functional genomics research can give us valuable insights into bacterial gene function. RNA Sequencing (RNA-seq) can generate information on transcript abundance in bacteria following abiotic stress treatments. In this study, we used the RNA-seq technique to study the transcriptomes of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 following heat shock. Samples were grown at both the human body temperature (37 °C) and an arbitrarily-selected temperature of 46 °C. In this work using RNA-seq, we identified 133 genes that are differentially expressed at 46 °C compared to the human body temperature. Our work identifies some key P. aeruginosa PAO1 genes whose products have importance in both environmental adaptation as well as in vivo infection in febrile hosts. More importantly, our transcriptomic results show that many genes are only expressed when subjected to heat shock. Because the RNA-seq can generate high throughput gene expression profiles, our work reveals many unanticipated genes with further work to be done exploring such genes products.
Collapse
Affiliation(s)
- Kok-Gan Chan
- ISB (Genetics & Molecular Biology), Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Kumutha Priya
- ISB (Genetics & Molecular Biology), Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Chien-Yi Chang
- School of Life Sciences, Heriot-Watt University , Edinburgh , United Kingdom
| | | | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Wai-Fong Yin
- ISB (Genetics & Molecular Biology), Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
46
|
RsmW, Pseudomonas aeruginosa small non-coding RsmA-binding RNA upregulated in biofilm versus planktonic growth conditions. BMC Microbiol 2016; 16:155. [PMID: 27430253 PMCID: PMC4950607 DOI: 10.1186/s12866-016-0771-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biofilm development, specifically the fundamentally adaptive switch from acute to chronic infection phenotypes, requires global regulators and small non-coding regulatory RNAs (sRNAs). This work utilized RNA-sequencing (RNA-seq) to detect sRNAs differentially expressed in Pseudomonas aeruginosa biofilm versus planktonic state. RESULTS A computational algorithm was devised to detect and categorize sRNAs into 5 types: intergenic, intragenic, 5'-UTR, 3'-UTR, and antisense. Here we report a novel RsmY/RsmZ-type sRNA, termed RsmW, in P. aeruginosa up-transcribed in biofilm versus planktonic growth. RNA-Seq, 5'-RACE and Mfold predictions suggest RsmW has a secondary structure with 3 of 7 GGA motifs located on outer stem loops. Northern blot revealed two RsmW binding bands of 400 and 120 bases, suggesting RsmW is derived from the 3'-UTR of the upstream hypothetical gene, PA4570. RsmW expression is elevated in late stationary versus logarithmic growth phase in PB minimal media, at higher temperatures (37 °C versus 28 °C), and in both gacA and rhlR transposon mutants versus wild-type. RsmW specifically binds to RsmA protein in vitro and restores biofilm production and reduces swarming in an rsmY/rsmZ double mutant. PA4570 weakly resembles an RsmA/RsmN homolog having 49 % and 51 % similarity, and 16 % and 17 % identity to RsmA and RsmN amino acid sequences, respectively. PA4570 was unable to restore biofilm and swarming phenotypes in ΔrsmA deficient strains. CONCLUSION Collectively, our study reveals an interesting theme regarding another sRNA regulator of the Rsm system and further unravels the complexities regulating adaptive responses for Pseudomonas species.
Collapse
|
47
|
Pseudomonas aeruginosa AlgU Contributes to Posttranscriptional Activity by Increasing rsmA Expression in a mucA22 Strain. J Bacteriol 2016; 198:1812-1826. [PMID: 27091153 DOI: 10.1128/jb.00133-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/12/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa thrives in multiple environments and is capable of causing life-threatening infections in immunocompromised patients. RsmA is a posttranscriptional regulator that controls virulence factor production and biofilm formation. In this study, we investigated the expression and activity of rsmA and the protein that it encodes, RsmA, in P. aeruginosa mucA mutant strains, which are common in chronic infections. We determined that AlgU regulates a previously unknown rsmA promoter in P. aeruginosa Western blot analysis confirmed that AlgU controls rsmA expression in both a laboratory strain and a clinical isolate. RNase protection assays confirmed the presence of two rsmA transcripts and suggest that RpoS and AlgU regulate rsmA expression. Due to the increased amounts of RsmA in mucA mutant strains, a translational leader fusion of the RsmA target, tssA1, was constructed and tested in mucA, algU, retS, gacA, and rsmA mutant backgrounds to examine posttranscriptional activity. From these studies, we determined that RsmA is active in mucA22 mutants, suggesting a role for RsmA in mucA mutant strains. Taken together, we have demonstrated that AlgU controls rsmA transcription and is responsible for RsmA activity in mucA mutant strains. We propose that RsmA is active in P. aeruginosa mucA mutant strains and that RsmA also plays a role in chronic infections. IMPORTANCE P. aeruginosa causes severe infections in immunocompromised patients. The posttranscriptional regulator RsmA is known to control virulence and biofilm formation. We identify a new rsmA promoter and determine that AlgU is important in the control of rsmA expression. Mutant mucA strains that are considered mucoid were used to confirm increased rsmA expression from the AlgU promoter. We demonstrate, for the first time, that there is RsmA activity in mucoid P. aeruginosa strains. Our work suggests that RsmA may play a role during chronic infections as well as acute infections.
