1
|
Tirziu M, Colombini L, Stincarelli MA, Cuppone AM, Lazzeri E, Santoro F, Pozzi G, Lannelli F. A nisin-inducible chromosomal gene expression system based on ICE Tn5253 of Streptococcus pneumoniae, transferable among streptococci and enterococci. World J Microbiol Biotechnol 2024; 40:319. [PMID: 39261358 PMCID: PMC11390789 DOI: 10.1007/s11274-024-04124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The present work reports the development and validation of a chromosomal expression system in Streptococcus pneumoniae which permits gene expression under the control of Lactococcus lactis lantibiotic nisin. The system is based on the integrative and conjugative element (ICE) Tn5253 of S. pneumoniae capable of site-specific chromosomal integration and conjugal transfer to a variety of bacterial species. We constructed an insertion vector that integrates in Tn5251, an ICE contained in Tn5253, which carries the tetracycline resistance tet(M) gene. The vector contains the nisRK regulatory system operon, the L. lactis nisin inducible promoter PnisA upstream of a multiple cloning site for target DNA insertion, and is flanked by two DNA regions of Tn5251 which drive homologous recombination in ICE Tn5253. For system evaluation, the emm6.1::ha1 fusion gene was cloned and integrated into the chromosome of the Tn5253-carrying pneumococcal strain FR24 by transformation. This gene encodes a fusion protein containing the signal peptide, the 122 N-terminal and the 140 C-terminal aa of the Streptococcus pyogenes M6 surface protein joined to the HA1 subunit of the influenza virus A hemagglutinin. Quantitative RT-PCR analysis carried out on total RNA purified from nisin treated and untreated cultures showed an increase in emm6.1::ha1 transcript copy number with growing nisin concentration. The expression of M6-HA1 protein was detected by Western blot and quantified by Dot blot, while Flow cytometry analysis confirmed the presence on the pneumococcal surface. Recombinant ICE Tn5253::[nisRK]-[emm6.1::ha1] containing the nisin-inducible expression system was successfully transferred by conjugation in different streptococcal species including Streptococcus gordonii, S. pyogenes, Streptococcus agalactiae and Enterococcus faecalis. As for S. pneumoniae, the emm6.1::ha1 transcript copy number and the amount of M6-HA1 protein produced correlated with the nisin concentration used for induction in all investigated bacterial hosts. We demonstrated that this host-vector expression system is stably integrated as a single copy within the bacterial chromosome, is transferable to both transformable and non transformable bacterial species, and allows fine tuning of protein expression modulated by nisin concentration. These characteristics make our system suitable for a wide range of applications including complementation assays, physiological studies, host-pathogen interaction studies.
Collapse
Affiliation(s)
- Mariana Tirziu
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Lorenzo Colombini
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Maria Alfreda Stincarelli
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Anna Maria Cuppone
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Elisa Lazzeri
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy.
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Francesco Lannelli
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy.
| |
Collapse
|
2
|
Prudhomme M, Johnston CHG, Soulet AL, Boyeldieu A, De Lemos D, Campo N, Polard P. Pneumococcal competence is a populational health sensor driving multilevel heterogeneity in response to antibiotics. Nat Commun 2024; 15:5625. [PMID: 38987237 PMCID: PMC11237056 DOI: 10.1038/s41467-024-49853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Competence for natural transformation is a central driver of genetic diversity in bacteria. In the human pathogen Streptococcus pneumoniae, competence exhibits a populational character mediated by the stress-induced ComABCDE quorum-sensing (QS) system. Here, we explore how this cell-to-cell communication mechanism proceeds and the functional properties acquired by competent cells grown under lethal stress. We show that populational competence development depends on self-induced cells stochastically emerging in response to stresses, including antibiotics. Competence then propagates through the population from a low threshold density of self-induced cells, defining a biphasic Self-Induction and Propagation (SI&P) QS mechanism. We also reveal that a competent population displays either increased sensitivity or improved tolerance to lethal doses of antibiotics, dependent in the latter case on the competence-induced ComM division inhibitor. Remarkably, these surviving competent cells also display an altered transformation potential. Thus, the unveiled SI&P QS mechanism shapes pneumococcal competence as a health sensor of the clonal population, promoting a bet-hedging strategy that both responds to and drives cells towards heterogeneity.
Collapse
Affiliation(s)
- Marc Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Calum H G Johnston
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Anne-Lise Soulet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Anne Boyeldieu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - David De Lemos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.
- Université Paul Sabatier (Toulouse III), Toulouse, France.
| |
Collapse
|
3
|
Dao TH, Echlin H, McKnight A, Marr ES, Junker J, Jia Q, Hayden R, van Opijnen T, Isberg RR, Cooper VS, Rosch JW. Streptococcus pneumoniae favors tolerance via metabolic adaptation over resistance to circumvent fluoroquinolones. mBio 2024; 15:e0282823. [PMID: 38193698 PMCID: PMC10865975 DOI: 10.1128/mbio.02828-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Streptococcus pneumoniae is a major human pathogen of global health concern and the rapid emergence of antibiotic resistance poses a serious public health problem worldwide. Fluoroquinolone resistance in S. pneumoniae is an intriguing case because the prevalence of fluoroquinolone resistance does not correlate with increasing usage and has remained rare. Our data indicate that deleterious fitness costs in the mammalian host constrain the emergence of fluoroquinolone resistance both by de novo mutation and recombination. S. pneumoniae was able to circumvent such deleterious fitness costs via the development of antibiotic tolerance through metabolic adaptation that reduced the production of reactive oxygen species, resulting in a fitness benefit during infection of mice treated with fluoroquinolones. These data suggest that the emergence of fluoroquinolone resistance is tightly constrained in S. pneumoniae by fitness tradeoffs and that mutational pathways involving metabolic networks to enable tolerance phenotypes are an important contributor to the evasion of antibiotic-mediated killing.IMPORTANCEThe increasing prevalence of antibiotic resistant bacteria is a major global health concern. While many species have the potential to develop antibiotic resistance, understanding the barriers to resistance emergence in the clinic remains poorly understood. A prime example of this is fluroquinolone resistance in Streptococcus pneumoniae, whereby, despite continued utilization, resistance to this class of antibiotic remains rare. In this study, we found that the predominant pathways for developing resistance to this antibiotic class severely compromised the infectious capacity of the pneumococcus, providing a key impediment for the emergence of resistance. Using in vivo models of experimental evolution, we found that S. pneumoniae responds to repeated fluoroquinolone exposure by modulating key metabolic pathways involved in the generation of redox molecules, which leads to antibiotic treatment failure in the absence of appreciable shifts in resistance levels. These data underscore the complex pathways available to pathogens to evade antibiotic mediating killing via antibiotic tolerance.
Collapse
Affiliation(s)
- Tina H. Dao
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Haley Echlin
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Abigail McKnight
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Enolia S. Marr
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Julia Junker
- Nationales Referenzzentrum für Streptokokken Abteilung Medizinische Mikrobiologie, Universitätsklinikum RWTH Aachen, Aachen, Germany
| | - Qidong Jia
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Randall Hayden
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Tim van Opijnen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ralph R. Isberg
- Deptartment of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Vaughn S. Cooper
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Zhang Y, Zhang J, Xiao J, Wang H, Yang R, Guo X, Zheng Y, Yin Y, Zhang X. comCDE (Competence) Operon Is Regulated by CcpA in Streptococcus pneumoniae D39. Microbiol Spectr 2023; 11:e0001223. [PMID: 37036382 PMCID: PMC10269683 DOI: 10.1128/spectrum.00012-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/16/2023] [Indexed: 04/11/2023] Open
Abstract
Natural transformation plays an important role in the formation of drug-resistant bacteria. Exploring the regulatory mechanism of natural transformation can aid the discovery of new antibacterial targets and reduce the emergence of drug-resistant bacteria. Competence is a prerequisite of natural transformation in Streptococcus pneumoniae, in which comCDE operon is the core regulator of competence. To date, only ComE has been shown to directly regulate comCDE transcription. In this study, a transcriptional regulator, the catabolite control protein A (CcpA), was identified that directly regulated comCDE transcription. We confirmed that CcpA binds to the cis-acting catabolite response elements (cre) in the comCDE promoter region to regulate comCDE transcription and transformation. Moreover, CcpA can coregulate comCDE transcription with phosphorylated and dephosphorylated ComE. Regulation of comCDE transcription and transformation by CcpA was also affected by carbon source signals. Together, these insights demonstrate the versatility of CcpA and provide a theoretical basis for reducing the emergence of drug-resistant bacteria. IMPORTANCE Streptococcus pneumoniae is a major cause of bacterial infections in humans, such as pneumonia, bacteremia, meningitis, otitis media, and sinusitis. Like most streptococci, S. pneumoniae is naturally competent and employs this ability to augment its adaptive evolution. The current study illustrates CcpA, a carbon catabolite regulator, can participate in the competence process by regulating comCDE transcription, and this process is regulated by different carbon source signals. These hidden abilities are likely critical for adaptation and colonization in the environment.
Collapse
Affiliation(s)
- Yapeng Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | | | - Jiangming Xiao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hanyi Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Rui Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xinlin Guo
- Department of Medicine Laboratory, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqiang Zheng
- Department of Medicine Laboratory, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Alibayov B, Scasny A, Khan F, Creel A, Smith P, Vidal AGJ, Fitisemanu FM, Padilla-Benavides T, Weiser JN, Vidal JE. Oxidative Reactions Catalyzed by Hydrogen Peroxide Produced by Streptococcus pneumoniae and Other Streptococci Cause the Release and Degradation of Heme from Hemoglobin. Infect Immun 2022; 90:e0047122. [PMID: 36409115 PMCID: PMC9753736 DOI: 10.1128/iai.00471-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) strains cause pneumonia that kills millions every year worldwide. Spn produces Ply, a hemolysin that lyses erythrocytes releasing hemoglobin, and also produces the pro-oxidant hydrogen peroxide (Spn-H2O2) during growth. The hallmark of the pathophysiology of hemolytic diseases is the oxidation of hemoglobin, but oxidative reactions catalyzed by Spn-H2O2 have been poorly studied. We characterized the oxidation of hemoglobin by Spn-H2O2. We prepared a series of single-mutant (ΔspxB or ΔlctO), double-mutant (ΔspxB ΔlctO), and complemented strains in TIGR4, D39, and EF3030. We then utilized an in vitro model with oxyhemoglobin to demonstrate that oxyhemoglobin was oxidized rapidly, within 30 min of incubation, by Spn-H2O2 to methemoglobin and that the main source of Spn-H2O2 was pyruvate oxidase (SpxB). Moreover, extended incubation caused the release and the degradation of heme. We then assessed oxidation of hemoglobin and heme degradation by other bacterial inhabitants of the respiratory tract. All hydrogen peroxide-producing streptococci tested caused the oxidation of hemoglobin and heme degradation, whereas bacterial species that produce <1 μM H2O2 neither oxidized hemoglobin nor degraded heme. An ex vivo bacteremia model confirmed that oxidation of hemoglobin and heme degradation occurred concurrently with hemoglobin that was released from erythrocytes by Ply. Finally, gene expression studies demonstrated that heme, but not red blood cells or hemoglobin, induced upregulated transcription of the spxB gene. Oxidation of hemoglobin may be important for pathogenesis and for the symbiosis of hydrogen peroxide-producing bacteria with other species by providing nutrients such as iron.
