1
|
Yu S, Ma Q, Huang J, Liu Y, Li J, Wang Y, Gong T, Zhang Q, Zou J, Li Y. SMU_1361c regulates the oxidative stress response of Streptococcus mutans. Appl Environ Microbiol 2024; 90:e0187123. [PMID: 38299814 PMCID: PMC10880606 DOI: 10.1128/aem.01871-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Dental caries is the most common chronic infectious disease around the world and disproportionately affects the marginalized socioeconomic group. Streptococcus mutans, considered a primary etiological agent of caries, depends on the coordinated physiological response to tolerate the oxidative stress generated by commensal species within dental plaque, which is a critical aspect of its pathogenicity. Here, we identified and characterized a novel tetracycline repressor family regulator, SMU_1361c, which appears to be acquired by the bacteria via horizontal gene transfer. Surprisingly, smu_1361c functions as a negative transcriptional regulator to regulate gene expression outside its operon and is involved in the oxidative stress response of S. mutans. The smu_1361c overexpression strain UA159/pDL278-1361c was more susceptible to oxidative stress and less competitive against hydrogen peroxide generated by commensal species Streptococcus gordonii and Streptococcus sanguinis. Transcriptomics analysis revealed that smu_1361c overexpression resulted in the significant downregulation of 22 genes, mainly belonging to three gene clusters responsible for the oxidative stress response. The conversed DNA binding motif of SMU_1361c was determined by electrophoretic mobility shift and DNase I footprinting assay with purified SMU_1361c protein; therefore, smu_1361c is directly involved in gene transcription related to the oxidative stress response. Crucially, our finding provides a new understanding of how S. mutans deals with the oxidative stress that is required for pathogenesis and will facilitate the development of new and improved therapeutic approaches for dental caries.IMPORTANCEStreptococcus mutans is the major organism associated with the development of dental caries, which globally is the most common chronic disease. To persist and survive in biofilms, S. mutans must compete with commensal species that occupy the same ecological niche. Here, we uncover a novel molecular mechanism of how tetracycline repressor family regulator smu_1361c is involved in the oxidative stress response through transcriptomics analysis, electrophoretic mobility shift assay, and DNase I footprinting assay. Furthermore, we demonstrated that smu_1361c mediates S. mutans sensitivity to oxidative stress and competitiveness with commensal streptococci. Therefore, this study has revealed a previously unknown regulation between smu_1361c and genes outside its operon and demonstrated the importance of smu_1361c in the oxidative stress response and the fitness of S. mutans within the plaque biofilms, which can be exploited as a new therapy to modulate ecological homeostasis and prevent dental caries.
Collapse
Affiliation(s)
- Shuxing Yu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Naka S, Matsuoka D, Goto K, Misaki T, Nagasawa Y, Ito S, Nomura R, Nakano K, Matsumoto-Nakano M. Cnm of Streptococcus mutans is important for cell surface structure and membrane permeability. Front Cell Infect Microbiol 2022; 12:994014. [PMID: 36176579 PMCID: PMC9513430 DOI: 10.3389/fcimb.2022.994014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Streptococcus mutans, a Gram-positive facultative anaerobic bacterium, is a major pathogen of dental caries. The protein Cnm of S. mutans is involved in collagen binding, but its other biological functions are unknown. In this study, a Cnm-deficient isogenic mutant and a complementation strain were generated from a Cnm-positive S. mutans strain to help determine the properties of Cnm. Initially, comparison of the cell surface structure was performed by electron microscopy, which demonstrated that Cnm appears to be localized on the cell surface and associated with a protruding cell surface structure. Deep RNA sequencing of the strains revealed that the defect in Cnm caused upregulated expression of many genes related to ABC transporters and cell-surface proteins, while a few genes were downregulated. The amount of biofilm formed by the Cnm-defective strain increased compared with the parental and complemented strains, but the biofilm structure was thinner because of elevated expression of genes encoding glucan synthesis enzymes, leading to increased production of extracellular polysaccharides. Particular antibiotics, including bacitracin and chloramphenicol, had a lower minimum inhibitory concentration for the Cnm-defective strain than particular antibiotics, including bacitracin and chloramphenicol, compared with the parental and complemented strains. Our results suggest that S. mutans Cnm is located on the cell surface, gives rise to the observed protruding cell surface, and is associated with several biological properties related to membrane permeability.
Collapse
Affiliation(s)
- Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daiki Matsuoka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kana Goto
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
- Department of Nursing, Faculty of Nursing, Seirei Christopher University, Hamamatsu, Japan
| | - Yasuyuki Nagasawa
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Seigo Ito
- Department of Internal Medicine, Japan Self-Defense Iruma Hospital, Iruma, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- *Correspondence: Michiyo Matsumoto-Nakano,
| |
Collapse
|
3
|
Hosoki S, Hattori Y, Saito S, Takegami M, Tonomura S, Yamamoto Y, Ikeda S, Hosomi N, Oishi N, Morita Y, Miyamoto Y, Nomura R, Nakano K, Ihara M. Risk Assessment of Cnm-Positive Streptococcus mutans in Stroke Survivors (RAMESSES): Protocol for a Multicenter Prospective Cohort Study. Front Neurol 2022; 13:816147. [PMID: 35645961 PMCID: PMC9133813 DOI: 10.3389/fneur.2022.816147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The role of commensal microbiota in systemic diseases, including brain diseases, has attracted increasing attention. Oral infectious diseases, such as dental caries and periodontitis, are also involved in cerebrovascular diseases and cognitive impairment. Cerebral microbleeds (CMBs) and intracerebral hemorrhage due to small vessel disease (SVD), are presumably associated with a high risk of vascular cognitive impairment and stroke. We previously reported that Streptococcus mutans (S. mutans, the main pathogen of dental caries), harboring the cnm gene that encodes the collagen-binding protein Cnm, is associated with the development of hypertensive intracerebral hemorrhage and aggravation of CMBs. We also proposed a mechanism by which the circulating Cnm-expressing S. mutans causes intracerebral hemorrhage or CMBs; it binds to denuded basement membranes mainly composed of collagen IV through damaged tight junctions or it directly invades endothelial cells, resulting in blood-brain barrier injury. In November 2018, we initiated a multicenter, prospective cohort study (RAMESSES: Risk Assessment of Cnm-positive S. mutans in Stroke Survivors; UMIN Clinical Trials Registry: UMIN000045559) to explore the longitudinal association between Cnm-positive S. mutans and CMBs with comprehensive dental findings, which should determine the effect of Cnm-positive S. mutans in the oral cavity on the risk of CMB development and cognitive decline. Methods Fifteen domestic institutes will be enlisted to enroll 230 patients who have at least one CMB in the deep brain area and develop a stroke within the past year. The prevalence of Cnm-positive S. mutans based on oral specimens and dental hygiene will be examined. The primary outcome is the number of newly developed deep CMBs. The secondary outcomes include the new development of lobar, subtentorial, or any type of CMBs; symptomatic intracerebral hemorrhage or ischemic stroke; changes in cognitive function or frailty; major bleeding; all-cause mortality; and antibody titers against periodontal pathogens. The observation period will be 2 years. Discussion The 2-year longitudinal prospective cohort study is expected to establish the role of Cnm-positive S. mutans in SVD including CMBs and intracerebral hemorrhage from the perspective of the “brain-oral axis” and provide guidance for novel prophylactic strategies against Cnm-positive S. mutans-induced SVD.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yorito Hattori
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
- *Correspondence: Yorito Hattori
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Misa Takegami
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shuichi Tonomura
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yumi Yamamoto
- Department of Molecular Innovation in Lipidemiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shuhei Ikeda
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Naohisa Hosomi
- Department of Neurology, Chikamori Hospital, Kochi, Japan
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiaki Morita
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshihiro Miyamoto
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
- Masafumi Ihara
| |
Collapse
|
4
|
Nomura R, Otsugu M, Hamada M, Matayoshi S, Teramoto N, Iwashita N, Naka S, Matsumoto-Nakano M, Nakano K. Potential involvement of Streptococcus mutans possessing collagen binding protein Cnm in infective endocarditis. Sci Rep 2020; 10:19118. [PMID: 33154489 PMCID: PMC7645802 DOI: 10.1038/s41598-020-75933-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Streptococcus mutans, a significant contributor to dental caries, is occasionally isolated from the blood of patients with infective endocarditis. We previously showed that S. mutans strains expressing collagen-binding protein (Cnm) are present in the oral cavity of approximately 10-20% of humans and that they can effectively invade human umbilical vein endothelial cells (HUVECs). Here, we investigated the potential molecular mechanisms of HUVEC invasion by Cnm-positive S. mutans. The ability of Cnm-positive S. mutans to invade HUVECs was significantly increased by the presence of serum, purified type IV collagen, and fibrinogen (p < 0.001). Microarray analyses of HUVECs infected by Cnm-positive or -negative S. mutans strains identified several transcripts that were differentially upregulated during invasion, including those encoding the small G protein regulatory proteins ARHGEF38 and ARHGAP9. Upregulation of these proteins occurred during invasion only in the presence of serum. Knockdown of ARHGEF38 strongly reduced HUVEC invasion by Cnm-positive S. mutans. In a rat model of infective endocarditis, cardiac endothelial cell damage was more prominent following infection with a Cnm-positive strain compared with a Cnm-negative strain. These results suggest that the type IV collagen-Cnm-ARHGEF38 pathway may play a crucial role in the pathogenesis of infective endocarditis.
