1
|
Xiao D, Sun H, Li X, Meng F, Sun T, Shao X, Ding Y, Li Y. Rumex japonicus Houtt. leaves: the chemical composition and anti-fungal activity. J Mycol Med 2024; 34:101513. [PMID: 39500231 DOI: 10.1016/j.mycmed.2024.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND Candida albicans is a pathogenic commensal fungus. Trichophyton mentagrophytes and Trichophyton rubrum are the leading pathogens of dermatophysis. Rumex japonicus Houtt. has a miraculous effect on the treatment of tinea skin disease, but its mechanism has not been clarified. PURPOSE This paper investigated the anti-fungal ingredients of the leaves of Rumex japonicus Houtt. (RJH-L) and the mechanism of the anti-fungal (Trichophyton mentagrophytes, Trichophyton rubrum and Candida albicans). METHOD First, the chemical composition analysis of RJH-L was conducted by acid extraction and alcohol precipitation, high performance liquid chromatography (HPLC) and nuclear magnetic resonance spectroscopy (NMR); in vitro anti-fungal experiments were carried out, including the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) spore germination rate, germ tube production rate, nucleic acid and protein leakage rate, biofilm structure, PCR, etc., to study the mechanism of action of RJH-L anti-fungal and anti-biofilm activity. RESULT Seven monomer compounds were obtained: anthraquinones (rhein, emodin and aloe-emodin); polyphenols (ferulic acid, p-coumaric acid), and flavonoids (rutin and quercetin). The results of in vitro anti-fungal experiments showed that the extracts of RJH-L had strong inhibitory effect on both fungi (MIC: 1.96 µg/mL-62.50 µg/mL), of which emodin had the strongest effect on Trichophyton mentagrophytes; and rhein had the strongest effect on Candida albicans and Trichophyton rubrum. The above active components can inhibit the germination of fungal spores and germ tube, change cell membrane permeability, prevent hyphal growth, destroy the biofilm structure, and down-regulate the expression of agglutinin-like sequencefamily1 of biofilm growth. CONCLUSION This study shows that RJH-L are rich in polyphenols, flavonoids, and anthraquinones, and play a fungicidal role.
Collapse
Affiliation(s)
- Dandan Xiao
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - He Sun
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - Xue Li
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - Fanying Meng
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - Tong Sun
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - Xinting Shao
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - Yuling Ding
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - Yong Li
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| |
Collapse
|
2
|
Herman RA, Ayepa E, Zhang WX, Li ZN, Zhu X, Ackah M, Yuan SS, You S, Wang J. Molecular modification and biotechnological applications of microbial aspartic proteases. Crit Rev Biotechnol 2024; 44:388-413. [PMID: 36842994 DOI: 10.1080/07388551.2023.2171850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 02/28/2023]
Abstract
The growing preference for incorporating microbial aspartic proteases in industries is due to their high catalytic function and high degree of substrate selectivity. These properties, however, are attributable to molecular alterations in their structure and a variety of other characteristics. Molecular tools, functional genomics, and genome editing technologies coupled with other biotechnological approaches have aided in improving the potential of industrially important microbial proteases by addressing some of their major limitations, such as: low catalytic efficiency, low conversion rates, low thermostability, and less enzyme yield. However, the native folding within their full domain is dependent on a surrounding structure which challenges their functionality in substrate conversion, mainly due to their mutual interactions in the context of complex systems. Hence, manipulating their structure and controlling their expression systems could potentially produce enzymes with high selectivity and catalytic functions. The proteins produced by microbial aspartic proteases are industrially capable and far-reaching in regulating certain harmful distinctive industrial processes and the benefits of being eco-friendly. This review provides: an update on current trends and gaps in microbial protease biotechnology, exploring the relevant recombinant strategies and molecular technologies widely used in expression platforms for engineering microbial aspartic proteases, as well as their potential industrial and biotechnological applications.