Collapse
Affiliation(s)
- Babek Alibayov
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anna Scasny
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Faidad Khan
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Aidan Creel
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Summer Undergraduate Research Experience Program, School of Graduate Studies in the Health Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Perriann Smith
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Mississippi INBRE program, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | - Jeffrey N. Weiser
- Department of Microbiology, NYU Langone Health, New York, New York, USA
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
6
|
Nishimoto AT, Dao TH, Jia Q, Ortiz-Marquez JC, Echlin H, Vogel P, van Opijnen T, Rosch JW. Interspecies recombination, not de novo mutation, maintains virulence after β-lactam resistance acquisition in Streptococcus pneumoniae. Cell Rep 2022; 41:111835. [PMID: 36516783 PMCID: PMC9850807 DOI: 10.1016/j.celrep.2022.111835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 07/26/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
As opposed to de novo mutation, β-lactam resistance in S. pneumoniae is often conferred via homologous recombination during horizontal gene transfer. We hypothesize that β-lactam resistance in pathogenic streptococci is restricted to naturally competent species via intra-/interspecies recombination due to in vivo fitness trade-offs of de novo penicillin-binding protein (PBP) mutations. We show that de novo mutant populations have abrogated invasive disease capacity and are difficult to evolve in vivo. Conversely, serially transformed recombinant strains efficiently integrate resistant oral streptococcal DNA, gain penicillin resistance and tolerance, and retain virulence in mice. Large-scale changes in pbp2X, pbp2B, and non-PBP-related genes occur in recombinant isolates. Our results indicate that horizontal transfer of β-lactam resistance engenders initially favorable or minimal cost changes in vivo compared with de novo mutation(s), underscoring the importance of recombination in the emergence of β-lactam resistance and suggesting why some pathogenic streptococci lacking innate competence remain universally susceptible.
Collapse
Affiliation(s)
- Andrew T. Nishimoto
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Tina H. Dao
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Qidong Jia
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Haley Echlin
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Department of Pathology and Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tim van Opijnen
- Department of Biology, Boston College, Boston, MA 02467, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Lead contact,Correspondence:
| |
Collapse
|
7
|
Development and Application of Two Inducible Expression Systems for Streptococcus suis. Microbiol Spectr 2022; 10:e0036322. [PMID: 35758678 PMCID: PMC9430170 DOI: 10.1128/spectrum.00363-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an important zoonotic bacterial pathogen posing a threat to the pig industry as well as public health, for which the mechanisms of growth and cell division remain largely unknown. Developing convenient genetic tools that can achieve strictly controlled gene expression is of great value for investigating these fundamental physiological processes of S. suis. In this study, we first identified three strong constitutive promoters, Pg, Pt, and Pe, in S. suis. Promoter Pg was used to drive the expression of repressor genes tetR and lacI, and the operator sequences were added within promoters Pt and Pe. By optimizing the insertion sites of the operator sequence, we successfully constructed an anhydrotetracycline (ATc)-inducible expression system and an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible expression system in S. suis. We showed that these two systems provided inducer-concentration- and induction-time-dependent expression of the reporter gene. By using these tools, we investigated the subcellular localization of a key cell division protein, FtsZ, which showed that it could be correctly localized to the midcell region. In addition, we constructed a conditional knockout strain for the glmS gene, which is an essential gene, and showed that our ATc-inducible promoter could provide strictly controlled expression of glmS in trans, suggesting that our inducible expression systems can be used for deletion of essential genes in S. suis. Therefore, for the first time we developed two inducible expression systems in S. suis and showed their applications in the study of an important cell division protein and an essential gene. These genetic tools will further facilitate the functional study of other important genes of S. suis. IMPORTANCE Streptococcus suis is an important zoonotic bacterial pathogen. Studying the mechanisms of cell growth and division is important for the identification of novel antimicrobial drug targets. Inducible expression systems can provide strictly controlled expression of the protein of interest and are useful tools to study the functions of physiologically important proteins. However, there is a lack of convenient genetic tools that can achieve inducible protein expression in S. suis. In this study, we developed two (ATc-inducible and IPTG-inducible) inducible expression systems and showed their applications in a subcellular localization study of a cell division protein and the construction of conditional knockout of essential genes in S. suis. These systems will be useful for functional studies of important proteins of S. suis.
Collapse
|
8
|
Abdullah IT, Ulijasz AT, Girija UV, Tam S, Andrew P, Hiller NL, Wallis R, Yesilkaya H. Structure‐function analysis for development of peptide inhibitors for a Gram positive quorum sensing system. Mol Microbiol 2022; 117:1464-1478. [PMID: 35575437 PMCID: PMC9233744 DOI: 10.1111/mmi.14921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Abstract
The Streptococcus pneumoniae Rgg144/SHP144 regulator‐peptide quorum sensing (QS) system is critical for nutrient utilization, oxidative stress response, and virulence. Here, we characterized this system by assessing the importance of each residue within the active short hydrophobic peptide (SHP) by alanine‐scanning mutagenesis and testing the resulting peptides for receptor binding and activation of the receptor. Interestingly, several of the mutations had little effect on binding to Rgg144 but reduced transcriptional activation appreciably. In particular, a proline substitution (P21A) reduced transcriptional activation by 29‐fold but bound with a 3‐fold higher affinity than the wild‐type SHP. Consistent with the function of Rgg144, the mutant peptide led to decreased utilization of mannose and increased susceptibility to superoxide generator paraquat. Pangenome comparison showed full conservation of P21 across SHP144 allelic variants. Crystallization of Rgg144 in the absence of peptide revealed a comparable structure to the DNA bound and free forms of its homologs suggesting similar mechanisms of activation. Together, these analyses identify key interactions in a critical pneumococcal QS system. Further manipulation of the SHP has the potential to facilitate the development of inhibitors that are functional across strains. The approach described here is likely to be effective across QS systems in multiple species.
Collapse
Affiliation(s)
- Iman Tajer Abdullah
- Department of Respiratory Sciences University of Leicester Leicester United Kingdom
- Department of Biology, College of Science University of Kirkuk Iraq
| | - Andrew T. Ulijasz
- Department of Microbiology and Immunology Loyola University Chicago Maywood IL USA
| | | | - Sien Tam
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Peter Andrew
- Department of Respiratory Sciences University of Leicester Leicester United Kingdom
| | - N. Luisa Hiller
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Russell Wallis
- Department of Respiratory Sciences University of Leicester Leicester United Kingdom
| | - Hasan Yesilkaya
- Department of Respiratory Sciences University of Leicester Leicester United Kingdom
| |
Collapse
|
9
|
Shlla B, Gazioglu O, Shafeeq S, Manzoor I, Kuipers OP, Ulijasz A, Hiller NL, Andrew PW, Yesilkaya H. The Rgg1518 transcriptional regulator is a necessary facet of sugar metabolism and virulence in Streptococcus pneumoniae. Mol Microbiol 2021; 116:996-1008. [PMID: 34328238 PMCID: PMC8460608 DOI: 10.1111/mmi.14788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Rggs are a group of transcriptional regulators with diverse roles in metabolism and virulence. Here, we present work on the Rgg1518/SHP1518 quorum sensing system of Streptococcus pneumoniae. The activity of Rgg1518 is induced by its cognate peptide, SHP1518. In vitro analysis showed that the Rgg1518 system is active in conditions rich in galactose and mannose, key nutrients during nasopharyngeal colonization. Rgg1518 expression is highly induced in the presence of these sugars and its isogenic mutant is attenuated in growth on galactose and mannose. When compared with other Rgg systems, Rgg1518 has the largest regulon on galactose. On galactose it controls up- or downregulation of a functionally diverse set of genes involved in galactose metabolism, capsule biosynthesis, iron metabolism, protein translation, as well as other metabolic functions, acting mainly as a repressor of gene expression. Rgg1518 is a repressor of capsule biosynthesis, and binds directly to the capsule regulatory region. Comparison with other Rggs revealed inter-regulatory interactions among Rggs. Finally, the rgg1518 mutant is attenuated in colonization and virulence in a mouse model of colonization and pneumonia. We conclude that Rgg1518 is a virulence determinant that contributes to a regulatory network composed of multiple Rgg systems.
Collapse
Affiliation(s)
- Bushra Shlla
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Department of Biology, College of Science, University of Mosul, Mosul, Iraq
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Sulman Shafeeq
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Irfan Manzoor
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Andrew Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Peter W Andrew
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
10
|
Johnston CH, Soulet AL, Bergé M, Prudhomme M, De Lemos D, Polard P. The alternative sigma factor σ X mediates competence shut-off at the cell pole in Streptococcus pneumoniae. eLife 2020; 9:62907. [PMID: 33135635 PMCID: PMC7665891 DOI: 10.7554/elife.62907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/31/2020] [Indexed: 12/22/2022] Open
Abstract
Competence is a widespread bacterial differentiation program driving antibiotic resistance and virulence in many pathogens. Here, we studied the spatiotemporal localization dynamics of the key regulators that master the two intertwined and transient transcription waves defining competence in Streptococcus pneumoniae. The first wave relies on the stress-inducible phosphorelay between ComD and ComE proteins, and the second on the alternative sigma factor σX, which directs the expression of the DprA protein that turns off competence through interaction with phosphorylated ComE. We found that ComD, σX and DprA stably co-localize at one pole in competent cells, with σX physically conveying DprA next to ComD. Through this polar DprA targeting function, σX mediates the timely shut-off of the pneumococcal competence cycle, preserving cell fitness. Altogether, this study unveils an unprecedented role for a transcription σ factor in spatially coordinating the negative feedback loop of its own genetic circuit.
Collapse
Affiliation(s)
- Calum Hg Johnston
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Anne-Lise Soulet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Matthieu Bergé
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France.,Dept. Microbiology and Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - David De Lemos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| |
Collapse
|
11
|
Synthetic gene-regulatory networks in the opportunistic human pathogen Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2020; 117:27608-27619. [PMID: 33087560 PMCID: PMC7959565 DOI: 10.1073/pnas.1920015117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a major human pathogen responsible for enormous global morbidity and mortality. Despite this, the pneumococcus makes up part of the commensal nasopharyngeal flora. How the pneumococcus switches from this commensal to pathogenic state and causes disease is unclear and very likely involves variability in expression of its virulence factors. Here, we used synthetic biology approaches to generate complex gene-regulatory networks such as logic gates and toggle switches. We show that these networks are functional in vivo to control capsule production in an influenza-superinfection model. This opens the field of systematically testing the role of phenotypic variation in pneumococcal virulence. The approaches used here may serve as an example for synthetic biology projects in unrelated organisms. Streptococcus pneumoniae can cause disease in various human tissues and organs, including the ear, the brain, the blood, and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in S. pneumoniae. A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND gates and IMPLY gates. We demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors. Indeed, we were able to rewire gene expression of the capsule operon, the main pneumococcal virulence factor, to be externally inducible (YES gate) or to act as an IMPLY gate (only expressed in absence of inducer). Importantly, we demonstrate that these synthetic gene-regulatory networks are functional in an influenza A virus superinfection murine model of pneumonia, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of S. pneumoniae.