Collapse
Affiliation(s)
- Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Masatoshi Otsugu
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masakazu Hamada
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Saaya Matayoshi
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | - Naoki Iwashita
- Department of Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Willers AE, da Silva BTF, Siriani LK, Cesar PF, Matos AB. Effect of erosive and abrasive challenges on the glaze layer applied to ceramic materials. J ESTHET RESTOR DENT 2020; 32:815-822. [PMID: 32827220 DOI: 10.1111/jerd.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/23/2020] [Accepted: 07/30/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aims to evaluate the effect of erosive, abrasive, and erosive/abrasive challenges on the glaze layer of ceramic materials. METHODS Ninety-five samples of monolithic zirconia (MZ) (LuxaCam Zircon HT-Plus) and lithium disilicate (LD) (IPS e.max CAD) were divided according to the response variables: Surface roughness and surface loss (n = 10), evaluated with optical profilometry; surface topography, with scanning electron microscopy SEM (n = 3); and biofilm deposition, with microbiological assay (n = 5). The evaluations were performed in three different time evaluations: (a) Sintered, (b) Glaze, and (c) Challenge (Erosion, Abrasion, and Erosion/Abrasion). Erosion consisted in immersing specimens in HCl solution, abrasion was performed with brushing machine, and erosion/abrasion consisted of a combination of the two previous protocols. Data were analyzed with parametric tests (P < 0.05). RESULTS MZ glaze layer presented significantly higher surface roughness (P = 0.00), surface loss (P = 0.03), and biofilm deposition (P = 0.00) than LD. Abrasion and erosion/abrasion showed similar outcomes, generating significantly higher surface roughness (P = 0.00), surface loss (P = 0.00), and biofilm deposition (P = 0.01) than erosion. CONCLUSIONS Glaze layer properties were altered by the challenges, with abrasion and erosion/abrasion generating higher surface roughness, surface loss, and biofilm deposition than erosion. A significant correlation was found between the surface roughness and biofilm deposition. CLINICAL SIGNIFICANCE The glaze layer is susceptible to challenges, especially to abrasion and erosion/abrasion, which generated greater surface roughness and surface loss than erosion. The greater surface roughness lead to a greater biofilm deposition on the glaze layer.
Collapse
Affiliation(s)
| | | | | | - Paulo Francisco Cesar
- Department of Biomaterials and Oral Biology, University of São Paulo, São Paulo, Brazil
| | - Adriana Bona Matos
- Department of Restorative Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Momeni SS, Beno SM, Baker JL, Edlund A, Ghazal T, Childers NK, Wu H. Caries-Associated Biosynthetic Gene Clusters in Streptococcus mutans. J Dent Res 2020; 99:969-976. [PMID: 32298190 DOI: 10.1177/0022034520914519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Early childhood caries (ECC) is a chronic disease affecting the oral health of children globally. This disease is multifactorial, but a primary factor is cariogenic microorganisms such as Streptococcus mutans. Biosynthetic gene clusters (BGCs) encode small molecules with diverse biological activities that influence the development of many microbial diseases, including caries. The purpose of this study was to identify BGCs in S. mutans from a high-caries risk study population using whole-genome sequencing and assess their association with ECC. Forty representative S. mutans isolates were selected for genome sequencing from a large-scale epidemiological study of oral microbiology and dental caries in children from a localized Alabama population. A total of 252 BGCs were identified using the antiSMASH BGC-mining tool. Three types of BGCs identified herein-butyrolactone-like, ladderane-like, and butyrolactone-ladderane-like hybrid (BL-BGC)-have not been reported in S. mutans. These 3 BGCs were cross-referenced against public transcriptomics data, and were found to be highly expressed in caries subjects. Furthermore, based on a polymerase chain reaction screening for core BL genes, 93% of children with BL-BGC had ECC. The role of BL-BGC was further investigated by examining cariogenic traits and strain fitness in a deletion mutant using in vitro biofilm models. Deletion of the BL-BGC significantly increased biofilm pH as compared to the parent strain, while other virulence and fitness properties remained unchanged. Intriguingly, BL-BGC containing strains produced more acid, a key cariogenic feature, and less biofilm than the model cariogenic strain S. mutans UA159, suggesting the importance of this BL-BGC in S. mutans-mediated cariogenesity. The structure of any BL-BGC derived metabolites, their functions, and mechanistic connection with acid production remain to be elucidated. Nevertheless, this study is the first to report the clinical significance of a BL-BGC in S. mutans. This study also highlights pangenomic diversity, which is likely to affect phenotype and virulence.
Collapse
Affiliation(s)
- S S Momeni
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S M Beno
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J L Baker
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - A Edlund
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - T Ghazal
- Department of Preventive and Community Dentistry, University of Iowa, Iowa City, IA, USA
| | - N K Childers
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - H Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Turner ME, Huynh K, Carney OV, Gross D, Carroll RK, Ahn SJ, Rice KC. Genomic instability of TnSMU2 contributes to Streptococcus mutans biofilm development and competence in a cidB mutant. Microbiologyopen 2019; 8:e934. [PMID: 31599128 PMCID: PMC6925190 DOI: 10.1002/mbo3.934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Streptococcus mutans is a key pathogenic bacterium in the oral cavity and a primary contributor to dental caries. The S. mutans Cid/Lrg system likely contributes to tolerating stresses encountered in this environment as cid and/or lrg mutants exhibit altered oxidative stress sensitivity, genetic competence, and biofilm phenotypes. It was recently noted that the cidB mutant had two stable colony morphologies: a “rough” phenotype (similar to wild type) and a “smooth” phenotype. In our previously published work, the cidB rough mutant exhibited increased sensitivity to oxidative stress, and RNAseq identified widespread transcriptomic changes in central carbon metabolism and oxidative stress response genes. In this current report, we conducted Illumina‐based genome resequencing of wild type, cidB rough, and cidB smooth mutants and compared their resistance to oxidative and acid stress, biofilm formation, and competence phenotypes. Both cidB mutants exhibited comparable aerobic growth inhibition on agar plates, during planktonic growth, and in the presence of 1 mM hydrogen peroxide. The cidB smooth mutant displayed a significant competence defect in BHI, which was rescuable by synthetic CSP. Both cidB mutants also displayed reduced XIP‐mediated competence, although this reduction was more pronounced in the cidB smooth mutant. Anaerobic biofilms of the cidB smooth mutant displayed increased propidium iodide staining, but corresponding biofilm CFU data suggest this phenotype is due to cell damage and not increased cell death. The cidB rough anaerobic biofilms showed altered structure relative to wild type (reduced biomass and average thickness) which correlated with decreased CFU counts. Sequencing data revealed that the cidB smooth mutant has a unique “loss of read coverage” of ~78 kb of DNA, corresponding to the genomic island TnSMU2 and genes flanking its 3′ end. It is therefore likely that the unique biofilm and competence phenotypes of the cidB smooth mutant are related to its genomic changes in this region.
Collapse
Affiliation(s)
- Matthew E Turner
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Khanh Huynh
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - O'neshia V Carney
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Dennis Gross
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Ricomini Filho AP, Khan R, Åmdal HA, Petersen FC. Conserved Pheromone Production, Response and Degradation by Streptococcus mutans. Front Microbiol 2019; 10:2140. [PMID: 31572344 PMCID: PMC6753979 DOI: 10.3389/fmicb.2019.02140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/30/2019] [Indexed: 01/27/2023] Open
Abstract
Streptococcus mutans, a bacterium with high cariogenic potential, coordinates competence for natural transformation and bacteriocin production via the XIP and CSP pheromones. CSP is effective in inducing bacteriocin responses but not competence in chemically defined media (CDM). This is in contrast to XIP, which is a strong inducer of competence in CDM but can also stimulate bacteriocin genes as a late response. Interconnections between the pathways activated by the two pheromones have been characterized in certain detail in S. mutans UA159, but it is mostly unknown whether such findings are representative for the species. In this study, we used bioassays based on luciferase reporters for the bacteriocin gene cipB and the alternative sigma factor sigX to investigate various S. mutans isolates for production and response to CSP and XIP pheromones in CDM. Similar to S. mutans UA159, endogenous CSP was undetectable in the culture supernatants of all tested strains. During optimization of the bioassay using the cipB reporter, we discovered that the activity of exogenous CSP used as a standard was reduced over time during S. mutans growth. Using a FRET-CSP reporter peptide, we found that S. mutans UA159 was able to degrade CSP, and that such activity was not significantly different in isogenic mutants with deletion of the protease gene htrA or the competence genes sigX, oppD, and comR. CSP cleavage was also detected in all the wild type strains, indicating that this is a conserved feature in S. mutans. For the XIP pheromone, endogenous production was observed in the supernatants of all 34 tested strains at peak concentrations in culture supernatants that varied between 200 and 26000 nM. Transformation in the presence of exogenous XIP was detected in all but one of the isolates. The efficiency of transformation varied, however, among the different strains, and for those with the highest transformation rates, endogenous XIP peak concentrations in the supernatants were above 2000 nM XIP. We conclude that XIP production and inducing effect on transformation, as well as the ability to degrade CSP, are conserved functions among different S. mutans isolates. Understanding the functionality and conservation of pheromone systems in S. mutans may lead to novel strategies to prevent or treat unbalances in oral microbiomes that may favor diseases.