Collapse
|
48
|
Chambonnier G, Roux L, Redelberger D, Fadel F, Filloux A, Sivaneson M, de Bentzmann S, Bordi C. The Hybrid Histidine Kinase LadS Forms a Multicomponent Signal Transduction System with the GacS/GacA Two-Component System in Pseudomonas aeruginosa. PLoS Genet 2016; 12:e1006032. [PMID: 27176226 PMCID: PMC4866733 DOI: 10.1371/journal.pgen.1006032] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/17/2016] [Indexed: 12/16/2022] Open
Abstract
In response to environmental changes, Pseudomonas aeruginosa is able to switch from a planktonic (free swimming) to a sessile (biofilm) lifestyle. The two-component system (TCS) GacS/GacA activates the production of two small non-coding RNAs, RsmY and RsmZ, but four histidine kinases (HKs), RetS, GacS, LadS and PA1611, are instrumental in this process. RetS hybrid HK blocks GacS unorthodox HK autophosphorylation through the formation of a heterodimer. PA1611 hybrid HK, which is structurally related to GacS, interacts with RetS in P. aeruginosa in a very similar manner to GacS. LadS hybrid HK phenotypically antagonizes the function of RetS by a mechanism that has never been investigated. The four sensors are found in most Pseudomonas species but their characteristics and mode of signaling may differ from one species to another. Here, we demonstrated in P. aeruginosa that LadS controls both rsmY and rsmZ gene expression and that this regulation occurs through the GacS/GacA TCS. We additionally evidenced that in contrast to RetS, LadS signals through GacS/GacA without forming heterodimers, either with GacS or with RetS. Instead, we demonstrated that LadS is involved in a genuine phosphorelay, which requires both transmitter and receiver LadS domains. LadS signaling ultimately requires the alternative histidine-phosphotransfer domain of GacS, which is here used as an Hpt relay by the hybrid kinase. LadS HK thus forms, with the GacS/GacA TCS, a multicomponent signal transduction system with an original phosphorelay cascade, i.e. H1LadS→D1LadS→H2GacS→D2GacA. This highlights an original strategy in which a unique output, i.e. the modulation of sRNA levels, is controlled by a complex multi-sensing network to fine-tune an adapted biofilm and virulence response.
Collapse
Affiliation(s)
- Gaël Chambonnier
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - Lorène Roux
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - David Redelberger
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - Firas Fadel
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
- Aix Marseille Université, CNRS, AFMB UMR 7257, 13288, Marseille, France
| | - Alain Filloux
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - Melissa Sivaneson
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - Sophie de Bentzmann
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - Christophe Bordi
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
- * E-mail:
| |
Collapse
|
49
|
Abstract
Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.
Collapse
|
50
|
Colley B, Dederer V, Carnell M, Kjelleberg S, Rice SA, Klebensberger J. SiaA/D Interconnects c-di-GMP and RsmA Signaling to Coordinate Cellular Aggregation of Pseudomonas aeruginosa in Response to Environmental Conditions. Front Microbiol 2016; 7:179. [PMID: 26955366 PMCID: PMC4768041 DOI: 10.3389/fmicb.2016.00179] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/02/2016] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa has emerged as an important opportunistic human pathogen that is often highly resistant to eradication strategies, mediated in part by the formation of multicellular aggregates. Cellular aggregates may occur attached to a surface (biofilm), at the air-liquid interface (pellicle), or as suspended aggregates. Compared to surface attached communities, knowledge about the regulatory processes involved in the formation of suspended cell aggregates is still limited. We have recently described the SiaA/D signal transduction module that regulates macroscopic cell aggregation during growth with, or in the presence of the surfactant SDS. Targets for SiaA/D mediated regulation include the Psl polysaccharide, the CdrAB two-partner secretion system and the CupA fimbriae. While the global regulators c-di-GMP and RsmA are known to inversely coordinate cell aggregation and regulate the expression of several adhesins, their potential impact on the expression of the cupA operon remains unknown. Here, we investigated the function of SiaA (a putative ser/thr phosphatase) and SiaD (a di-guanylate cyclase) in cupA1 expression using transcriptional reporter fusions and qRT-PCR. These studies revealed a novel interaction between the RsmA posttranscriptional regulatory system and SiaA/D mediated macroscopic aggregation. The RsmA/rsmY/Z system was found to affect macroscopic aggregate formation in the presence of surfactant by impacting the stability of the cupA1 mRNA transcript and we reveal that RsmA directly binds to the cupA1 leader sequence in vitro. We further identified that transcription of the RsmA antagonist rsmZ is controlled in a SiaA/D dependent manner during growth with SDS. Finally, we found that the siaD transcript is also under regulatory control of RsmA and that overproduction of RsmA or the deletion of siaD results in decreased cellular cyclic di-guanosine monophosphate (c-di-GMP) levels quantified by a transcriptional reporter, demonstrating that SiaA/D connects c-di-GMP and RsmA/rsmY/Z signaling to reciprocally regulate cell aggregation in response to environmental conditions.
Collapse
Affiliation(s)
- Brendan Colley
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| | - Verena Dederer
- Institute of Technical Biochemistry, University of Stuttgart Stuttgart, Germany
| | - Michael Carnell
- Biomedical Image Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Staffan Kjelleberg
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia; Singapore Centre for Environmental Life Sciences Engineering and School of Biological Sciences, Nanyang Technological University, SingaporeSingapore
| | - Scott A Rice
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia; Singapore Centre for Environmental Life Sciences Engineering and School of Biological Sciences, Nanyang Technological University, SingaporeSingapore
| | | |
Collapse
|