Collapse
|
12
|
Motib AS, Al-Bayati FAY, Manzoor I, Shafeeq S, Kadam A, Kuipers OP, Hiller NL, Andrew PW, Yesilkaya H. TprA/PhrA Quorum Sensing System Has a Major Effect on Pneumococcal Survival in Respiratory Tract and Blood, and Its Activity Is Controlled by CcpA and GlnR. Front Cell Infect Microbiol 2019; 9:326. [PMID: 31572692 PMCID: PMC6753895 DOI: 10.3389/fcimb.2019.00326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
Streptococcus pneumoniae is able to cause deadly diseases by infecting different tissues, each with distinct environmental and nutritional compositions. We hypothesize that the adaptive capabilities of the microbe is an important facet of pneumococcal survival in fluctuating host environments. Quorum-sensing (QS) mechanisms are pivotal for microbial host adaptation. We previously demonstrated that the TprA/PhrA QS system is required for pneumococcal utilization of galactose and mannose, neuraminidase activity, and virulence. We also showed that the system can be modulated by using linear molecularly imprinted polymers. Due to being a drugable target, we further studied the operation of this QS system in S. pneumoniae. We found that TprA controls the expression of nine different operons on galactose and mannose. Our data revealed that TprA expression is modulated by a complex regulatory network, where the master regulators CcpA and GlnR are involved in a sugar dependent manner. Mutants in the TprA/PhrA system are highly attenuated in their survival in nasopharynx and lungs after intranasal infection, and growth in blood after intravenous infection.
Collapse
Affiliation(s)
- Anfal Shakir Motib
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom.,Department of Microbiology, College of Medicine, University of Diyala, Baqubah, Iraq
| | - Firas A Y Al-Bayati
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom.,College of Pharmacy, University of Kirkuk, Kirkuk, Iraq
| | - Irfan Manzoor
- Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Sulman Shafeeq
- Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Anagha Kadam
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Peter W Andrew
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
13
|
Pelletier A, Freton C, Gallay C, Trouve J, Cluzel C, Franz-Wachtel M, Macek B, Jault JM, Grangeasse C, Guiral S. The Tyrosine-Autokinase UbK Is Required for Proper Cell Growth and Cell Morphology of Streptococcus pneumoniae. Front Microbiol 2019; 10:1942. [PMID: 31551943 PMCID: PMC6733980 DOI: 10.3389/fmicb.2019.01942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Protein phosphorylation is a key post-translational modification required for many cellular functions of the bacterial cell. Recently, we identified a new protein-kinase, named UbK, in Bacillus subtilis that belongs to a new family of protein-kinases widespread in bacteria. In this study, we analyze the function of UbK in Streptococcus pneumoniae. We show that UbK displays a tyrosine-kinase activity and autophosphorylates on a unique tyrosine in vivo. To get insights into its cellular role, we constructed a set of pneumococcal ubk mutants. Using conventional and electron microscopy, we show that the ubk deficient strain, as well as an ubk catalytic dead mutant, display both severe cell-growth and cell-morphology defects. The same defects are observed with a mutant mimicking permanent phosphorylation of UbK whereas they are not detected for a mutant mimicking defective autophosphorylation of UbK. Moreover, we find that UbK phosphorylation promotes its ability to hydrolyze ATP. These observations show that the hydrolysis of ATP by UbK serves not only for its autophosphorylation but also for a distinct purpose essential for the optimal cell growth and cell-morphogenesis of the pneumococcus. We thus propose a model in which the autophosphorylation/dephosphorylation of UbK regulates its cellular function through a negative feedback loop.
Collapse
Affiliation(s)
- Anaïs Pelletier
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| | - Céline Freton
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| | - Clément Gallay
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| | - Jennyfer Trouve
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| | - Caroline Cluzel
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305 CNRS/Université Lyon 1, Lyon, France
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| | - Sébastien Guiral
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| |
Collapse
|
14
|
Keller LE, Rueff AS, Kurushima J, Veening JW. Three New Integration Vectors and Fluorescent Proteins for Use in the Opportunistic Human Pathogen Streptococcus pneumoniae. Genes (Basel) 2019; 10:genes10050394. [PMID: 31121970 PMCID: PMC6562690 DOI: 10.3390/genes10050394] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
Here, we describe the creation of three integration vectors, pPEPX, pPEPY and pPEPZ, for use with the opportunistic human pathogen Streptococcus pneumoniae. The constructed vectors, named PEP for Pneumococcal Engineering Platform (PEP), employ an IPTG-inducible promoter and BglBrick and BglFusion compatible multiple cloning sites allowing for fast and interchangeable cloning. PEP plasmids replicate in Escherichia coli and harbor integration sites that have homology in a large set of pneumococcal strains, including recent clinical isolates. In addition, several options of antibiotic resistance markers are available, even allowing for selection in multidrug resistant clinical isolates. The transformation efficiency of these PEP vectors as well as their ability to be expressed simultaneously was tested. Two of the three PEP vectors share homology of the integration regions with over half of the S. pneumoniae genomes examined. Transformation efficiency varied among PEP vectors based on the length of the homology regions, but all were highly transformable and can be integrated simultaneously in strain D39V. Vectors used for pneumococcal cloning are an important tool for researchers for a wide range of uses. The PEP vectors described are of particular use because they have been designed to allow for easy transfer of genes between vectors as well as integrating into transcriptionally silent areas of the chromosome. In addition, we demonstrate the successful production of several new spectrally distinct fluorescent proteins (mTurquoise2, mNeonGreen and mScarlet-I) from the PEP vectors. The PEP vectors and newly described fluorescent proteins will expand the genetic toolbox for pneumococcal researchers and aid future discoveries.
Collapse
Affiliation(s)
- Lance E Keller
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| | - Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| | - Jun Kurushima
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
15
|
Rowe HM, Karlsson E, Echlin H, Chang TC, Wang L, van Opijnen T, Pounds SB, Schultz-Cherry S, Rosch JW. Bacterial Factors Required for Transmission of Streptococcus pneumoniae in Mammalian Hosts. Cell Host Microbe 2019; 25:884-891.e6. [PMID: 31126758 DOI: 10.1016/j.chom.2019.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/18/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
The capacity of Streptococcus pneumoniae to successfully transmit and colonize new human hosts is a critical aspect of pneumococcal population biology and a prerequisite for invasive disease. However, the bacterial mechanisms underlying this process remain largely unknown. To identify bacterial factors required for transmission, we conducted a high-throughput genetic screen with a transposon sequencing (Tn-seq) library of a pneumococcal strain in a ferret transmission model. Key players in both metabolism and transcriptional regulation were identified as required for efficient bacterial transmission. Targeted deletion of the putative C3-degrading protease CppA, iron transporter PiaA, or competence regulatory histidine kinase ComD significantly decreased transmissibility in a mouse model, further validating the screen. Maternal vaccination with recombinant surface-exposed PiaA and CppA alone or in combination blocked transmission in offspring and were more effective than capsule-based vaccines. These data underscore the possibility of targeting pneumococcal transmission as a means of eliminating invasive disease in the population.
Collapse
Affiliation(s)
- Hannah M Rowe
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Erik Karlsson
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Haley Echlin
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ti-Cheng Chang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Wang
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Stanley B Pounds
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
16
|
Cohen A, Troib S, Dotan S, Najmuldeen H, Yesilkaya H, Kushnir T, Shagan M, Portnoi M, Nachmani H, Benisty R, Tal M, Ellis R, Chalifa-Caspi V, Dagan R, Nebenzahl YM. Streptococcus pneumoniae Cell Wall-Localized Trigger Factor Elicits a Protective Immune Response and Contributes to Bacterial Adhesion to the Host. Sci Rep 2019; 9:4295. [PMID: 30862841 PMCID: PMC6414539 DOI: 10.1038/s41598-019-40779-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
Trigger factor (TF) has a known cytoplasmic function as a chaperone. In a previous study we showed that pneumococcal TF is also cell-wall localized and this finding combined with the immunogenic characteristic of TF, has led us to determine the vaccine potential of TF and decipher its involvement in pneumococcal pathogenesis. Bioinformatic analysis revealed that TF is conserved among pneumococci and has no human homologue. Immunization of mice with recombinant (r)TF elicited a protective immune response against a pneumococcal challenge, suggesting that TF contributes to pneumococcal pathogenesis. Indeed, rTF and an anti-rTF antiserum inhibited bacterial adhesion to human lung derived epithelial cells, indicating that TF contributes to the bacterial adhesion to the host. Moreover, bacteria lacking TF demonstrated reduced adhesion, in vitro, to lung-derived epithelial cells, neural cells and glial cells. The reduced adhesion could be restored by chromosomal complementation. Furthermore, bacteria lacking TF demonstrated significantly reduced virulence in a mouse model. Taken together, the ability of rTF to elicit a protective immune response, involvement of TF in bacterial adhesion, conservation of the protein among pneumococcal strains and the lack of human homologue, all suggest that rTF can be considered as a future candidate vaccine with a much broader coverage as compared to the currently available pneumococcal vaccines.
Collapse
Affiliation(s)
- Aviad Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shani Troib
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Hastyar Najmuldeen
- Department of Infection, Immunity and Inflammation to Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.,Department of Biology, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Hasan Yesilkaya
- Department of Infection, Immunity and Inflammation to Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Tatyana Kushnir
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marilou Shagan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maxim Portnoi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hannie Nachmani
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rachel Benisty
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
17
|
Johnston C, Mortier-Barriere I, Khemici V, Polard P. Fine-tuning cellular levels of DprA ensures transformant fitness in the human pathogen Streptococcus pneumoniae. Mol Microbiol 2018; 109:663-675. [PMID: 29995987 DOI: 10.1111/mmi.14068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 01/12/2023]
Abstract
Natural genetic transformation is a widespread mechanism of horizontal gene transfer. It involves the internalization of exogenous DNA as single strands and chromosomal integration via homologous recombination, promoting acquisition of new genetic traits. Transformation occurs during a distinct physiological state called competence. In Streptococcus pneumoniae, competence is controlled by ComDE, a two-component system induced by an exported peptide pheromone. DprA is universal among transformable species, strongly induced during pneumococcal competence, and crucial for pneumococcal transformation. Pneumococcal DprA plays three crucial roles in transformation and competence. Firstly, DprA protects internalized DNA from degradation. Secondly, DprA loads the homologous recombinase RecA onto transforming DNA to promote transformation. Finally, DprA interacts with the response regulator ComE to shut-off competence. Here, we explored the effect of altering the cellular levels of DprA on these three roles. High cellular levels of DprA were not required for the primary role of DprA as a transformation-dedicated recombinase loader or for protection of transforming DNA. In contrast, full expression of dprA was required for optimal competence shut-off and transformant fitness. High cellular levels of DprA thus ensure the fitness of pneumococcal transformants by mediating competence shut-off. This promotes survival and propagation of transformants, maximizing pneumococcal adaptive potential.
Collapse
Affiliation(s)
- Calum Johnston
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Isabelle Mortier-Barriere
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Vanessa Khemici
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
18
|
Herbert JA, Mitchell AM, Ritchie R, Ma J, Ross-Hutchinson K, Mitchell TJ. Expression of the lux genes in Streptococcus pneumoniae modulates pilus expression and virulence. PLoS One 2018; 13:e0189426. [PMID: 29342160 PMCID: PMC5771582 DOI: 10.1371/journal.pone.0189426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/25/2017] [Indexed: 11/18/2022] Open
Abstract
Bioluminescence has been harnessed for use in bacterial reporter systems and for in vivo imaging of infection in animal models. Strain Xen35, a bioluminescent derivative of Streptococcus pneumoniae serotype 4 strain TIGR4 was previously constructed for use for in vivo imaging of infections in animal models. We have shown that strain Xen35 is less virulent than its parent TIGR4 and that this is associated with the expression of the genes for bioluminescence. The expression of the luxA-E genes in the pneumococcus reduces virulence and down regulates the expression of the pneumococcal pilus.