Collapse
Affiliation(s)
| | - Rabia Khan
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Heidi Aarø Åmdal
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Fernanda C. Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Bedoya-Correa CM, Rincón Rodríguez RJ, Parada-Sanchez MT. Genomic and phenotypic diversity of Streptococcus mutans. J Oral Biosci 2019; 61:22-31. [DOI: 10.1016/j.job.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 02/03/2023]
|
10
|
Genetic diversity of Streptococcus mutans serotype c isolated from white spot and cavitated caries lesions from schoolchildren. Arch Oral Biol 2019; 100:33-41. [PMID: 30776704 DOI: 10.1016/j.archoralbio.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To determine the genetic diversity of Streptococcus mutans (S. mutans) serotype c isolated from white spot and cavitated caries lesions of schoolchildren. METHODS S. mutans isolates were obtained and identify by Polymerase Chain Reaction (PCR) from 28 schoolchildren. A total of 92 S. mutans isolates, identified as serotype c by PCR, were analyzed by pulsed field gel electrophoresis after digestion of genomic DNA with SmaI enzyme. 62 isolates were obtained from white spot and cavitated caries lesions of schoolchildren that presented both lesions simultaneously and 30 isolates were from saliva and biofilm samples of schoolchildren without dental caries. Cluster analyses were performed using the Dice coefficient of the BioNumerics software version 6.0. RESULTS It was possible to determine the serotype in 190 isolates out of 255 isolates identified as S. mutans. Serotype c was the most frequent (n = 139), followed by serotype f (n = 31) and serotype e (n = 20). After analyzing the dendograms of the 92 serotype c isolates, this study identified three strains present in both types of lesions, two strains specific to the type of lesion: one strain from the white spot lesion and one strain from the cavitated caries lesion, and five strains specific to children with caries versus four strains for children without caries. CONCLUSION S. mutans serotype c genetic variability is similar in terms of the number of strains present according to the caries status and type of lesion.
Collapse
|
11
|
Cevallos González FM, Dos Santos Araújo EM, Lorenzetti Simionato MR, Kfouri Siriani L, Armas Vega ADC, Studart Medeiros I, Bona Matos A. Effects of theobromine addition on chemical and mechanical properties of a conventional glass ionomer cement. Prog Biomater 2019; 8:23-29. [PMID: 30725401 PMCID: PMC6424986 DOI: 10.1007/s40204-019-0107-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/12/2019] [Indexed: 12/13/2022] Open
Abstract
In vitro effect of 1% theobromine addition on the physical and chemical properties of conventional glass ionomer (GIC) cement was investigated. Conventional GIC (GIC-C) and 1% theobromine added to GIC (GIC-THEO) specimens were compared regarding the microhardness (n = 10), sorption (n = 5), solubility (n = 5), color change (n = 10), fluoride release in saliva (n = 10) and the amount of biofilm deposition (n = 20). Compared against conventional GIC, adding 1% theobromine increased microhardness (p < 0.05), while its sorption, solubility, color and fluoride release to saliva (p > 0.05) remained unchanged. On the other hand, Streptococcus mutans biofilm amount deposited on its surface decreased statistically when theobromine was added to GIC (p < 0.05). Based on the results, it could be concluded that 1% theobromine addition to GIC can be a good strategy as it keeps some of its properties and improves microhardness and biofilm deposits strengthening its role in the preventive approach of dentistry.
Collapse
Affiliation(s)
- Fabricio Marcelo Cevallos González
- Inter Institutional PhD Program at School of Dentistry of University of São Paulo (USP), São Paulo, SP, Brazil
- School of Dentistry, Central University of Ecuador, Quito, Ecuador
| | | | | | - Luciana Kfouri Siriani
- Department of Operative Dentistry, School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | | | - Igor Studart Medeiros
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Adriana Bona Matos
- Department of Operative Dentistry, School of Dentistry, University of São Paulo (USP), Av. Prof. Lineu Prestes 2227, Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil.
| |
Collapse
|
12
|
Senpuku H, Yonezawa H, Yoneda S, Suzuki I, Nagasawa R, Narisawa N. SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans. Mol Oral Microbiol 2017; 33:47-58. [PMID: 28845576 DOI: 10.1111/omi.12196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 11/30/2022]
Abstract
The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence-stimulating peptide. Eight competence-stimulating peptide-dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran-dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild-type. GbpC is known to be involved in the dextran-dependent aggregation of S. mutans. An SMU.940-gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran-dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran-dependent aggregation and biofilm formation.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hideo Yonezawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Saori Yoneda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Itaru Suzuki
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Pediatric Dentistry, Nihon University at Matsudo, Chiba, Japan
| | - Ryo Nagasawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Graduate School of Science and Engineering, Hosei University, Shinjuku-ku, Tokyo, Japan
| | - Naoki Narisawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
13
|
Exploring the Genomic Diversity and Cariogenic Differences of Streptococcus mutans Strains Through Pan-Genome and Comparative Genome Analysis. Curr Microbiol 2017; 74:1200-1209. [PMID: 28717847 DOI: 10.1007/s00284-017-1305-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Pan-genome refers to the sum of genes that can be found in a given bacterial species, including the core-genome and the dispensable genome. In this study, the genomes from 183 Streptococcus mutans (S. mutans) isolates were analyzed from the pan-genome perspective. This analysis revealed that S. mutans has an "open" pan-genome, implying that there are plenty of new genes to be found as more genomes are sequenced. Additionally, S. mutans has a limited core-genome, which is composed of genes related to vital activities within the bacterium, such as metabolism and hereditary information storage or processing, occupying 35.6 and 26.6% of the core genes, respectively. We estimate the theoretical core-genome size to be about 1083 genes, which are fewer than other Streptococcus species. In addition, core genes suffer larger selection pressures in comparison to those that are less widely distributed. Not surprisingly, the distribution of putative virulence genes in S. mutans strains does not correlate with caries status, indicating that other factors are also responsible for cariogenesis. These results contribute to a more understanding of the evolutionary characteristics and dynamic changes within the genome components of the species. This also helps to form a new theoretical foundation for preventing dental caries. Furthermore, this study sets an example for analyzing large genomic datasets of pathogens from the pan-genome perspective.
Collapse
|
14
|
Pérez-Montarelo D, Viedma E, Murcia M, Muñoz-Gallego I, Larrosa N, Brañas P, Fernández-Hidalgo N, Gavaldà J, Almirante B, Chaves F. Pathogenic Characteristics of Staphylococcus aureus Endovascular Infection Isolates from Different Clonal Complexes. Front Microbiol 2017; 8:917. [PMID: 28579985 PMCID: PMC5437158 DOI: 10.3389/fmicb.2017.00917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/04/2017] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is a major cause of bacteremia and, even with appropriate clinical management, causes high morbidity, and mortality due to its involvement in endovascular complications and metastatic infections. Through different pathogenic in vivo and in vitro models we investigated the behavior of S. aureus most relevant clonal complexes (CCs) causing endovascular complications. We analyzed 14 S. aureus strains representing CC5, CC8, CC15, CC30, and CC45 that caused endovascular complications, including methicillin susceptible and resistant isolates and strains with different functionality of the agr global regulator. Their adherence to collagen, interaction with the endothelium, resistance to immune attack, capacity to form biofilm and virulence in the Galleria mellonella model were analyzed. CC30 and CC45 showed greater adhesion to collagen and CC8 showed a trend towards higher rate of intracellular persistence in endothelial cells. All CCs exhibited similar tolerance to neutrophil antimicrobial peptide hNP-1 and were capable of forming biofilms under static conditions. The virulence assay in the G. mellonella model demonstrated that CC15 and CC30 were the most and least virulent, respectively. The analysis of the genomic sequences of the most relevant virulence genes identified some CC15 specific gene patterns (absence of enterotoxins and sak gene) and variants (mainly in leucocidins and proteases), but did not reveal any gene or variant that could be responsible for the increased virulence detected for CC15 strains. Even though all the CCs were capable of causing endovascular complications, our results showed that different CCs are likely to produce these complications through different mechanisms which, if confirmed in more sophisticated models, would indicate the need to more specific management and therapeutic approaches.
Collapse
Affiliation(s)
- Dafne Pérez-Montarelo
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Esther Viedma
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Mercedes Murcia
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Irene Muñoz-Gallego
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Nieves Larrosa
- Department of Microbiology, Hospital Universitari Vall d'hebron, Universitat Autónoma de BarcelonaBarcelona, Spain
| | - Patricia Brañas
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Nuria Fernández-Hidalgo
- Department of Infectious Diseases, Hospital Universitari Vall d'hebron, Universitat Autónoma de BarcelonaBarcelona, Spain
| | - Joan Gavaldà
- Department of Infectious Diseases, Hospital Universitari Vall d'hebron, Universitat Autónoma de BarcelonaBarcelona, Spain
| | - Benito Almirante
- Department of Infectious Diseases, Hospital Universitari Vall d'hebron, Universitat Autónoma de BarcelonaBarcelona, Spain
| | - Fernando Chaves
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| |
Collapse
|
15
|
Rice KC, Turner ME, Carney OV, Gu T, Ahn SJ. Modification of the Streptococcus mutans transcriptome by LrgAB and environmental stressors. Microb Genom 2017; 3:e000104. [PMID: 28348880 PMCID: PMC5361627 DOI: 10.1099/mgen.0.000104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
The Streptococcus mutans Cid/Lrg system is central to the physiology of this cariogenic organism, affecting oxidative stress resistance, biofilm formation and competence. Previous transcriptome analyses of lytS (responsible for the regulation of lrgAB expression) and cidB mutants have revealed pleiotropic effects on carbohydrate metabolism and stress resistance genes. In this study, it was found that an lrgAB mutant, previously shown to have diminished aerobic and oxidative stress growth, was also much more growth impaired in the presence of heat and vancomycin stresses, relative to wild-type, lrgA and lrgB mutants. To obtain a more holistic picture of LrgAB and its involvement in stress resistance, RNA sequencing and bioinformatics analyses were used to assess the transcriptional response of wild-type and isogenic lrgAB mutants under anaerobic (control) and stress-inducing culture conditions (aerobic, heat and vancomycin). Hierarchical clustering and principal components analyses of all differentially expressed genes revealed that the most distinct gene expression profiles between S. mutans UA159 and lrgAB mutant occurred during aerobic and high-temperature growth. Similar to previous studies of a cidB mutant, lrgAB stress transcriptomes were characterized by a variety of gene expression changes related to genomic islands, CRISPR-C as systems, ABC transporters, competence, bacteriocins, glucosyltransferases, protein translation, tricarboxylic acid cycle, carbohydrate metabolism/storage and transport. Notably, expression of lrgAB was upregulated in the wild-type strain under all three stress conditions. Collectively, these results demonstrate that mutation of lrgAB alters the transcriptional response to stress, and further support the idea that the Cid/Lrg system acts to promote cell homeostasis in the face of environmental stress.
Collapse
Affiliation(s)
- Kelly C Rice
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Matthew E Turner
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - O'neshia V Carney
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,†Present address: Department of Health Outcomes and Policy, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tongjun Gu
- 2Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Sang-Joon Ahn
- 3Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
16
|
González-Ittig RE, Carletto-Körber FPM, Vera NS, Jiménez MG, Cornejo LS. Population genetic structure and demographic history ofStreptococcus mutans(Bacteria: Streptococcaceae). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Raúl E. González-Ittig
- Instituto de Diversidad y Ecología Animal (IDEA); CONICET-UNC and Facultad de Ciencias Exactas Físicas y Naturales; Físicas y Naturales; Universidad Nacional de Córdoba; Av. Vélez Sarsfield 299 5000 Córdoba Argentina
| | - Fabiana P. M. Carletto-Körber
- Cátedra de Integral Niños y Adolescentes; Área Odontopediatría ‘A’; Facultad de Odontología; Universidad Nacional de Córdoba; Haya de La Torre s/n; Ciudad Universitaria; 5000 Córdoba Argentina
| | - Noelia S. Vera
- Instituto de Diversidad y Ecología Animal (IDEA); CONICET-UNC and Facultad de Ciencias Exactas Físicas y Naturales; Físicas y Naturales; Universidad Nacional de Córdoba; Av. Vélez Sarsfield 299 5000 Córdoba Argentina
| | - María G. Jiménez
- Hospital Universitario de Maternidad y Neonatología; Universidad Nacional de Córdoba; Rodríguez Peña 285 5000 Córdoba Argentina
| | - Lila S. Cornejo
- Cátedra de Biología Celular; Facultad de Odontología; Universidad Nacional de Córdoba; Haya de La Torre s/n; Ciudad Universitaria; 5000 Córdoba Argentina
| |
Collapse
|
17
|
De A, Pasquantonio G, Cerroni L, Petrelli D, Lauro D, Longhi M, Vitali LA. Genotypic and phenotypic heterogeneity in Streptococcus mutans isolated from diabetic patients in Rome, Italy. SPRINGERPLUS 2016; 5:1794. [PMID: 27795936 PMCID: PMC5063833 DOI: 10.1186/s40064-016-3470-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 10/04/2016] [Indexed: 02/08/2023]
Abstract
Our study focuses on the antimicrobial susceptibility, genotypic and phenotypic heterogeneity, and serotype classification of the Streptococcus mutans isolated from type II diabetic patients (n = 25; age 42-68). Eighty-two percent of isolates were classified as serotype c. No serotype k was present. Macrorestriction analysis of genomic DNA of the isolates exhibited a clonal diversity that paralleled the phenotypic heterogeneity, which was also assessed in terms of biofilm forming ability. Isolates were susceptible to all the classes of antibiotics. In conclusion a great heterogeneity and no antimicrobial resistance were apparent in the considered S. mutans strains from diabetic patients.
Collapse
Affiliation(s)
- Arpan De
- Microbiology Unit, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC Italy
| | - Guido Pasquantonio
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Cerroni
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marta Longhi
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luca A. Vitali
- Microbiology Unit, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC Italy
| |
Collapse
|
18
|
Contribution of the Collagen-Binding Proteins of Streptococcus mutans to Bacterial Colonization of Inflamed Dental Pulp. PLoS One 2016; 11:e0159613. [PMID: 27442266 PMCID: PMC4956251 DOI: 10.1371/journal.pone.0159613] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/06/2016] [Indexed: 01/22/2023] Open
Abstract
Streptococcus mutans is a major pathogen of dental caries. Collagen-binding proteins (CBPs) (approximately 120 kDa), termed Cnm and Cbm, are regarded as important cell surface antigens related to the adherence of S. mutans to collagenous tissue. Furthermore, CBP-positive S. mutans strains are associated with various systemic diseases involving bacteremia, such as infective endocarditis. Endodontic infection is considered to be an important cause of bacteremia, but little is known regarding the presence of S. mutans in dental pulp tissue. In the present study, the distribution and virulence of S. mutans in dental pulp tissues were investigated by focusing on CBPs. Adhesion and invasion properties of various S. mutans strains were analyzed using human dental pulp fibroblasts (HDPFs). CBP-positive strains had a significantly higher rate of adhesion to HDPFs compared with CBP-defective isogenic mutant strains (P<0.001). In addition, CBP-positive strains induced HDPF proliferation, which is a possible mechanism related to development of hyperplastic pulpitis. The distribution of S. mutans strains isolated from infected root canal specimens was then analyzed by PCR. We found that approximately 50% of the root canal specimens were positive for S. mutans. Approximately 20% of these strains were Cnm-positive, while no Cbm-positive strains were isolated. The Cnm-positive strains isolated from the specimens showed adhesion to HDPFs. Our results suggest that CBP-positive S. mutans strains exhibit high colonization in dental pulp. This could be a possible virulence factor for various systemic diseases.
Collapse
|
19
|
Reddy S, Akgul A, Karsi A, Abdelhamed H, Wills RW, Lawrence ML. The role of Listeria monocytogenes cell wall surface anchor protein LapB in virulence, adherence, and intracellular replication. Microb Pathog 2016; 92:19-25. [DOI: 10.1016/j.micpath.2015.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/19/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
|
20
|
Intracerebral hemorrhage and deep microbleeds associated with cnm-positive Streptococcus mutans; a hospital cohort study. Sci Rep 2016; 6:20074. [PMID: 26847666 PMCID: PMC4742798 DOI: 10.1038/srep20074] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022] Open
Abstract
Oral infectious diseases are epidemiologically associated with stroke. We previously showed that oral Streptococcus mutans with the cnm gene encoding a collagen-binding Cnm protein induced intracerebral hemorrhage (ICH) experimentally and was also associated with cerebral microbleeds (CMBs) in our population-based cohort study. We therefore investigated the roles of cnm-positive Streptococcus mutans in this single hospital-based, observational study that enrolled 100 acute stroke subjects. The cnm gene in Streptococcus mutans isolated from saliva was screened using PCR techniques and its collagen-binding activities examined. CMBs were evaluated on T2* gradient-recalled echo MRI. One subject withdrew informed consent and 99 subjects (63 males) were analyzed, consisting of 67 subjects with ischemic stroke, 5 with transient ischemic attack, and 27 with ICH. Eleven cases showed Streptococcus mutans strains positive for cnm. The presence of cnm-positive Streptococcus mutans was significantly associated with ICH [OR vs. ischemic stroke, 4.5; 95% CI, 1.17–19.1] and increased number of deep CMBs [median (IQR), 3 (2–9) vs. 0 (0–1), p = 0.0002]. In subjects positive for Streptococcus mutans, collagen binding activity was positively correlated with the number of deep CMBs (R2 = 0.405; p < 0.0001). These results provide further evidence for the key role of oral health in stroke.
Collapse
|
21
|
de Brito DM, Maracaja-Coutinho V, de Farias ST, Batista LV, do Rêgo TG. A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm. PLoS One 2016; 11:e0146352. [PMID: 26731657 PMCID: PMC4711805 DOI: 10.1371/journal.pone.0146352] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023] Open
Abstract
Genomic Islands (GIs) are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP—Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me.
Collapse
Affiliation(s)
- Daniel M. de Brito
- Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Vinicius Maracaja-Coutinho
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
- Instituto Vandique, João Pessoa, Brazil
- Beagle Bioinformatics, Santiago, Chile
| | - Savio T. de Farias
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Leonardo V. Batista
- Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Thaís G. do Rêgo
- Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba, João Pessoa, Brazil
- * E-mail:
| |
Collapse
|
22
|
Misaki T, Naka S, Kuroda K, Nomura R, Shiooka T, Naito Y, Suzuki Y, Yasuda H, Isozaki T, Nakano K. Distribution of Streptococcus mutans strains with collagen-binding proteins in the oral cavity of IgA nephropathy patients. Clin Exp Nephrol 2014; 19:844-50. [PMID: 25492252 DOI: 10.1007/s10157-014-1072-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/04/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common primary chronic glomerulonephritis; however, its precise initiating pathogenesis remains unclear. Streptococcus mutans is a major pathogen of human dental caries. S. mutans strains with the cnm gene encoding Cnm, a collagen-binding protein, have been reported to contribute to the development of systemic diseases. However, the contribution of S. mutans with Cnm in the development of IgAN has not been reported. The aim of this study was to investigate the prevalence of cnm-positive S. mutans in IgAN patients and clarify the effects of cnm-positive S. mutans on the histological pathology of IgAN. METHODS We identified the cnm gene in S. mutans isolated in saliva specimens, which were collected from IgAN patients (n = 53) and control subjects (n = 50). We evaluated the collagen-binding properties of S. mutans in IgAN patients and controls. The clinical parameters and histological scores were also assessed in IgAN patients. RESULTS The rates of S. mutans isolation in IgAN and control groups were 84.0 and 84.9 %, respectively, not significantly dfferent. cnm-positive strains were significantly more prevalent in the IgAN group than in controls (32.1 vs. 14.0 %, p < 0.05). With regard to collagen-binding assays, the binding rates of cnm-positive strains were significantly higher in the IgAN group than in controls (96.6 vs. 30.0, p < 0.05). In addition, the segmental glomerulosclerosis scores were significantly higher in cnm-positive patients with IgAN than in cnm-negative patients with IgAN (0.94 vs. 0.57, p < 0.05). CONCLUSION cnm-positive S. mutans strains are potentially associated with the pathogenesis of IgAN.