Collapse
Affiliation(s)
- Jenny A. Herbert
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrea M. Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Technology Hub Manager, Infrastructure and Facilities, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ryan Ritchie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jiangtao Ma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kirsty Ross-Hutchinson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Timothy J. Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Morozov GI, Porat N, Kushnir T, Najmuldeen H, Adawi A, Chalifa-Caspi V, Benisty R, Ohayon A, Liron O, Azriel S, Malka I, Dotan S, Portnoi M, Piotrowski AA, Kafka D, Hajaj B, Fishilevich T, Shagan M, Tal M, Ellis R, Morrison DA, Mitchell AM, Mitchell TJ, Dagan R, Yesilkaya H, Nebenzahl YM. Flavin Reductase Contributes to Pneumococcal Virulence by Protecting from Oxidative Stress and Mediating Adhesion and Elicits Protection Against Pneumococcal Challenge. Sci Rep 2018; 8:314. [PMID: 29321514 PMCID: PMC5762878 DOI: 10.1038/s41598-017-18645-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/01/2017] [Indexed: 12/26/2022] Open
Abstract
Pneumococcal flavin reductase (FlaR) is known to be cell-wall associated and possess age dependent antigenicity in children. This study aimed at characterizing FlaR and elucidating its involvement in pneumococcal physiology and virulence. Bioinformatic analysis of FlaR sequence identified three-conserved cysteine residues, suggesting a transition metal-binding capacity. Recombinant FlaR (rFlaR) bound Fe2+ and exhibited FAD-dependent NADP-reductase activity, which increased in the presence of cysteine or excess Fe2+ and inhibited by divalent-chelating agents. flaR mutant was highly susceptible to H2O2 compared to its wild type (WT) and complemented strains, suggesting a role for FlaR in pneumococcal oxidative stress resistance. Additionally, flaR mutant demonstrated significantly decreased mice mortality following intraperitoneal infection. Interestingly, lack of FlaR did not affect the extent of phagocytosis by primary mouse peritoneal macrophages but reduced adhesion to A549 cells compared to the WT and complemented strains. Noteworthy are the findings that immunization with rFlaR elicited protection in mice against intraperitoneal lethal challenge and anti-FlaR antisera neutralized bacterial virulence. Taken together, FlaR's roles in pneumococcal physiology and virulence, combined with its lack of significant homology to human proteins, point towards rFlaR as a vaccine candidate.
Collapse
Affiliation(s)
- Giora I Morozov
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nurith Porat
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Tatyana Kushnir
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hastyar Najmuldeen
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom.,Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah, Iraq
| | - Asad Adawi
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rachel Benisty
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Ariel Ohayon
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Shalhevet Azriel
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itai Malka
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | - Andrew A Piotrowski
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Barak Hajaj
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Tali Fishilevich
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marilou Shagan
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Andrea M Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ron Dagan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
20
|
Hajaj B, Yesilkaya H, Shafeeq S, Zhi X, Benisty R, Tchalah S, Kuipers OP, Porat N. CodY Regulates Thiol Peroxidase Expression as Part of the Pneumococcal Defense Mechanism against H 2O 2 Stress. Front Cell Infect Microbiol 2017; 7:210. [PMID: 28596944 PMCID: PMC5443158 DOI: 10.3389/fcimb.2017.00210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is a facultative anaerobic pathogen. Although it maintains fermentative metabolism, during aerobic growth pneumococci produce high levels of H2O2, which can have adverse effects on cell viability and DNA, and influence pneumococcal interaction with its host. The pneumococcus is unusual in its dealing with toxic reactive oxygen species (ROS) in that it neither has catalase nor the global regulators of peroxide stress resistance. Previously, we identified pneumococcal thiol peroxidase (TpxD) as the key enzyme for enzymatic removal of H2O2, and showed that TpxD synthesis is up-regulated upon exposure to H2O2. This study aimed to reveal the mechanism controlling TpxD expression under H2O2 stress. We hypothesize that H2O2 activates a transcription factor which in turn up-regulates tpxD expression. Microarray analysis revealed a pneumococcal global transcriptional response to H2O2. Mutation of tpxD abolished H2O2-mediated response to high H2O2 levels, signifying the need for an active TpxD under oxidative stress conditions. Bioinformatic tools, applied to search for a transcription factor modulating tpxD expression, pointed toward CodY as a potential candidate. Indeed, a putative 15-bp consensus CodY binding site was found in the proximal region of tpxD-coding sequence. Binding of CodY to this site was confirmed by EMSA, and genetic engineering techniques demonstrated that this site is essential for TpxD up-regulation under H2O2 stress. Furthermore, tpxD expression was reduced in a ΔcodY mutant. These data indicate that CodY is an activator of tpxD expression, triggering its up-regulation under H2O2 stress. In addition we show that H2O2 specifically oxidizes the 2 CodY cysteines. This oxidation may trigger a conformational change in CodY, resulting in enhanced binding to DNA. A schematic model illustrating the contribution of TpxD and CodY to pneumococcal global transcriptional response to H2O2 is proposed.
Collapse
Affiliation(s)
- Barak Hajaj
- Pediatric Infectious Disease Unit, Department of Microbiology and Immunology, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Hasan Yesilkaya
- Department of Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom
| | - Sulman Shafeeq
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Xiangyun Zhi
- Department of Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom
| | - Rachel Benisty
- Pediatric Infectious Disease Unit, Department of Microbiology and Immunology, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Shiran Tchalah
- Pediatric Infectious Disease Unit, Department of Microbiology and Immunology, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Nurith Porat
- Pediatric Infectious Disease Unit, Department of Microbiology and Immunology, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the NegevBeer Sheva, Israel
| |
Collapse
|
21
|
Deacetylation of sialic acid by esterases potentiates pneumococcal neuraminidase activity for mucin utilization, colonization and virulence. PLoS Pathog 2017; 13:e1006263. [PMID: 28257499 PMCID: PMC5352144 DOI: 10.1371/journal.ppat.1006263] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/15/2017] [Accepted: 02/27/2017] [Indexed: 01/19/2023] Open
Abstract
Pneumococcal neuraminidase is a key enzyme for sequential deglycosylation of host glycans, and plays an important role in host survival, colonization, and pathogenesis of infections caused by Streptococcus pneumoniae. One of the factors that can affect the activity of neuraminidase is the amount and position of acetylation present in its substrate sialic acid. We hypothesised that pneumococcal esterases potentiate neuraminidase activity by removing acetylation from sialic acid, and that will have a major effect on pneumococcal survival on mucin, colonization, and virulence. These hypotheses were tested using isogenic mutants and recombinant esterases in microbiological, biochemical and in vivo assays. We found that pneumococcal esterase activity is encoded by at least four genes, SPD_0534 (EstA) was found to be responsible for the main esterase activity, and the pneumococcal esterases are specific for short acyl chains. Assay of esterase activity by using natural substrates showed that both the Axe and EstA esterases could use acetylated xylan and Bovine Sub-maxillary Mucin (BSM), a highly acetylated substrate, but only EstA was active against tributyrin (triglyceride). Incubation of BSM with either Axe or EstA led to the acetate release in a time and concentration dependent manner, and pre-treatment of BSM with either enzyme increased sialic acid release on subsequent exposure to neuraminidase A. qRT-PCR results showed that the expression level of estA and axe increased when exposed to BSM and in respiratory tissues. Mutation of estA alone or in combination with nanA (codes for neuraminidase A), or the replacement of its putative serine active site to alanine, reduced the pneumococcal ability to utilise BSM as a sole carbon source, sialic acid release, colonization, and virulence in a mouse model of pneumococcal pneumonia.
Collapse
|
22
|
Al-Bayati FAY, Kahya HFH, Damianou A, Shafeeq S, Kuipers OP, Andrew PW, Yesilkaya H. Pneumococcal galactose catabolism is controlled by multiple regulators acting on pyruvate formate lyase. Sci Rep 2017; 7:43587. [PMID: 28240278 PMCID: PMC5327383 DOI: 10.1038/srep43587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/25/2017] [Indexed: 01/05/2023] Open
Abstract
Catabolism of galactose by Streptococcus pneumoniae alters the microbe's metabolism from homolactic to mixed acid fermentation, and this shift is linked to the microbe's virulence. However, the genetic basis of this switch is unknown. Pyruvate formate lyase (PFL) is a crucial enzyme for mixed acid fermentation. Functional PFL requires the activities of two enzymes: pyruvate formate lyase activating enzyme (coded by pflA) and pyruvate formate lyase (coded by pflB). To understand the genetic basis of mixed acid fermentation, transcriptional regulation of pflA and pflB was studied. By microarray analysis of ΔpflB, differential regulation of several transcriptional regulators were identified, and CcpA, and GlnR's role in active PFL synthesis was studied in detail as these regulators directly interact with the putative promoters of both pflA and pflB, their mutation attenuated pneumococcal growth, and their expression was induced on host-derived sugars, indicating that these regulators have a role in sugar metabolism, and multiple regulators are involved in active PFL synthesis. We also found that the influence of each regulator on pflA and pflB expression was distinct in terms of activation and repression, and environmental condition. These results show that active PFL synthesis is finely tuned, and feed-back inhibition and activation are involved.
Collapse
Affiliation(s)
- Firas A. Y. Al-Bayati
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
- Department of Biology, College of Education, University of Mosul, Iraq
| | - Hasan F. H. Kahya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
- Department of Biology, College of Education, University of Mosul, Iraq
| | - Andreas Damianou
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Sulman Shafeeq
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Oscar P. Kuipers
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Peter W. Andrew
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
23
|
Biological and Chemical Adaptation to Endogenous Hydrogen Peroxide Production in Streptococcus pneumoniae D39. mSphere 2017; 2:mSphere00291-16. [PMID: 28070562 PMCID: PMC5214746 DOI: 10.1128/msphere.00291-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/04/2016] [Indexed: 12/29/2022] Open
Abstract
Adaptation to endogenous oxidative stress is an integral aspect of Streptococcus pneumoniae colonization and virulence. In this work, we identify key transcriptomic and proteomic features of the pneumococcal endogenous oxidative stress response. The thiol peroxidase TpxD plays a critical role in adaptation to endogenous H2O2 and serves to limit protein sulfenylation of glycolytic, capsule, and nucleotide biosynthesis enzymes in S. pneumoniae. The catalase-negative, facultative anaerobe Streptococcus pneumoniae D39 is naturally resistant to hydrogen peroxide (H2O2) produced endogenously by pyruvate oxidase (SpxB). Here, we investigate the adaptive response to endogenously produced H2O2. We show that lactate oxidase, which converts lactate to pyruvate, positively impacts pyruvate flux through SpxB and that ΔlctO mutants produce significantly lower H2O2. In addition, both the SpxB pathway and a candidate pyruvate dehydrogenase complex (PDHC) pathway contribute to acetyl coenzyme A (acetyl-CoA) production during aerobic growth, and the pyruvate format lyase (PFL) pathway is the major acetyl-CoA pathway during anaerobic growth. Microarray analysis of the D39 strain cultured under aerobic versus strict anaerobic conditions shows upregulation of spxB, a gene encoding a rhodanese-like protein (locus tag spd0091), tpxD, sodA, piuB, piuD, and an Fe-S protein biogenesis operon under H2O2-producing conditions. Proteome profiling of H2O2-induced sulfenylation reveals that sulfenylation levels correlate with cellular H2O2 production, with endogenous sulfenylation of ≈50 proteins. Deletion of tpxD increases cellular sulfenylation 5-fold and has an inhibitory effect on ATP generation. Two major targets of protein sulfenylation are glyceraldehyde-3-phosphate dehydrogenase (GapA) and SpxB itself, but targets also include pyruvate kinase, LctO, AdhE, and acetate kinase (AckA). Sulfenylation of GapA is inhibitory, while the effect on SpxB activity is negligible. Strikingly, four enzymes of capsular polysaccharide biosynthesis are sulfenylated, as are enzymes associated with nucleotide biosynthesis via ribulose-5-phosphate. We propose that LctO/SpxB-generated H2O2 functions as a signaling molecule to downregulate capsule production and drive altered flux through sugar utilization pathways. IMPORTANCE Adaptation to endogenous oxidative stress is an integral aspect of Streptococcus pneumoniae colonization and virulence. In this work, we identify key transcriptomic and proteomic features of the pneumococcal endogenous oxidative stress response. The thiol peroxidase TpxD plays a critical role in adaptation to endogenous H2O2 and serves to limit protein sulfenylation of glycolytic, capsule, and nucleotide biosynthesis enzymes in S. pneumoniae.