Collapse
Affiliation(s)
- Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku, Hamamatsu, Shizuoka, 430-8558, Japan.
| | - Shuhei Naka
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keiko Kuroda
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tempei Shiooka
- Division of Nephrology, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku, Hamamatsu, Shizuoka, 430-8558, Japan
| | - Yoshitaka Naito
- Division of Nephrology, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku, Hamamatsu, Shizuoka, 430-8558, Japan
| | - Yumiko Suzuki
- Division of Nephrology, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku, Hamamatsu, Shizuoka, 430-8558, Japan
| | - Hideo Yasuda
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taisuke Isozaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku, Hamamatsu, Shizuoka, 430-8558, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
23
|
A conserved streptococcal membrane protein, LsrS, exhibits a receptor-like function for lantibiotics. J Bacteriol 2014; 196:1578-87. [PMID: 24509319 DOI: 10.1128/jb.00028-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans strain GS-5 produces a two-peptide lantibiotic, Smb, which displays inhibitory activity against a broad spectrum of bacteria, including other streptococci. For inhibition, lantibiotics must recognize specific receptor molecules present on the sensitive bacterial cells. However, so far no such receptor proteins have been identified for any lantibiotics. In this study, using a powerful transposon mutagenesis approach, we have identified in Streptococcus pyogenes a gene that exhibits a receptor-like function for Smb. The protein encoded by that gene, which we named LsrS, is a membrane protein belonging to the CAAX protease family. We also found that nisin, a monopeptide lantibiotic, requires LsrS for its optimum inhibitory activity. However, we found that LsrS is not required for inhibition by haloduracin and galolacticin, both of which are two-peptide lantibiotics closely related to Smb. LsrS appears to be a well-conserved protein that is present in many streptococci, including S. mutans. Inactivation of SMU.662, an LsrS homolog, in S. mutans strains UA159 and V403 rendered the cells refractory to Smb-mediated killing. Furthermore, overexpression of LsrS in S. mutans created cells more susceptible to Smb. Although LsrS and its homolog contain the CAAX protease domain, we demonstrate that inactivation of the putative active sites on the LsrS protein has no effect on its receptor-like function. This is the first report describing a highly conserved membrane protein that displays a receptor-like function for lantibiotics.
Collapse
|
24
|
Lessons Learned from Clinical Studies: Roles of Mutans Streptococci in the Pathogenesis of Dental Caries. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40496-013-0008-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Song L, Wang W, Conrads G, Rheinberg A, Sztajer H, Reck M, Wagner-Döbler I, Zeng AP. Genetic variability of mutans streptococci revealed by wide whole-genome sequencing. BMC Genomics 2013; 14:430. [PMID: 23805886 PMCID: PMC3751929 DOI: 10.1186/1471-2164-14-430] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/12/2013] [Indexed: 01/09/2023] Open
Abstract
Background Mutans streptococci are a group of bacteria significantly contributing to tooth decay. Their genetic variability is however still not well understood. Results Genomes of 6 clinical S. mutans isolates of different origins, one isolate of S. sobrinus (DSM 20742) and one isolate of S. ratti (DSM 20564) were sequenced and comparatively analyzed. Genome alignment revealed a mosaic-like structure of genome arrangement. Genes related to pathogenicity are found to have high variations among the strains, whereas genes for oxidative stress resistance are well conserved, indicating the importance of this trait in the dental biofilm community. Analysis of genome-scale metabolic networks revealed significant differences in 42 pathways. A striking dissimilarity is the unique presence of two lactate oxidases in S. sobrinus DSM 20742, probably indicating an unusual capability of this strain in producing H2O2 and expanding its ecological niche. In addition, lactate oxidases may form with other enzymes a novel energetic pathway in S. sobrinus DSM 20742 that can remedy its deficiency in citrate utilization pathway. Using 67 S. mutans genomes currently available including the strains sequenced in this study, we estimates the theoretical core genome size of S. mutans, and performed modeling of S. mutans pan-genome by applying different fitting models. An “open” pan-genome was inferred. Conclusions The comparative genome analyses revealed diversities in the mutans streptococci group, especially with respect to the virulence related genes and metabolic pathways. The results are helpful for better understanding the evolution and adaptive mechanisms of these oral pathogen microorganisms and for combating them.
Collapse
Affiliation(s)
- Lifu Song
- Institute of Bioprocess and Biosystems, Technical University Hamburg Harburg, Hamburg Harburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Palmer SR, Miller JH, Abranches J, Zeng L, Lefebure T, Richards VP, Lemos JA, Stanhope MJ, Burne RA. Phenotypic heterogeneity of genomically-diverse isolates of Streptococcus mutans. PLoS One 2013; 8:e61358. [PMID: 23613838 PMCID: PMC3628994 DOI: 10.1371/journal.pone.0061358] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/07/2013] [Indexed: 11/18/2022] Open
Abstract
High coverage, whole genome shotgun (WGS) sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat) and exposure to competence stimulating peptide (CSP). Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease.
Collapse
Affiliation(s)
- Sara R. Palmer
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - James H. Miller
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jacqueline Abranches
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Tristan Lefebure
- Université de Lyon, CNRS, Ecologie des Hydrosystèmes Naturels et Anthropisés; Université Lyon, Villeurbanne, France
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Vincent P. Richards
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - José A. Lemos
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Michael J. Stanhope
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Robert A. Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
27
|
Nyvad B, Crielaard W, Mira A, Takahashi N, Beighton D. Dental Caries from a Molecular Microbiological Perspective. Caries Res 2013. [DOI: 10.1159/000345367] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
28
|
Abstract
Streptococcus mutans, a principal causative agent of dental caries, is considered to be the most cariogenic among all oral streptococci. Of the four S. mutans serotypes (c, e, f, and k), serotype c strains predominate in the oral cavity. Here, we present the complete genome sequence of S. mutans GS-5, a serotype c strain originally isolated from human carious lesions, which is extensively used as a laboratory strain worldwide.
Collapse
|
29
|
Nomura R, Naka S, Nemoto H, Inagaki S, Taniguchi K, Ooshima T, Nakano K. Potential involvement of collagen-binding proteins of Streptococcus mutans in infective endocarditis. Oral Dis 2012; 19:387-93. [PMID: 22998492 DOI: 10.1111/odi.12016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Streptococcus mutans, a major pathogen of dental caries, is considered to be one of the causative agents of infective endocarditis (IE). Two types of cell surface collagen-binding proteins, Cnm and Cbm, have been identified in the organism. The aim of the present study was to analyze these proteins as possible etiologic factors for IE. MATERIALS AND METHODS The binding activities of S. mutans strains to collagen types I, III, and IV were analyzed relative to the presence of Cnm and Cbm, as were their adhesion and invasion properties with human umbilical vein endothelial cells (HUVEC). In addition, distributions of the genes encoding Cnm and Cbm in S. mutans-positive heart valve specimens extirpated from IE and non-IE patients were analyzed by PCR. RESULTS Most of the Cbm-positive strains showed higher levels of binding to type I collagen as well as higher rates of adhesion and invasion with HUVEC as compared to the Cnm-positive strains. Furthermore, the gene encoding Cbm was detected significantly more frequently in heart valve specimens from IE patients than from non-IE patients. CONCLUSIONS These results suggest that the collagen-binding protein Cbm of S. mutans may be one of the potential important factor associated with the pathogenesis of IE.
Collapse
Affiliation(s)
- R Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Nomura R, Nakano K, Naka S, Nemoto H, Masuda K, Lapirattanakul J, Alaluusua S, Matsumoto M, Kawabata S, Ooshima T. Identification and characterization of a collagen-binding protein, Cbm, in Streptococcus mutans. Mol Oral Microbiol 2012; 27:308-23. [DOI: 10.1111/j.2041-1014.2012.00649.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Kojima A, Nakano K, Wada K, Takahashi H, Katayama K, Yoneda M, Higurashi T, Nomura R, Hokamura K, Muranaka Y, Matsuhashi N, Umemura K, Kamisaki Y, Nakajima A, Ooshima T. Infection of specific strains of Streptococcus mutans, oral bacteria, confers a risk of ulcerative colitis. Sci Rep 2012; 2:332. [PMID: 22451861 PMCID: PMC3312205 DOI: 10.1038/srep00332] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/13/2012] [Indexed: 12/30/2022] Open
Abstract
Although oral bacteria-associated systemic diseases have been reported, association between Streptococcus mutans, pathogen of dental caries, and ulcerative colitis (UC) has not been reported. We investigated the effect of various S. mutans strains on dextran sodium sulfate (DSS)-induced mouse colitis. Administration of TW295, the specific strain of S. mutans, caused aggravation of colitis; the standard strain, MT8148 did not. Localization of TW295 in hepatocytes in liver was observed. Increased expression of interferon-γ in liver was also noted, indicating that the liver is target organ for the specific strain of S. mutans-mediated aggravation of colitis. The detection frequency of the specific strains in UC patients was significantly higher than in healthy subjects. Administration of the specific strains of S. mutans isolated from patients caused aggravation of colitis. Infection with highly-virulent specific types of S. mutans might be a potential risk factor in the aggravation of UC.