Collapse
|
24
|
Pneumococcal 6-Phospho-β-Glucosidase (BglA3) Is Involved in Virulence and Nutrient Metabolism. Infect Immun 2015; 84:286-92. [PMID: 26527213 DOI: 10.1128/iai.01108-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022] Open
Abstract
For the generation of energy, the important human pathogen Streptococcus pneumoniae relies on host-derived sugars, including β-glucoside analogs. The catabolism of these nutrients involves the action of 6-phospho-β-glucosidase to convert them into usable monosaccharaides. In this study, we characterized a 6-phospho-β-glucosidase (BglA3) encoded by SPD_0247. We found that this enzyme has a cell membrane localization and is active only against a phosphorylated substrate. A mutated pneumococcal ΔSPD0247 strain had reduced 6-phospho-glucosidase activity and was attenuated in growth on cellobiose and hyaluronic acid compared to the growth of wild-type D39. ΔSPD0247-infected mice survived significantly longer than the wild-type-infected cohort, and the colony counts of the mutant were lower than those of the wild type in the lungs. The expression of SPD_0247 in S. pneumoniae harvested from infected tissues was significantly increased relative to its expression in vitro on glucose. Additionally, ΔSPD0247 is severely impaired in its attachment to an abiotic surface. These results indicate the importance of β-glucoside metabolism in pneumococcal survival and virulence.
Collapse
|
25
|
Nourikyan J, Kjos M, Mercy C, Cluzel C, Morlot C, Noirot-Gros MF, Guiral S, Lavergne JP, Veening JW, Grangeasse C. Autophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in Streptococcus pneumoniae. PLoS Genet 2015; 11:e1005518. [PMID: 26378458 PMCID: PMC4574921 DOI: 10.1371/journal.pgen.1005518] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/21/2015] [Indexed: 01/07/2023] Open
Abstract
Bacterial capsular polysaccharides (CPS) are produced by a multi-protein membrane complex, in which a particular type of tyrosine-autokinases named BY-kinases, regulate their polymerization and export. However, our understanding of the role of BY-kinases in these processes remains incomplete. In the human pathogen Streptococcus pneumoniae, the BY-kinase CpsD localizes at the division site and participates in the proper assembly of the capsule. In this study, we show that the cytoplasmic C-terminal end of the transmembrane protein CpsC is required for CpsD autophosphorylation and localization at mid-cell. Importantly, we demonstrate that the CpsC/CpsD complex captures the polysaccharide polymerase CpsH at the division site. Together with the finding that capsule is not produced at the division site in cpsD and cpsC mutants, these data show that CPS production occurs exclusively at mid-cell and is tightly dependent on CpsD interaction with CpsC. Next, we have analyzed the impact of CpsD phosphorylation on CPS production. We show that dephosphorylation of CpsD induces defective capsule production at the septum together with aberrant cell elongation and nucleoid defects. We observe that the cell division protein FtsZ assembles and localizes properly although cell constriction is impaired. DAPI staining together with localization of the histone-like protein HlpA further show that chromosome replication and/or segregation is defective suggesting that CpsD autophosphorylation interferes with these processes thus resulting in cell constriction defects and cell elongation. We show that CpsD shares structural homology with ParA-like ATPases and that it interacts with the chromosome partitioning protein ParB. Total internal reflection fluorescence microscopy imaging demonstrates that CpsD phosphorylation modulates the mobility of ParB. These data support a model in which phosphorylation of CpsD acts as a signaling system coordinating CPS synthesis with chromosome segregation to ensure that daughter cells are properly wrapped in CPS. Bacteria utilize a multi-protein membrane complex to synthesize and export the polysaccharide capsule that conceals and covers the cell. In bacterial pathogens, the capsule protects the cell form opsonophagocytosis and complement-mediated killing. The mechanisms allowing the bacterial cell to maintain this protective capsule during cell growth and division remain unknown. The capsule assembly machinery encompasses a particular type of tyrosine-kinases found only in bacteria, which are called BY-kinases. These kinases are involved in the regulation of several cellular functions including polysaccharide capsule production. Studying the role of BY-kinase represents thus an interesting approach to decipher the mechanisms of capsule synthesis and export. Here, we study the role of the BY-kinase CpsD in the human pathogen Streptococcus pneumoniae. We show that CpsD plays a dual function in the pneumococcus. Indeed, CpsD captures the capsule assembly machinery at the site of division, but we also show that CpsD coordinates capsule production with the cell cycle by interacting with the chromosome segregation system. These features provide a simple mechanism to cover the complete surface of the pneumococcal daughter cells. This finding further opens a new view of the function of BY-kinases in the bacterial cell notably in localizing protein complexes in subcellular regions over the cell cycle.
Collapse
Affiliation(s)
- Julien Nourikyan
- Bases Moléculaires et Structurales des Systèmes Infectieux, UMR5086 CNRS/Université de Lyon 1, Lyon, France
| | - Morten Kjos
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, the Netherlands
| | - Chryslène Mercy
- Bases Moléculaires et Structurales des Systèmes Infectieux, UMR5086 CNRS/Université de Lyon 1, Lyon, France
| | - Caroline Cluzel
- Laboratoire Biologie Tissulaire et Ingénierie thérapeutique, UMR5305, CNRS/Université de Lyon 1, Lyon, France
| | - Cécile Morlot
- Institut de Biologie Structurale, UMR5075 CNRS/CEA/Université Grenoble Alpes, Grenoble, France
| | | | - Sébastien Guiral
- Bases Moléculaires et Structurales des Systèmes Infectieux, UMR5086 CNRS/Université de Lyon 1, Lyon, France
| | - Jean-Pierre Lavergne
- Bases Moléculaires et Structurales des Systèmes Infectieux, UMR5086 CNRS/Université de Lyon 1, Lyon, France
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, the Netherlands
| | - Christophe Grangeasse
- Bases Moléculaires et Structurales des Systèmes Infectieux, UMR5086 CNRS/Université de Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
26
|
Herbert JA, Mitchell AM, Mitchell TJ. A Serine-Threonine Kinase (StkP) Regulates Expression of the Pneumococcal Pilus and Modulates Bacterial Adherence to Human Epithelial and Endothelial Cells In Vitro. PLoS One 2015; 10:e0127212. [PMID: 26090876 PMCID: PMC4474723 DOI: 10.1371/journal.pone.0127212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/02/2015] [Indexed: 12/25/2022] Open
Abstract
The pneumococcal serine threonine protein kinase (StkP) acts as a global regulator in the pneumococcus. Bacterial mutants deficient in StkP are less virulent in animal models of infection. The gene for this regulator is located adjacent to the gene for its cognate phosphatase in the pneumococcal genome. The phosphatase dephosphorylates proteins phosphorylated by StkP and has been shown to regulate a number of key pneumococcal virulence factors and to modulate adherence to eukaryotic cells. The role of StkP in adherence of pneumococci to human cells has not previously been reported. In this study we show StkP represses the pneumococcal pilus, a virulence factor known to be important for bacterial adhesion. In a serotype 4 strain regulation of the pilus by StkP modulates adherence to human brain microvascular endothelial cells (HBMEC) and human lung epithelial cells. This suggests that the pneumococcal pilus may play a role in adherence during infections such as meningitis and pneumonia. We show that regulation of the pilus occurs at the population level as StkP alters the number of pili-positive cells within a single culture. As far as we are aware this is the first gene identified outside of the pilus islet that regulates the biphasic expression of the pilus. These findings suggest StkPs role in cell division may be linked to regulation of expression of a cell surface adhesin.
Collapse
Affiliation(s)
- Jenny A. Herbert
- Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, England, United Kingdom
| | - Andrea M. Mitchell
- Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, England, United Kingdom
| | - Timothy J. Mitchell
- Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, England, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Co-Inactivation of GlnR and CodY Regulators Impacts Pneumococcal Cell Wall Physiology. PLoS One 2015; 10:e0123702. [PMID: 25901369 PMCID: PMC4406557 DOI: 10.1371/journal.pone.0123702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/06/2015] [Indexed: 11/19/2022] Open
Abstract
CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essential in Streptococcus pneumoniae (the pneumococcus). A published codY mutant possessed suppressing mutations inactivating the fatC and amiC genes, respectively belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are directly repressed by CodY. Here we analyzed two additional published codY mutants to further explore the essentiality of CodY. We show that one, in which the regulator of glutamine/glutamate metabolism glnR had been inactivated by design, had only a suppressor in fecE (a gene in the fat/fec operon), while the other possessed both fecE and amiC mutations. Independent isolation of three different fat/fec suppressors thus establishes that reduction of iron import is crucial for survival without CodY. We refer to these as primary suppressors, while inactivation of ami, which is not essential for survival of codY mutants and acquired after initial fat/fec inactivation, can be regarded as a secondary suppressor. The availability of codY- ami+ cells allowed us to establish that CodY activates competence for genetic transformation indirectly, presumably by repressing ami which is known to antagonize competence. The glnR codY fecE mutant was then found to be only partially viable on solid medium and hypersensitive to peptidoglycan (PG) targeting agents such as the antibiotic cefotaxime and the muramidase lysozyme. While analysis of PG and teichoic acid composition uncovered no alteration in the glnR codY fecE mutant compared to wildtype, electron microscopy revealed altered ultrastructure of the cell wall in the mutant, establishing that co-inactivation of GlnR and CodY regulators impacts pneumococcal cell wall physiology. In light of rising levels of resistance to PG-targeting antibiotics of natural pneumococcal isolates, GlnR and CodY constitute potential alternative therapeutic targets to combat this debilitating pathogen, as co-inactivation of these regulators renders pneumococci sensitive to iron and PG-targeting agents.
Collapse
|
28
|
Sorg RA, Kuipers OP, Veening JW. Gene expression platform for synthetic biology in the human pathogen Streptococcus pneumoniae. ACS Synth Biol 2015; 4:228-39. [PMID: 24845455 DOI: 10.1021/sb500229s] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The human pathogen Streptococcus pneumoniae (pneumococcus) is a bacterium that owes its success to complex gene expression regulation patterns on both the cellular and the population level. Expression of virulence factors enables a mostly hazard-free presence of the commensal, in balance with the host and niche competitors. Under specific circumstances, changes in this expression can result in a more aggressive behavior and the reversion to the invasive form as pathogen. These triggering conditions are very difficult to study due to the fact that environmental cues are often unknown or barely possible to simulate outside the host (in vitro). An alternative way of investigating expression patterns is found in synthetic biology approaches of reconstructing regulatory networks that mimic an observed behavior with orthogonal components. Here, we created a genetic platform suitable for synthetic biology approaches in S. pneumoniae and characterized a set of standardized promoters and reporters. We show that our system allows for fast and easy cloning with the BglBrick system and that reliable and robust gene expression after integration into the S. pneumoniae genome is achieved. In addition, the cloning system was extended to allow for direct linker-based assembly of ribosome binding sites, peptide tags, and fusion proteins, and we called this new generally applicable standard "BglFusion". The gene expression platform and the methods described in this study pave the way for employing synthetic biology approaches in S. pneumoniae.