Collapse
Affiliation(s)
- Ayuchi Kojima
- Department of Pediatric Dentistry, Graduate School of Dentistry, Osaka University, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
CovR alleviates transcriptional silencing by a nucleoid-associated histone-like protein in Streptococcus mutans. J Bacteriol 2012; 194:2050-61. [PMID: 22343292 DOI: 10.1128/jb.06812-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Streptococcus mutans, the global response regulator CovR plays an important role in biofilm formation, stress tolerance response, and caries production. We have previously demonstrated that CovR activates a large gene cluster, which is a part of a genomic island, TnSmu2. In this article, we have further characterized CovR at the molecular level to understand the gene activation mechanism. Toward this end, we mapped the transcription start site of the operon that lies upstream of the SMU.1348 gene (P(SMU.1348)), the first gene of the cluster. We constructed a transcriptional reporter fusion and showed that CovR induces expression from P(SMU.1348). We also demonstrated that purified CovR protects the sequence surrounding the -10 region of P(SMU.1348). In an in vitro transcription assay, we showed that histone-like protein (HLP), a homologue of Escherichia coli HU protein, represses transcription from P(SMU.1348). In vivo overexpression of HLP in trans also represses transcription from P(SMU.1348). Addition of CovR to the HLP-repressed P(SMU.1348) resulted in increased transcription from the promoter, suggesting a role for CovR in countering HLP silencing. Moreover, addition of SMU.1349, a transcriptional activator of the operon, to the in vitro assay further stimulated the transcription. Based on our in vivo and in vitro results, we propose a model for transcriptional activation of the operon.
Collapse
|
33
|
Regulation of transcription by SMU.1349, a TetR family regulator, in Streptococcus mutans. J Bacteriol 2011; 193:6605-13. [PMID: 21965566 DOI: 10.1128/jb.06122-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TetR family of transcriptional regulators is ubiquitous in bacteria, where it plays an important role in bacterial gene expression. Streptococcus mutans, a gram-positive pathogen considered to be the primary etiological agent in the formation of dental caries, encodes at least 18 TetR regulators. Here we characterized one such TetR regulator, SMU.1349, encoded by the TnSmu2 operon, which appeared to be acquired by the organism via horizontal gene transfer. SMU.1349 is transcribed divergently from the rest of the genes encoded by the operon. By the use of a transcriptional reporter system and semiquantitative reverse transcription-PCR (RT-PCR), we demonstrated that SMU.1349 activates the transcription of several genes that are encoded within the TnSmu2 operon. Gel mobility shift and DNase I footprinting assays with purified SMU.1349 protein demonstrated binding to the intergenic region between SMU.1349 and the TnSmu2 operon; therefore, SMU.1349 is directly involved in gene transcription. Using purified S. mutans RpoD and Escherichia coli RNA polymerase, we also demonstrated in an in vitro transcription assay that SMU.1349 could activate transcription from the TnSmu2 operon promoter. Furthermore, we showed that SMU.1349 could also repress transcription from its own promoter by binding to the intergenic region, suggesting that SMU.1349 acts as both an activator and a repressor. Thus, unlike most of the TetR family proteins, which generally function as transcriptional repressors, SMU.1349 is unique in that it can function as both.
Collapse
|
34
|
Nakano K, Hokamura K, Taniguchi N, Wada K, Kudo C, Nomura R, Kojima A, Naka S, Muranaka Y, Thura M, Nakajima A, Masuda K, Nakagawa I, Speziale P, Shimada N, Amano A, Kamisaki Y, Tanaka T, Umemura K, Ooshima T. The collagen-binding protein of Streptococcus mutans is involved in haemorrhagic stroke. Nat Commun 2011; 2:485. [PMID: 21952219 PMCID: PMC3220351 DOI: 10.1038/ncomms1491] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/25/2011] [Indexed: 01/25/2023] Open
Abstract
Although several risk factors for stroke have been identified, one-third remain unexplained. Here we show that infection with Streptococcus mutans expressing collagen-binding protein (CBP) is a potential risk factor for haemorrhagic stroke. Infection with serotype k S. mutans, but not a standard strain, aggravates cerebral haemorrhage in mice. Serotype k S. mutans accumulates in the damaged, but not the contralateral hemisphere, indicating an interaction of bacteria with injured blood vessels. The most important factor for high-virulence is expression of CBP, which is a common property of most serotype k strains. The detection frequency of CBP-expressing S. mutans in haemorrhagic stroke patients is significantly higher than in control subjects. Strains isolated from haemorrhagic stroke patients aggravate haemorrhage in a mouse model, indicating that they are haemorrhagic stroke-associated. Administration of recombinant CBP causes aggravation of haemorrhage. Our data suggest that CBP of S. mutans is directly involved in haemorrhagic stroke. The risk factors associated with both ischemic and haemorrhagic stroke are not fully understood. Here a certain strain of the bacteria, Streptococcus mutans, which expresses a collagen-binding protein, is shown to be associated with haemorrhagic stroke in both animal models and human patients.
Collapse
Affiliation(s)
- Kazuhiko Nakano
- Department of Pediatric Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cloning-independent and counterselectable markerless mutagenesis system in Streptococcus mutans. Appl Environ Microbiol 2011; 77:8025-33. [PMID: 21948849 DOI: 10.1128/aem.06362-11] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insertion duplication mutagenesis and allelic replacement mutagenesis are among the most commonly utilized approaches for targeted mutagenesis in bacteria. However, both techniques are limited by a variety of factors that can complicate mutant phenotypic studies. To circumvent these limitations, multiple markerless mutagenesis techniques have been developed that utilize either temperature-sensitive plasmids or counterselectable suicide vectors containing both positive- and negative-selection markers. For many species, these techniques are not especially useful due to difficulties of cloning with Escherichia coli and/or a lack of functional negative-selection markers. In this study, we describe the development of a novel approach for the creation of markerless mutations. This system employs a cloning-independent methodology and should be easily adaptable to a wide array of Gram-positive and Gram-negative bacterial species. The entire process of creating both the counterselection cassette and mutation constructs can be completed using overlapping PCR protocols, which allows extremely quick assembly and eliminates the requirement for either temperature-sensitive replicons or suicide vectors. As a proof of principle, we used Streptococcus mutans reference strain UA159 to create markerless in-frame deletions of 3 separate bacteriocin genes as well as triple mutants containing all 3 deletions. Using a panel of 5 separate wild-type S. mutans strains, we further demonstrated that the procedure is nearly 100% efficient at generating clones with the desired markerless mutation, which is a considerable improvement in yield compared to existing approaches.
Collapse
|
36
|
Competence-dependent endogenous DNA rearrangement and uptake of extracellular DNA give a natural variant of Streptococcus mutans without biofilm formation. J Bacteriol 2011; 193:5147-54. [PMID: 21804005 DOI: 10.1128/jb.05240-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of water-insoluble glucan (WIG) enables Streptococcus mutans to survive and persist in the oral niche. WIG is produced from sucrose by glucosyltransferase encoded tandemly by the highly homologous gtfB and gtfC genes. Conversely, a single hybrid gene from the endogenous recombination of gtfB and gtfC is easily generated using RecA, resulting in S. mutans UA159 WIG- (rate of ∼1.0×10(-3)). The pneumococcus recA gene is regulated as a late competence gene. comX gene mutations did not lead to the appearance of WIG- cells. The biofilm collected from the flow cell had more WIG- cells than among the planktonic cells. Among the planktonic cells, WIG- cells appeared after 16 h and increased ∼10-fold after 32 h of cultivation, suggesting an increase in planktonic WIG- cells after longer culture. The strain may be derived from the biofilm environment. In coculture with donor WIG+ and recipient WIG- cells, the recipient cells reverted to WIG+ and acquired an intact gtfBC region from the environment, indicating that the uptake of extracellular DNA resulted in the phenotypic change. Here we demonstrate that endogenous DNA rearrangement and uptake of extracellular DNA generate WIG- cells and that both are induced by the same signal transducer, the com system. Our findings may help in understanding how S. mutans can adapt to the oral environment and may explain the evolution of S. mutans.
Collapse
|
37
|
Lapirattanakul J, Nakano K, Nomura R, Leelataweewud P, Chalermsarp N, Klaophimai A, Srisatjaluk R, Hamada S, Ooshima T. Multilocus sequence typing analysis of Streptococcus mutans strains with the cnm gene encoding collagen-binding adhesin. J Med Microbiol 2011; 60:1677-1684. [PMID: 21680768 DOI: 10.1099/jmm.0.033415-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Streptococcus mutans is one of the oral pathogens associated with infective endocarditis (IE). With respect to bacterial binding ability to the extracellular matrix, the Cnm protein, a cell surface collagen-binding adhesin of S. mutans, is known as one of the possible virulence factors with regard to IE. In this study, we aimed to determine the distribution of the cnm gene, which encodes Cnm, in a large number of clinical isolates of S. mutans from Thai subjects. Then, the cnm-positive strains were classified using a multilocus sequence typing (MLST) scheme, which we constructed previously. In addition, the data were analysed together with our previous MLST data of cnm-positive strains from Japan and Finland in order to evaluate the clonal relationship among S. mutans strains harbouring the cnm gene. The cnm gene was detected in 12.4 % of all 750 Thai isolates, and serotype f showed the highest rate of detection (54.5 %). According to the MLST data, two clonal complex groups were revealed as the important clones related to cnm-positive S. mutans from various origins of isolation. Moreover, the collagen-binding properties of S. mutans strains with the cnm gene were significantly greater than those of strains without the gene, although four cnm-negative strains classified into two sequence types (STs), ST110 and ST136, showed extremely high collagen-binding rates suggesting the presence of additional genes involved with collagen binding in these STs. Taken together, these results provided information on both epidemiological as well as evolutional aspects of S. mutans possessing the cnm gene.