Collapse
Affiliation(s)
- Robin A. Sorg
- Molecular Genetics Group,
Groningen Biomolecular Sciences and Biotechnology Institute, Centre
for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Oscar P. Kuipers
- Molecular Genetics Group,
Groningen Biomolecular Sciences and Biotechnology Institute, Centre
for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group,
Groningen Biomolecular Sciences and Biotechnology Institute, Centre
for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
29
|
Lactate dehydrogenase is the key enzyme for pneumococcal pyruvate metabolism and pneumococcal survival in blood. Infect Immun 2014; 82:5099-109. [PMID: 25245810 DOI: 10.1128/iai.02005-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is a fermentative microorganism and causes serious diseases in humans, including otitis media, bacteremia, meningitis, and pneumonia. However, the mechanisms enabling pneumococcal survival in the host and causing disease in different tissues are incompletely understood. The available evidence indicates a strong link between the central metabolism and pneumococcal virulence. To further our knowledge on pneumococcal virulence, we investigated the role of lactate dehydrogenase (LDH), which converts pyruvate to lactate and is an essential enzyme for redox balance, in the pneumococcal central metabolism and virulence using an isogenic ldh mutant. Loss of LDH led to a dramatic reduction of the growth rate, pinpointing the key role of this enzyme in fermentative metabolism. The pattern of end products was altered, and lactate production was totally blocked. The fermentation profile was confirmed by in vivo nuclear magnetic resonance (NMR) measurements of glucose metabolism in nongrowing cell suspensions of the ldh mutant. In this strain, a bottleneck in the fermentative steps is evident from the accumulation of pyruvate, revealing LDH as the most efficient enzyme in pyruvate conversion. An increase in ethanol production was also observed, indicating that in the absence of LDH the redox balance is maintained through alcohol dehydrogenase activity. We also found that the absence of LDH renders the pneumococci avirulent after intravenous infection and leads to a significant reduction in virulence in a model of pneumonia that develops after intranasal infection, likely due to a decrease in energy generation and virulence gene expression.
Collapse
|
30
|
Bergé MJ, Kamgoué A, Martin B, Polard P, Campo N, Claverys JP. Midcell recruitment of the DNA uptake and virulence nuclease, EndA, for pneumococcal transformation. PLoS Pathog 2013; 9:e1003596. [PMID: 24039578 PMCID: PMC3764208 DOI: 10.1371/journal.ppat.1003596] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/19/2013] [Indexed: 12/02/2022] Open
Abstract
Genetic transformation, in which cells internalize exogenous DNA and integrate it into their chromosome, is widespread in the bacterial kingdom. It involves a specialized membrane-associated machinery for binding double-stranded (ds) DNA and uptake of single-stranded (ss) fragments. In the human pathogen Streptococcus pneumoniae, this machinery is specifically assembled at competence. The EndA nuclease, a constitutively expressed virulence factor, is recruited during competence to play the key role of converting dsDNA into ssDNA for uptake. Here we use fluorescence microscopy to show that EndA is uniformly distributed in the membrane of noncompetent cells and relocalizes at midcell during competence. This recruitment requires the dsDNA receptor ComEA. We also show that under ‘static’ binding conditions, i.e., in cells impaired for uptake, EndA and ComEA colocalize at midcell, together with fluorescent end-labelled dsDNA (Cy3-dsDNA). We conclude that midcell clustering of EndA reflects its recruitment to the DNA uptake machinery rather than its sequestration away from this machinery to protect transforming DNA from extensive degradation. In contrast, a fraction of ComEA molecules were located at cell poles post-competence, suggesting the pole as the site of degradation of the dsDNA receptor. In uptake-proficient cells, we used Cy3-dsDNA molecules enabling expression of a GFP fusion upon chromosomal integration to identify transformed cells as GFP producers 60–70 min after initial contact between DNA and competent cells. Recording of images since initial cell-DNA contact allowed us to look back to the uptake period for these transformed cells. Cy3-DNA foci were thus detected at the cell surface 10–11 min post-initial contact, all exclusively found at midcell, strongly suggesting that active uptake of transforming DNA takes place at this position in pneumococci. We discuss how midcell uptake could influence homology search, and the likelihood that midcell uptake is characteristic of cocci and/or the growth phase-dependency of competence. Natural genetic transformation, a programmed mechanism for horizontal gene transfer, permits the passage of environmental double-stranded (ds) DNA through the bacterial membrane and its subsequent integration into the recipient chromosome by homology. In the human pathogen Streptococcus pneumoniae, it requires development of a physiological state termed competence, which develops transiently in nearly all cells of an exponentially growing culture. Expression of a specific set of genes then allows assembly of a large membrane-associated machinery for binding exogenous dsDNA and internalizing single-stranded (ss) DNA fragments. The key role of converting dsDNA into ssDNA is fulfilled by EndA, a membrane-located endonuclease which is also a pneumococcal virulence factor pre-existing in noncompetent cells. Here, we report that EndA is uniformly distributed in the membrane of noncompetent cells and relocates into clusters during competence. We show that this relocalization is dependent upon the dsDNA-receptor ComEA and that ComEA and EndA are preferentially located at midcell in cultures exhibiting maximal transformation proficiency. Finally, using fluorescence microscopy, we visualize the transformation process in living cells providing evidence that DNA binding and presumably uptake occur at midcell.
Collapse
Affiliation(s)
- Matthieu J. Bergé
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Alain Kamgoué
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
- Centre National de la Recherche Scientifique, LBME-UMR5099, Toulouse, France
| | - Bernard Martin
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Patrice Polard
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Nathalie Campo
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
- * E-mail: (NC); (JPC)
| | - Jean-Pierre Claverys
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
- * E-mail: (NC); (JPC)
| |
Collapse
|
31
|
Involvement of FtsE ATPase and FtsX extracellular loops 1 and 2 in FtsEX-PcsB complex function in cell division of Streptococcus pneumoniae D39. mBio 2013; 4:mBio.00431-13. [PMID: 23860769 PMCID: PMC3735124 DOI: 10.1128/mbio.00431-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The FtsEX protein complex has recently been proposed to play a major role in coordinating peptidoglycan (PG) remodeling by hydrolases with the division of bacterial cells. According to this model, cytoplasmic FtsE ATPase interacts with the FtsZ divisome and FtsX integral membrane protein and powers allosteric activation of an extracellular hydrolase interacting with FtsX. In the major human respiratory pathogen Streptococcus pneumoniae (pneumococcus), a large extracellular-loop domain of FtsX (ECL1FtsX) is thought to interact with the coiled-coil domain of the PcsB protein, which likely functions as a PG amidase or endopeptidase required for normal cell division. This paper provides evidence for two key tenets of this model. First, we show that FtsE protein is essential, that depletion of FtsE phenocopies cell defects caused by depletion of FtsX or PcsB, and that changes of conserved amino acids in the FtsE ATPase active site are not tolerated. Second, we show that temperature-sensitive (Ts) pcsB mutations resulting in amino acid changes in the PcsB coiled-coil domain (CCPcsB) are suppressed by ftsX mutations resulting in amino acid changes in the distal part of ECL1FtsX or in a second, small extracellular-loop domain (ECL2FtsX). Some FtsX suppressors are allele specific for changes in CCPcsB, and no FtsX suppressors were found for amino acid changes in the catalytic PcsB CHAP domain (CHAPPcsB). These results strongly support roles for both ECL1FtsX and ECL2FtsX in signal transduction to the coiled-coil domain of PcsB. Finally, we found that pcsBCC(Ts) mutants (Ts mutants carrying mutations in the region of pcsB corresponding to the coiled-coil domain) unexpectedly exhibit delayed stationary-phase autolysis at a permissive growth temperature. Little is known about how FtsX interacts with cognate PG hydrolases in any bacterium, besides that ECL1FtsX domains somehow interact with coiled-coil domains. This work used powerful genetic approaches to implicate a specific region of pneumococcal ECL1FtsX and the small ECL2FtsX in the interaction with CCPcsB. These findings identify amino acids important for in vivo signal transduction between FtsX and PcsB for the first time. This paper also supports the central hypothesis that signal transduction between pneumococcal FtsX and PcsB is linked to ATP hydrolysis by essential FtsE, which couples PG hydrolysis to cell division. The classical genetic approaches used here can be applied to dissect interactions of other integral membrane proteins involved in PG biosynthesis. Finally, delayed autolysis of the pcsBCC(Ts) mutants suggests that the FtsEX-PcsB PG hydrolase may generate a signal in the PG necessary for activation of the major LytA autolysin as pneumococcal cells enter stationary phase.
Collapse
|
32
|
Streptococcus pneumoniae folate biosynthesis responds to environmental CO2 levels. J Bacteriol 2013; 195:1573-82. [PMID: 23354753 DOI: 10.1128/jb.01942-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although carbon dioxide (CO2) is known to be essential for Streptococcus pneumoniae growth, it is poorly understood how this respiratory tract pathogen adapts to the large changes in environmental CO2 levels it encounters during transmission, host colonization, and disease. To identify the molecular mechanisms that facilitate pneumococcal growth under CO2-poor conditions, we generated a random S. pneumoniae R6 mariner transposon mutant library representing mutations in 1,538 different genes and exposed it to CO2-poor ambient air. With Tn-seq, we found mutations in two genes that were involved in S. pneumoniae adaptation to changes in CO2 availability. The gene pca, encoding pneumococcal carbonic anhydrase (PCA), was absolutely essential for S. pneumoniae growth under CO2-poor conditions. PCA catalyzes the reversible hydration of endogenous CO2 to bicarbonate (HCO3(-)) and was previously demonstrated to facilitate HCO3(-)-dependent fatty acid biosynthesis. The gene folC that encodes the dihydrofolate/folylpolyglutamate synthase was required at the initial phase of bacterial growth under CO2-poor culture conditions. FolC compensated for the growth-phase-dependent decrease in S. pneumoniae intracellular long-chain (n > 3) polyglutamyl folate levels, which was most pronounced under CO2-poor growth conditions. In conclusion, S. pneumoniae adaptation to changes in CO2 availability involves the retention of endogenous CO2 and the preservation of intracellular long-chain polyglutamyl folate pools.
Collapse
|
33
|
CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 2013; 12:177-86. [PMID: 22901538 DOI: 10.1016/j.chom.2012.06.003] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/26/2012] [Accepted: 06/25/2012] [Indexed: 12/26/2022]
Abstract
Pathogenic bacterial strains emerge largely due to transfer of virulence and antimicrobial resistance genes between bacteria, a process known as horizontal gene transfer (HGT). Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of bacteria and archaea encode a sequence-specific defense mechanism against bacteriophages and constitute a programmable barrier to HGT. However, the impact of CRISPRs on the emergence of virulence is unknown. We programmed the human pathogen Streptococcus pneumoniae with CRISPR sequences that target capsule genes, an essential pneumococcal virulence factor, and show that CRISPR interference can prevent transformation of nonencapsulated, avirulent pneumococci into capsulated, virulent strains during infection in mice. Further, at low frequencies bacteria can lose CRISPR function, acquire capsule genes, and mount a successful infection. These results demonstrate that CRISPR interference can prevent the emergence of virulence in vivo and that strong selective pressure for virulence or antibiotic resistance can lead to CRISPR loss in bacterial pathogens.