Collapse
Affiliation(s)
- Jinthana Lapirattanakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | | | - Narumon Chalermsarp
- Department of Oral Medicine, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Arthit Klaophimai
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Ratchapin Srisatjaluk
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Shigeyuki Hamada
- Research Institute for Microbial Diseases, Osaka University, Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infection, Nonthaburi 11000, Thailand
| | - Takashi Ooshima
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Dmitriev A, Mohapatra SS, Chong P, Neely M, Biswas S, Biswas I. CovR-controlled global regulation of gene expression in Streptococcus mutans. PLoS One 2011; 6:e20127. [PMID: 21655290 PMCID: PMC3105014 DOI: 10.1371/journal.pone.0020127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/13/2011] [Indexed: 12/15/2022] Open
Abstract
CovR/S is a two-component signal transduction system (TCS) that controls the expression of various virulence related genes in many streptococci. However, in the dental pathogen Streptococcus mutans, the response regulator CovR appears to be an orphan since the cognate sensor kinase CovS is absent. In this study, we explored the global transcriptional regulation by CovR in S. mutans. Comparison of the transcriptome profiles of the wild-type strain UA159 with its isogenic covR deleted strain IBS10 indicated that at least 128 genes (∼6.5% of the genome) were differentially regulated. Among these genes, 69 were down regulated, while 59 were up regulated in the IBS10 strain. The S. mutans CovR regulon included competence genes, virulence related genes, and genes encoded within two genomic islands (GI). Genes encoded by the GI TnSmu2 were found to be dramatically reduced in IBS10, while genes encoded by the GI TnSmu1 were up regulated in the mutant. The microarray data were further confirmed by real-time RT-PCR analyses. Furthermore, direct regulation of some of the differentially expressed genes was demonstrated by electrophoretic mobility shift assays using purified CovR protein. A proteomic study was also carried out that showed a general perturbation of protein expression in the mutant strain. Our results indicate that CovR truly plays a significant role in the regulation of several virulence related traits in this pathogenic streptococcus.
Collapse
Affiliation(s)
- Alexander Dmitriev
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
| | - Saswat S. Mohapatra
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Patrick Chong
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Melody Neely
- Department of Microbiology and Immunology, Wayne State School of Medicine, Detroit, Michigan, United States of America
| | - Saswati Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Nicolas GG, LaPointe G, Lavoie MC. Production, purification, sequencing and activity spectra of mutacins D-123.1 and F-59.1. BMC Microbiol 2011; 11:69. [PMID: 21477375 PMCID: PMC3088537 DOI: 10.1186/1471-2180-11-69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 04/10/2011] [Indexed: 12/02/2022] Open
Abstract
Background The increase in bacterial resistance to antibiotics impels the development of new anti-bacterial substances. Mutacins (bacteriocins) are small antibacterial peptides produced by Streptococcus mutans showing activity against bacterial pathogens. The objective of the study was to produce and characterise additional mutacins in order to find new useful antibacterial substances. Results Mutacin F-59.1 was produced in liquid media by S. mutans 59.1 while production of mutacin D-123.1 by S. mutans 123.1 was obtained in semi-solid media. Mutacins were purified by hydrophobic chromatography. The amino acid sequences of the mutacins were obtained by Edman degradation and their molecular mass was determined by mass spectrometry. Mutacin F-59.1 consists of 25 amino acids, containing the YGNGV consensus sequence of pediocin-like bacteriocins with a molecular mass calculated at 2719 Da. Mutacin D-123.1 has an identical molecular mass (2364 Da) with the same first 9 amino acids as mutacin I. Mutacins D-123.1 and F-59.1 have wide activity spectra inhibiting human and food-borne pathogens. The lantibiotic mutacin D-123.1 possesses a broader activity spectrum than mutacin F-59.1 against the bacterial strains tested. Conclusion Mutacin F-59.1 is the first pediocin-like bacteriocin identified and characterised that is produced by Streptococcus mutans. Mutacin D-123.1 appears to be identical to mutacin I previously identified in different strains of S. mutans.
Collapse
Affiliation(s)
- Guillaume G Nicolas
- Département de Biochimie Microbiologie et Bioinformatique, Faculté des Sciences et Génie, Université Laval, Québec (Québec), G1K 7P4, Canada.
| | | | | |
Collapse
|
40
|
Distribution of putative virulence genes in Streptococcus mutans strains does not correlate with caries experience. J Clin Microbiol 2011; 49:984-92. [PMID: 21209168 DOI: 10.1128/jcm.01993-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Streptococcus mutans, a member of the human oral flora, is a widely recognized etiological agent of dental caries. The cariogenic potential of S. mutans is related to its ability to metabolize a wide variety of sugars, form a robust biofilm, produce copious amounts of lactic acid, and thrive in the acid environment that it generates. The remarkable genetic variability present within the species is reflected at the phenotypic level, notably in the differences in the cariogenic potential between strains. However, the genetic basis of these differences is yet to be elucidated. In this study, we surveyed by PCR and DNA hybridization the distribution of putative virulence genes, genomic islands, and insertion sequences across a collection of 33 strains isolated from either children with severe early childhood caries (S-ECC) or those who were caries free (CF). We found this genetically diverse group of isolates to be remarkably homogeneous with regard to the distribution of the putative virulence genes and genetic elements analyzed. Our findings point to the role of other factors in the pathogenesis of S-ECC, such as uncharacterized virulence genes, differences in gene expression and/or enzymatic activity, cooperation between S. mutans strains or with other members of the oral biota, and host factors.
Collapse
|
41
|
|
42
|
Xie Z, Okinaga T, Niu G, Qi F, Merritt J. Identification of a novel bacteriocin regulatory system in Streptococcus mutans. Mol Microbiol 2010; 78:1431-47. [PMID: 21143316 DOI: 10.1111/j.1365-2958.2010.07417.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, we described the function of an uncharacterized two-gene regulatory system consisting of a LytTR family transcription regulator and a putative membrane protein, which we referred to as the hdrRM operon. In this study, we determined that the HdrRM system controls the expression of an analogous uncharacterized regulatory system annotated as SMU.2080 and SMU.2081. Like hdrRM, the SMU.2080-2081 operon encodes a LytTR family transcription regulator and putative membrane protein, which we now refer to as BrsR and BrsM respectively. Examination of the regulatory mechanism of the BrsRM system suggests that BrsM serves to antagonize the function of the transcription regulator BrsR. Further analyses of the regulatory role of BrsR determined that it functions as a transcription activator for a variety of bacteriocins and bacteriocin-related genes. In vitro electromobility shift assays confirmed that BrsR binds to the promoter regions of several bacteriocin genes and requires the presence of a LytTR family consensus direct repeat in order to stably bind DNA. In addition, we identified a novel regulatory scheme in which both the HdrRM and BrsRM systems coregulate each other and ultimately determine whether bacteriocin production will inhibit competitor organisms or result in lethality to the producer.
Collapse
Affiliation(s)
- Zhoujie Xie
- Department of Oral Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
43
|
Genomic island TnSmu2 of Streptococcus mutans harbors a nonribosomal peptide synthetase-polyketide synthase gene cluster responsible for the biosynthesis of pigments involved in oxygen and H2O2 tolerance. Appl Environ Microbiol 2010; 76:5815-26. [PMID: 20639370 DOI: 10.1128/aem.03079-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The oral biofilm community consists of >800 microbial species, among which Streptococcus mutans is considered a primary pathogen for dental caries. The genomic island TnSmu2 of S. mutans comprises >2% of the genome. In this study, we demonstrate that TnSmu2 harbors a gene cluster encoding nonribosomal peptide synthetases (NRPS), polyketide synthases (PKS), and accessory proteins and regulators involved in nonribosomal peptide (NRP) and polyketide (PK) biosynthesis. Interestingly, the sequences of these genes and their genomic organizations and locations are highly divergent among different S. mutans strains, yet each TnSmu2 region encodes NRPS/PKS and accessory proteins. Mutagenesis of the structural genes and putative regulatory genes in strains UA159, UA140, and MT4653 resulted in colonies that were devoid of their yellow pigmentation (for strains UA140 and MT4653). In addition, these mutant strains also displayed retarded growth under aerobic conditions and in the presence of H(2)O(2). High-performance liquid chromatography profiling of cell surface extracts identified unique peaks that were missing in the mutant strains, and partial characterization of the purified product from UA159 demonstrated that it is indeed a hybrid NRP/PK, as predicted. A genomic survey of 94 clinical S. mutans isolates suggests that the TnSmu2 gene cluster may be more prevalent than previously recognized.
Collapse
|
44
|
Ruby JD, Cox CF, Akimoto N, Meada N, Momoi Y. The Caries Phenomenon: A Timeline from Witchcraft and Superstition to Opinions of the 1500s to Today's Science. Int J Dent 2010; 2010:432767. [PMID: 20706536 PMCID: PMC2913523 DOI: 10.1155/2010/432767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 05/28/2010] [Indexed: 11/25/2022] Open
Abstract
This historical treatise follows the documented timeline of tooth decay into today's understanding, treatment, and teaching of caries biology. Caries has been attributed to many different causes for several millennia, however, only since the late 1900s has research revealed its complex multifactorial nature. European writers of the 1600s to 1700s held views that general health, mechanical injuries, trauma, and sudden temperature changes all caused caries-holding a common belief that decay was due to chemical agents, faulty saliva, and food particles. Until the early 1800s most writers believed that caries was due to inflammation from surrounding diseased alveolar bone. Today's science has demonstrated that caries is caused by indigenous oral microorganisms becoming a dynamic biofilm, that in the presence of fermentable sugars produce organic acids capable of dissolving inorganic enamel and dentin followed by the proteolytic destruction of collagen leaving soft infected dentin. As bacteria enter the pulp, infection follows.