Collapse
|
34
|
Thiol peroxidase is an important component of Streptococcus pneumoniae in oxygenated environments. Infect Immun 2012; 80:4333-43. [PMID: 23027531 DOI: 10.1128/iai.00126-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is an aerotolerant gram-positive bacterium that causes an array of diseases, including pneumonia, otitis media, and meningitis. During aerobic growth, S. pneumoniae produces high levels of H(2)O(2). Since S. pneumoniae lacks catalase, the question of how it controls H(2)O(2) levels is of critical importance. The psa locus encodes an ABC Mn(2+)-permease complex (psaBCA) and a putative thiol peroxidase, tpxD. This study shows that tpxD encodes a functional thiol peroxidase involved in the adjustment of H(2)O(2) homeostasis in the cell. Kinetic experiments showed that recombinant TpxD removed H(2)O(2) efficiently. However, in vivo experiments revealed that TpxD detoxifies only a fraction of the H(2)O(2) generated by the pneumococcus. Mass spectrometry analysis demonstrated that TpxD Cys(58) undergoes selective oxidation in vivo, under conditions where H(2)O(2) is formed, confirming the thiol peroxidase activity. Levels of TpxD expression and synthesis in vitro were significantly increased in cells grown under aerobic versus anaerobic conditions. The challenge with D39 and TIGR4 with H(2)O(2) resulted in tpxD upregulation, while psaBCA expression was oppositely affected. However, the challenge of ΔtpxD mutants with H(2)O(2) did not affect psaBCA, implying that TpxD is involved in the regulation of the psa operon, in addition to its scavenging activity. Virulence studies demonstrated a notable difference in the survival time of mice infected intranasally with D39 compared to that of mice infected intranasally with D39ΔtpxD. However, when bacteria were administered directly into the blood, this difference disappeared. The findings of this study suggest that TpxD constitutes a component of the organism's fundamental strategy to fine-tune cellular processes in response to H(2)O(2).
Collapse
|
35
|
Boncoeur E, Durmort C, Bernay B, Ebel C, Di Guilmi AM, Croizé J, Vernet T, Jault JM. PatA and PatB Form a Functional Heterodimeric ABC Multidrug Efflux Transporter Responsible for the Resistance of Streptococcus pneumoniae to Fluoroquinolones. Biochemistry 2012; 51:7755-65. [DOI: 10.1021/bi300762p] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Emilie Boncoeur
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| | - Claire Durmort
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| | - Benoît Bernay
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| | - Christine Ebel
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| | - Anne Marie Di Guilmi
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| | - Jacques Croizé
- Unité de bactériologie, CHU la Tronche, Grenoble, France
| | - Thierry Vernet
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| | - Jean-Michel Jault
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
36
|
Streptococcus pneumoniae can utilize multiple sources of hyaluronic acid for growth. Infect Immun 2012; 80:1390-8. [PMID: 22311922 DOI: 10.1128/iai.05756-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mechanisms by which Streptococcus pneumoniae obtains carbohydrates for growth during airway colonization remain to be elucidated. The low concentration of free carbohydrates in the normal human airway suggests that pneumococci must utilize complex glycan structures for growth. The glycosaminoglycan hyaluronic acid is present on the apical surface of airway epithelial cells. As pneumococci express a hyaluronate lyase (Hyl) that cleaves hyaluronic acid into disaccharides, we hypothesized that during colonization pneumococci utilize the released carbohydrates for growth. Hyaluronic acid supported significant pneumococcal growth in an hyl-dependent manner. A phosphoenolpyruvate-dependent phosphotransferase system (PTS) and an unsaturated glucuronyl hydrolase (Ugl) encoded downstream of hyl are also essential for growth on hyaluronic acid. This genomic arrangement is present in several other organisms, suggesting conservation of the utilization mechanism between species. In vivo experiments support the hypothesis that S. pneumoniae utilizes hyaluronic acid as a carbon source during colonization. We also demonstrate that pneumococci can utilize the hyaluronic acid capsule of other bacterial species for growth, suggesting an alternative carbohydrate source for pneumococcal growth. Together, these data support a novel function for pneumococcal degradation of hyaluronic acid in vivo and provide mechanistic details of growth on this glycosaminoglycan.
Collapse
|
37
|
Dynamic distribution of the SecA and SecY translocase subunits and septal localization of the HtrA surface chaperone/protease during Streptococcus pneumoniae D39 cell division. mBio 2011; 2:mBio.00202-11. [PMID: 21990615 PMCID: PMC3188284 DOI: 10.1128/mbio.00202-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sec translocase pathway is the major route for protein transport across and into the cytoplasmic membrane of bacteria. Previous studies reported that the SecA translocase ATP-binding subunit and the cell surface HtrA protease/chaperone formed a single microdomain, termed “ExPortal,” in some species of ellipsoidal (ovococcus) Gram-positive bacteria, including Streptococcus pyogenes. To investigate the generality of microdomain formation, we determined the distribution of SecA and SecY by immunofluorescent microscopy in Streptococcus pneumoniae (pneumococcus), which is an ovococcus species evolutionarily distant from S. pyogenes. In the majority (≥75%) of exponentially growing cells, S. pneumoniae SecA (SecASpn) and SecYSpn located dynamically in cells at different stages of division. In early divisional cells, both Sec subunits concentrated at equators, which are future sites of constriction. Further along in division, SecASpn and SecYSpn remained localized at mid-cell septa. In late divisional cells, both Sec subunits were hemispherically distributed in the regions between septa and the future equators of dividing cells. In contrast, the HtrASpn homologue localized to the equators and septa of most (>90%) dividing cells, whereas the SrtASpn sortase located over the surface of cells in no discernable pattern. This dynamic pattern of Sec distribution was not perturbed by the absence of flotillin family proteins, but was largely absent in most cells in early stationary phase and in ∆cls mutants lacking cardiolipin synthase. These results do not support the existence of an ExPortal microdomain in S. pneumoniae. Instead, the localization of the pneumococcal Sec translocase depends on the stage of cell division and anionic phospholipid content. Two patterns of Sec translocase distribution, an ExPortal microdomain in certain ovococcus-shaped species like Streptococcus pyogenes and a spiral pattern in rod-shaped species like Bacillus subtilis, have been reported for Gram-positive bacteria. This study provides evidence for a third pattern of Sec localization in the ovococcus human pathogen Streptococcus pneumoniae. The SecA motor and SecY channel subunits of the Sec translocase localize dynamically to different places in the mid-cell region during the division cycle of exponentially growing, but not stationary-phase, S. pneumoniae. Unexpectedly, the S. pneumoniae HtrA (HtrASpn) protease/chaperone principally localizes to cell equators and division septa. The coincident localization of SecASpn, SecYSpn, and HtrASpn to regions of peptidoglycan (PG) biosynthesis in unstressed, growing cells suggests that the pneumococcal Sec translocase directs assembly of the PG biosynthesis apparatus to regions where it is needed during division and that HtrASpn may play a general role in quality control of proteins exported by the Sec translocase.
Collapse
|
38
|
Two DHH subfamily 1 proteins contribute to pneumococcal virulence and confer protection against pneumococcal disease. Infect Immun 2011; 79:3697-710. [PMID: 21768284 DOI: 10.1128/iai.01383-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Streptococcus pneumoniae is an important human bacterial pathogen, causing such infections as pneumonia, meningitis, septicemia, and otitis media. Current capsular polysaccharide-based conjugate vaccines protect against a fraction of the over 90 serotypes known, whereas vaccines based on conserved pneumococcal proteins are considered promising broad-range alternatives. The pneumococcal genome encodes two conserved proteins of an as yet unknown function, SP1298 and SP2205, classified as DHH (Asp-His-His) subfamily 1 proteins. Here we examined their contribution to pneumococcal pathogenesis using single and double knockout mutants in three different strains: D39, TIGR4, and BHN100. Mutants lacking both SP1298 and SP2205 were severely impaired in adherence to human epithelial Detroit 562 cells. Importantly, the attenuated phenotypes were restored upon genetic complementation of the deleted genes. Single and mixed mouse models of colonization, otitis media, pneumonia, and bacteremia showed that bacterial loads in the nasopharynx, middle ears, lungs, and blood of mice infected with the mutants were significantly reduced from those of wild-type-infected mice, with an apparent additive effect upon deletion of both genes. Minor strain-specific phenotypes were observed, i.e., deletion of SP1298 affected host-cell adherence in BHN100 only, and deletion of SP2205 significantly attenuated virulence in lungs and blood in D39 and BHN100 but not TIGR4. Finally, subcutaneous vaccination with a combination of both DHH subfamily 1 proteins conferred protection to nasopharynx, lungs, and blood of mice infected with TIGR4. We conclude that SP1298 and SP2205 play a significant role at several stages of pneumococcal infection, and importantly, these proteins are potential candidates for a multicomponent protein vaccine.
Collapse
|
39
|
Caymaris S, Bootsma HJ, Martin B, Hermans PWM, Prudhomme M, Claverys JP. The global nutritional regulator CodY is an essential protein in the human pathogen Streptococcus pneumoniae. Mol Microbiol 2011; 78:344-60. [PMID: 20979332 DOI: 10.1111/j.1365-2958.2010.07339.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CodY is a global regulator highly conserved in low-G+C Gram-positive bacteria. It plays a key role in the adaptation of Bacillus subtilis to nutritional limitation through repression of a large gene set during exponential growth and relief of repression upon starvation. In several pathogenic bacteria, CodY regulates major virulence genes. Our interest in Streptococcus pneumoniae CodY originates from our observations that the oligopeptide permease Ami was involved in repression of competence for genetic transformation. We hypothesized that peptide uptake through Ami feeds amino acid pools, which are sensed by CodY to repress competence. As our initial attempts at inactivating codY failed, we launched an in-depth analysis into the question of the essentiality of codY. We report that codY cannot be inactivated unless a complementing ectopic copy is present. We obtained genetic evidence that a recently published D39 codY knock-out contains additional mutations allowing survival of codY mutant cells. Whole genome sequencing revealed mutations in fatC, which encodes a ferric iron permease, and amiC. This combination of mutations was confirmed to allow tolerance of codY inactivation. The amiC mutation is in itself sufficient to account for the strong derepression of competence development observed in D39 codY cells.
Collapse
Affiliation(s)
- Stéphanie Caymaris
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000 Toulouse, France
| | | | | | | | | | | |
Collapse
|
40
|
The putative hydrolase YycJ (WalJ) affects the coordination of cell division with DNA replication in Bacillus subtilis and may play a conserved role in cell wall metabolism. J Bacteriol 2010; 193:896-908. [PMID: 21169496 DOI: 10.1128/jb.00594-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria must accurately replicate and segregate their genetic information to ensure the production of viable daughter cells. The high fidelity of chromosome partitioning is achieved through mechanisms that coordinate cell division with DNA replication. We report that YycJ (WalJ), a predicted member of the metallo-β-lactamase superfamily found in most low-G+C Gram-positive bacteria, contributes to the fidelity of cell division in Bacillus subtilis. B. subtilis ΔwalJ (ΔwalJ(Bsu)) mutants divide over unsegregated chromosomes more frequently than wild-type cells, and this phenotype is exacerbated when DNA replication is inhibited. Two lines of evidence suggest that WalJ(Bsu) and its ortholog in the Gram-positive pathogen Streptococcus pneumoniae, WalJ(Spn) (VicX), play a role in cell wall metabolism: (i) strains of B. subtilis and S. pneumoniae lacking walJ exhibit increased sensitivity to a narrow spectrum of cephalosporin antibiotics, and (ii) reducing the expression of a two-component system that regulates genes involved in cell wall metabolism, WalRK (YycFG), renders walJ essential for growth in B. subtilis, as observed previously with S. pneumoniae. Together, these results suggest that the enzymatic activity of WalJ directly or indirectly affects cell wall metabolism and is required for accurate coordination of cell division with DNA replication.
Collapse
|
41
|
Tsui HCT, Mukherjee D, Ray VA, Sham LT, Feig AL, Winkler ME. Identification and characterization of noncoding small RNAs in Streptococcus pneumoniae serotype 2 strain D39. J Bacteriol 2010; 192:264-79. [PMID: 19854910 PMCID: PMC2798261 DOI: 10.1128/jb.01204-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 10/12/2009] [Indexed: 11/20/2022] Open
Abstract
We report a search for small RNAs (sRNAs) in the low-GC, gram-positive human pathogen Streptococcus pneumoniae. Based on bioinformatic analyses by Livny et al. (J. Livny, A. Brencic, S. Lory, and M. K. Waldor, Nucleic Acids Res. 34:3484-3493, 2006), we tested 40 candidates by Northern blotting and confirmed the expression of nine new and one previously reported (CcnA) sRNAs in strain D39. CcnA is one of five redundant sRNAs reported by Halfmann et al. (A. Halfmann, M. Kovacs, R. Hakenbeck, and R. Bruckner, Mol. Microbiol. 66:110-126, 2007) that are positively controlled by the CiaR response regulator. We characterized 3 of these 14 sRNAs: Spd-sr17 (144 nucleotides [nt]; decreased in stationary phase), Spd-sr37 (80 nt; strongly expressed in all growth phases), and CcnA (93 nt; induced by competence stimulatory peptide). Spd-sr17 and CcnA likely fold into structures containing single-stranded regions between hairpin structures, whereas Spd-sr37 forms a base-paired structure. Primer extension mapping and ectopic expression in deletion/insertion mutants confirmed the independent expression of the three sRNAs. Microarray analyses indicated that insertion/deletion mutants in spd-sr37 and ccnA exerted strong cis-acting effects on the transcription of adjacent genes, indicating that these sRNA regions are also cotranscribed in operons. Deletion or overexpression of the three sRNAs did not cause changes in growth, certain stress responses, global transcription, or virulence. Constitutive ectopic expression of CcnA reversed some phenotypes of D39 Delta ciaR mutants, but attempts to link CcnA to -E to comC as a target were inconclusive in ciaR(+) strains. These results show that S. pneumoniae, which lacks known RNA chaperones, expresses numerous sRNAs, but three of these sRNAs do not strongly affect common phenotypes or transcription patterns.
Collapse
Affiliation(s)
- Ho-Ching Tiffany Tsui
- Department of Biology, Indiana University—Bloomington, Bloomington, Indiana 47405, Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, Michigan 48202
| | - Dhriti Mukherjee
- Department of Biology, Indiana University—Bloomington, Bloomington, Indiana 47405, Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, Michigan 48202
| | - Valerie A. Ray
- Department of Biology, Indiana University—Bloomington, Bloomington, Indiana 47405, Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, Michigan 48202
| | - Lok-To Sham
- Department of Biology, Indiana University—Bloomington, Bloomington, Indiana 47405, Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, Michigan 48202
| | - Andrew L. Feig
- Department of Biology, Indiana University—Bloomington, Bloomington, Indiana 47405, Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, Michigan 48202
| | - Malcolm E. Winkler
- Department of Biology, Indiana University—Bloomington, Bloomington, Indiana 47405, Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, Michigan 48202
| |
Collapse
|
42
|
Characterization of novel beta-galactosidase activity that contributes to glycoprotein degradation and virulence in Streptococcus pneumoniae. Infect Immun 2009; 78:348-57. [PMID: 19841081 DOI: 10.1128/iai.00721-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pneumococcus obtains its energy from the metabolism of host glycosides. Therefore, efficient degradation of host glycoproteins is integral to pneumococcal virulence. In search of novel pneumococcal glycosidases, we characterized the Streptococcus pneumoniae strain D39 protein encoded by SPD_0065 and found that this gene encodes a beta-galactosidase. The SPD_0065 recombinant protein released galactose from desialylated fetuin, which was used here as a model of glycoproteins found in vivo. A pneumococcal mutant with a mutation in SPD_0065 showed diminished beta-galactosidase activity, exhibited an extended lag period in mucin-containing defined medium, and cleaved significantly less galactose than the parental strain during growth on mucin. As pneumococcal beta-galactosidase activity had been previously attributed solely to SPD_0562 (bgaA), we evaluated the contribution of SPD_0065 and SPD_0562 to total beta-galactosidase activity. Mutation of either gene significantly reduced enzymatic activity, but beta-galactosidase activity in the double mutant, although significantly less than that in either of the single mutants, was not completely abolished. The expression of SPD_0065 in S. pneumoniae grown in mucin-containing medium or tissues harvested from infected animals was significantly upregulated compared to that in pneumococci from glucose-containing medium. The SPD_0065 mutant strain was found to be attenuated in virulence in a manner specific to the host tissue.
Collapse
|
43
|
Pyruvate formate lyase is required for pneumococcal fermentative metabolism and virulence. Infect Immun 2009; 77:5418-27. [PMID: 19752030 DOI: 10.1128/iai.00178-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the in vivo physiology and metabolism of Streptococcus pneumoniae is limited, even though pneumococci rely on efficient acquisition and metabolism of the host nutrients for growth and survival. Because the nutrient-limited, hypoxic host tissues favor mixed-acid fermentation, we studied the role of the pneumococcal pyruvate formate lyase (PFL), a key enzyme in mixed-acid fermentation, which is activated posttranslationally by PFL-activating enzyme (PFL-AE). Mutations were introduced to two putative pfl genes, SPD0235 and SPD0420, and two putative pflA genes, SPD0229 and SPD1774. End-product analysis showed that there was no formate, the main end product of the reaction catalyzed by PFL, produced by mutants defective in SPD0420 and SPD1774, indicating that SPD0420 codes for PFL and SPD1774 for putative PFL-AE. Expression of SPD0420 was elevated in galactose-containing medium in anaerobiosis compared to growth in glucose, and the mutation of SPD0420 resulted in the upregulation of fba and pyk, encoding, respectively, fructose 1,6-bisphosphate aldolase and pyruvate kinase, under the same conditions. In addition, an altered fatty acid composition was detected in SPD0420 and SPD1774 mutants. Mice infected intranasally with the SPD0420 and SPD1774 mutants survived significantly longer than the wild type-infected cohort, and bacteremia developed later in the mutant cohort than in the wild type-infected group. Furthermore, the numbers of CFU of the SPD0420 mutant were lower in the nasopharynx and the lungs after intranasal infection, and fewer numbers of mutant CFU than of wild-type CFU were recovered from blood specimens after intravenous infection. The results demonstrate that there is a direct link between pneumococcal fermentative metabolism and virulence.
Collapse
|
44
|
Turlan C, Prudhomme M, Fichant G, Martin B, Gutierrez C. SpxA1, a novel transcriptional regulator involved in X-state (competence) development in Streptococcus pneumoniae. Mol Microbiol 2009; 73:492-506. [PMID: 19627499 DOI: 10.1111/j.1365-2958.2009.06789.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae is a naturally transformable human pathogen. Genome and phylogenetic analyses uncovered two Spx-like global transcriptional regulators, SpxA1 and SpxA2, encoded by S. pneumoniae. spxA1 and spxA2 are not essential, but their simultaneous inactivation is lethal. SpxA1 represses transcription of the early competence operon comCDE and thereby negatively regulates the initiation of the X-state (competence). The molecular basis of this repression could be similar to that of SpxA of Bacillus subtilis, involving a specific interaction with the alpha subunit of RNA polymerase. S. pneumoniae lacks an SOS-like stress response and the X-state is proposed to be a general stress response mechanism in this species. In light of this, SpxA1-dependent repression could act to sense environmental or metabolic stresses and prevent launching of the X-state in the absence of stress.
Collapse
Affiliation(s)
- Catherine Turlan
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaire, F31000 Toulouse, France
| | | | | | | | | |
Collapse
|
45
|
Abstract
DivIB, also known as FtsQ in gram-negative organisms, is a division protein that is conserved in most eubacteria. DivIB is localized at the division site and forms a complex with two other division proteins, FtsL and DivIC/FtsB. The precise function of these three bitopic membrane proteins, which are central to the division process, remains unknown. We report here the characterization of a divIB deletion mutant of Streptococcus pneumoniae, which is a coccus that divides with parallel planes. Unlike its homologue FtsQ in Escherichia coli, pneumococcal DivIB is not required for growth in rich medium, but the Delta divIB mutant forms chains of diplococci and a small fraction of enlarged cells with defective septa. However, the deletion mutant does not grow in a chemically defined medium. In the absence of DivIB and protein synthesis, the partner FtsL is rapidly degraded, whereas other division proteins are not affected, pointing to a role of DivIB in stabilizing FtsL. This is further supported by the finding that an additional copy of ftsL restores growth of the Delta divIB mutant in defined medium. Functional mapping of the three distinct alpha, beta, and gamma domains of the extracellular region of DivIB revealed that a complete beta domain is required to fully rescue the deletion mutant. DivIB with a truncated beta domain reverts only the chaining phenotype, indicating that DivIB has distinct roles early and late in the division process. Most importantly, the deletion of divIB increases the susceptibility to beta-lactams, more evidently in a resistant strain, suggesting a function in cell wall synthesis.
Collapse
|
46
|
Guiral S, Hénard V, Granadel C, Martin B, Claverys JP. Inhibition of competence development in Streptococcus pneumoniae by increased basal-level expression of the ComDE two-component regulatory system. MICROBIOLOGY-SGM 2006; 152:323-331. [PMID: 16436420 DOI: 10.1099/mic.0.28425-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural competence for genetic transformation in Streptococcus pneumoniae is controlled by the ComCDE signal-transduction pathway. Together, ComD, a membrane histidine kinase, and ComE, its cognate response regulator, constitute a typical two-component regulatory system involved in sensing the comC-encoded competence-stimulating peptide (CSP). The comCDE operon is strongly upregulated when CSP reaches a critical threshold, probably to coordinate competence induction throughout the population. During a study of the early regulation of the comCDE operon, a mutation which resulted in increased beta-galactosidase production from a comC : : lacZ fusion was isolated. This mutation, which was characterized as a G-->T change in the transcription terminator of the tRNA(Arg) located immediately upstream of comCDE, is suggested to destabilize the terminator and to allow transcriptional readthrough of comCDE. Here, it is shown that, quite unexpectedly, the mutation confers reduced transformability. A series of experiments undertaken with the aim of understanding this surprising phenotype is described. Evidence is presented that increased basal-level expression of comDE impedes both spontaneous and CSP-induced competence in S. pneumoniae. There is a discussion of how an increased concentration of ComD and/or ComE could affect competence development.
Collapse
Affiliation(s)
- Sébastien Guiral
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Vincent Hénard
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Chantal Granadel
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Bernard Martin
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Jean-Pierre Claverys
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| |
Collapse
|
47
|
Finn A, Jenkinson HF. The pneumococcus: ‘old man's friend’ and children's foe. Microbiology (Reading) 2006; 152:281-283. [PMID: 16436415 DOI: 10.1099/mic.0.28713-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Adam Finn
- Institute of Child Life and Health, Department of Clinical Sciences at South Bristol, University of Bristol, Bristol BS1 2LY, UK
| | - Howard F Jenkinson
- Department of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, UK
| |
Collapse
|