Collapse
Affiliation(s)
- John D. Ruby
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, 1919 7th Ave South, Birmingham, AL 35294, USA
| | - Charles F. Cox
- Department of Operative Dentistry, School of Dental Medicine, Tsurumi University, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Naotake Akimoto
- Department of Operative Dentistry, School of Dental Medicine, Tsurumi University, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Nobuko Meada
- Department of Microbiology, School of Dental Medicine, Tsurumi University, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Yasuko Momoi
- Department of Operative Dentistry, School of Dental Medicine, Tsurumi University, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| |
Collapse
|
45
|
Nakano K, Nomura R, Matsumoto M, Ooshima T. Roles of oral bacteria in cardiovascular diseases--from molecular mechanisms to clinical cases: Cell-surface structures of novel serotype k Streptococcus mutans strains and their correlation to virulence. J Pharmacol Sci 2010; 113:120-5. [PMID: 20501965 DOI: 10.1254/jphs.09r24fm] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Streptococcus mutans is generally known as a pathogen of dental caries, and it is also considered to cause bacteremia and infective endocarditis (IE). S. mutans was previously classified into 3 serotypes, c, e, and f, due to the different chemical compositions of the serotype-specific polysaccharides, which are composed of a rhamnose backbone and glucose side chains. We recently designated non-c/e/f serotype S. mutans strains as novel serotype k, which is characterized by a drastic reduction in the amount of the glucose side chain. A common biological feature of novel serotype-k strains is a lower level of cariogenicity due to alterations of several major cell surface protein antigens. As for virulence in blood, these strains survive in blood for a longer duration due to lower antigenicity, while the detection rate of all strains carrying the gene encoding collagen-binding adhesin has been shown to be high. Furthermore, molecular biological analyses of infected heart valve specimens obtained from IE patients revealed a high detection rate of serotype-k S. mutans. Together, these findings suggest that serotype-k S. mutans strains show low cariogenicity but high virulence in blood as compared to the other serotypes, due to alterations of several cell surface structures.
Collapse
Affiliation(s)
- Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
46
|
Do T, Gilbert SC, Clark D, Ali F, Fatturi Parolo CC, Maltz M, Russell RR, Holbrook P, Wade WG, Beighton D. Generation of diversity in Streptococcus mutans genes demonstrated by MLST. PLoS One 2010; 5:e9073. [PMID: 20140210 PMCID: PMC2816709 DOI: 10.1371/journal.pone.0009073] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 12/17/2009] [Indexed: 11/19/2022] Open
Abstract
Streptococcus mutans, consisting of serotypes c, e, f and k, is an oral aciduric organism associated with the initiation and progression of dental caries. A total of 135 independent Streptococcus mutans strains from caries-free and caries-active subjects isolated from various geographical locations were examined in two versions of an MLST scheme consisting of either 6 housekeeping genes [accC (acetyl-CoA carboxylase biotin carboxylase subunit), gki (glucokinase), lepA (GTP-binding protein), recP (transketolase), sodA (superoxide dismutase), and tyrS (tyrosyl-tRNA synthetase)] or the housekeeping genes supplemented with 2 extracellular putative virulence genes [gtfB (glucosyltransferase B) and spaP (surface protein antigen I/II)] to increase sequence type diversity. The number of alleles found varied between 20 (lepA) and 37 (spaP). Overall, 121 sequence types (STs) were defined using the housekeeping genes alone and 122 with all genes. However pi, nucleotide diversity per site, was low for all loci being in the range 0.019-0.007. The virulence genes exhibited the greatest nucleotide diversity and the recombination/mutation ratio was 0.67 [95% confidence interval 0.3-1.15] compared to 8.3 [95% confidence interval 5.0-14.5] for the 6 concatenated housekeeping genes alone. The ML trees generated for individual MLST loci were significantly incongruent and not significantly different from random trees. Analysis using ClonalFrame indicated that the majority of isolates were singletons and no evidence for a clonal structure or evidence to support serotype c strains as the ancestral S. mutans strain was apparent. There was also no evidence of a geographical distribution of individual isolates or that particular isolate clusters were associated with caries. The overall low sequence diversity suggests that S. mutans is a newly emerged species which has not accumulated large numbers of mutations but those that have occurred have been shuffled as a consequence of intra-species recombination generating genotypes which can be readily distinguished by sequence analysis.
Collapse
Affiliation(s)
- Thuy Do
- Infection Research Group, Dental Institute, King's College London, London, United Kingdom
| | - Steven C. Gilbert
- Infection Research Group, Dental Institute, King's College London, London, United Kingdom
| | - Douglas Clark
- Infection Research Group, Dental Institute, King's College London, London, United Kingdom
| | - Farida Ali
- Infection Research Group, Dental Institute, King's College London, London, United Kingdom
| | - Clarissa C. Fatturi Parolo
- Faculty of Dentistry, Department of Social and Preventive Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marisa Maltz
- Faculty of Dentistry, Department of Social and Preventive Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Roy R. Russell
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter Holbrook
- Faculty of Odontology, University of Iceland, Reykjavik, Iceland
| | - William G. Wade
- Infection Research Group, Dental Institute, King's College London, London, United Kingdom
| | - David Beighton
- Infection Research Group, Dental Institute, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production, and antibiotic tolerance. J Bacteriol 2009; 192:1312-23. [PMID: 20038588 DOI: 10.1128/jb.01350-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Streptococcus mutans is the primary etiological agent of human dental caries and, at times, of infective endocarditis. Within the oral cavity, the pathogen is subjected to conditions of stress. A well-conserved protein complex named ClpP (caseinolytic protease) plays a vital role in adaptation under stress conditions. To gain a better understanding of the global role of the ClpP protease in cellular homeostasis, a transcriptome analysis was performed using a DeltaclpP mutant strain. The expression levels of more than 100 genes were up- or downregulated in the DeltaclpP mutant compared to the wild type. Notably, the expression of genes in several genomic islands, such as TnSmu1 and TnSmu2, was differentially modulated in the DeltaclpP mutant strain. ClpP deficiency also increased the expression of genes associated with a putative CRISPR locus. Furthermore, several stress-related genes and genes encoding bacteriocin-related peptides and many transcription factors were also found to be altered in the DeltaclpP mutant strain. A comparative analysis of the two-dimensional protein profile of the wild type and the DeltaclpP mutant strains showed altered protein profiles. Comparison of the transcriptome data with the proteomic data identified four common gene products, suggesting that the observed altered protein expression of these genes could be due to altered transcription. The results presented here indicate that ClpP-mediated proteolysis plays an important global role in the regulation of several important traits in this pathogen.
Collapse
|
48
|
Nakano K, Nomura R, Taniguchi N, Lapirattanakul J, Kojima A, Naka S, Senawongse P, Srisatjaluk R, Grönroos L, Alaluusua S, Matsumoto M, Ooshima T. Molecular characterization of Streptococcus mutans strains containing the cnm gene encoding a collagen-binding adhesin. Arch Oral Biol 2009; 55:34-9. [PMID: 20005510 DOI: 10.1016/j.archoralbio.2009.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/10/2009] [Accepted: 11/15/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Streptococcus mutans, known to be a major pathogen of dental caries, is also considered to cause infective endocarditis. Its 120-kDa Cnm protein binds to type I collagen, which may be a potential virulence factor. In this study, we characterized S. mutans clinical strains focusing on the cnm gene encoding Cnm. DESIGN A total of 528 S. mutans strains isolated from Japanese, Finnish, and Thai subjects were investigated. Using molecular techniques, the distribution frequency of cnm-positive strains and location of the inserted cnm were analyzed. Furthermore, isogenic mutant strains were constructed by inactivation of the cnm gene, then their biological properties of collagen-binding and glucan-binding were evaluated. Southern hybridization of the genes encoding glucan-binding proteins was also performed. RESULTS The distribution frequency of cnm-positive strains from Thai subjects was 12%, similar to that previously reported for Japanese and Finnish subjects. Furthermore, the location of insertion of cnm was the same in all cnm-positive clinical isolates. As for the cnm-inactivated mutant strains constructed from 28 clinical isolates, their collagen-binding activity was negligible. In addition, glucan-binding activity in the cnm-positive clinical isolates was significantly reduced and corresponded to a lack of gbpA encoding glucan-binding protein A. CONCLUSIONS Our results indicate that strains with cnm genes, the most crucial factor for the collagen-binding property of S. mutans, are detectable at similar frequencies over several different geographic locations. In addition, the common properties of these strains are a high level of collagen-binding activity and tendency for a low level of glucan-binding activity.
Collapse
Affiliation(s)
- K Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nakano K, Ooshima T. Serotype classification of Streptococcus mutans and its detection outside the oral cavity. Future Microbiol 2009; 4:891-902. [PMID: 19722842 DOI: 10.2217/fmb.09.64] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus mutans, generally known as a major pathogen of dental caries, is also a possible causative agent of bacteremia and infective endocarditis. S. mutans is classified into serotypes c, e, f and k based on the chemical composition of serotype-specific polysaccharides, with approximately 70-80% of strains found in the oral cavity classified as serotype c, followed by e (approximately 20%), and f and k (less than 5% each). Serotype k was recently designated as a novel serotype and shown to possess unique features, the most prominent being a defect of the glucose side chain in serotype-specific rhamnose-glucose polymers, which is related to a higher incidence of detection in cardiovascular specimens, owing to phagocytosis resistance. Molecular analyses of cardiovascular specimens showed a high detection frequency for S. mutans DNA, among which the detection rate for serotype k was quite high. These findings suggest that serotype k S. mutans possibly has a high level of virulence for systemic diseases.
Collapse
Affiliation(s)
- Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infections & Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
50
|
Lapirattanakul J, Nakano K, Nomura R, Nemoto H, Kojima A, Senawongse P, Srisatjaluk R, Ooshima T. Detection of serotypek Streptococcus mutansin Thai subjects. ACTA ACUST UNITED AC 2009; 24:431-3. [DOI: 10.1111/j.1399-302x.2009.00530.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|