Collapse
Affiliation(s)
- Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kusi, Ghana
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Zong-Nan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuang-Shuang Yuan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| |
Collapse
|
3
|
Vozza Berardo ME, Mendieta JR, Villamonte MD, Colman SL, Nercessian D. Antifungal and antibacterial activities of Cannabis sativa L. resins. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116839. [PMID: 37400009 DOI: 10.1016/j.jep.2023.116839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cannabis sativa L. (Cannabaceae) is a plant native to Eastern Asia spread throughout the world because of its medicinal properties. Despite being used for thousands of years as a palliative therapeutic agent for many pathologies, in many countries research on its effects and properties could only be carried out in recent years, after its legalization. AIMS OF THE STUDY Increasing resistance to traditional antimicrobial agents demands finding new strategies to fight against microbial infections in medical therapy and agricultural activities. Upon legalization in many countries, Cannabis sativa is gaining attention as a new source of active components, and the evidence for new applications of these compounds is constantly increasing. METHODS Extracts from five different varieties ofCannabis sativa were performed and their cannabinoids and terpenes profiles were determined by liquid and gas chromatography. Antimicrobial and antifungal activities against Gram (+) and Gram (-) bacteria, yeast and phytopathogen fungus were measured. To analyze a possible action mechanism, cell viability of bacteria and yeast was assessed by propidium iodide stain. RESULTS Cannabis varieties were grouped into chemotype I and II as a consequence of their cannabidiol (CBD) or tetrahydrocannabinol (THC) content. The terpenes profile was different in quantity and quality among varieties, with (-)b-pinene, b-myrcene, p-cymene and b-caryophyllene being present in all plants. All cannabis varieties were effective to different degree against Gram (+) and Gram (-) bacteria as well as on spore germination and vegetative development of phytopathogenic fungi. These effects were not correlated to the content of major cannabinoids such as CBD or THC, but with the presence of a complex terpenes profile. The effectiveness of the extracts allowed to reduce the necessary doses of a widely used commercial antifungal to prevent the development of fungal spores. CONCLUSION All the extracts of the analysed cannabis varieties showed antibacterial and antifungal activities. In addition, plants belonging to the same chemotype showed different antimicrobial activity, demonstrating that the classification of cannabis strains based solely on THC and CBD content is not sufficient to justify their biological activities and that other compounds present in the extracts are involved in their action against pathogens. Cannabis extracts act in synergy with chemical fungicides, allowing to reduce its doses.
Collapse
Affiliation(s)
- María Eugenia Vozza Berardo
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - Julieta Renée Mendieta
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - María Daniela Villamonte
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - Silvana Lorena Colman
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - Débora Nercessian
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| |
Collapse
|
4
|
Siritapetawee J, Attarataya J, Charoenwattanasatien R. Sequence analysis and crystal structure of a glycosylated protease from Euphorbia resinifera latex for its proteolytic activity aspect. Biotechnol Appl Biochem 2022; 69:2580-2591. [PMID: 34967474 DOI: 10.1002/bab.2307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022]
Abstract
The investigation of a plant glycosylated serine protease (EuRP-61) isolated from Euphorbia resinifera latex for potential antiplatelet and anticoagulation activities has been previously reported. In the present study, the protein sequence and native crystal structure of EuRP-61 were characterized. The structure was identified using single-wavelength anomalous diffraction with a refinement resolution of 1.7 Å (PDB ID: 7EOX). The main structural components of EuRP-61 were composed of three domains: catalytic, protease-associated (PA), and fibronectin type III (Fn3)-like domains. The crystal structure revealed that some loops in the PA and catalytic domains of EuRP-61 were different from the other subtilisin-like proteases (cucumisin and SBT3). These different loops might be involved in the general monomer formation of EuRP-61, substrate specificity, and maintenance of the catalytic domain. The Fn3-like domain may provide flexibility to the enzyme to bind with various substrates and cell receptors. Additionally, the active site of EuRP-61 consisted of the catalytic triad of Ser434, His106, and Asp32, similar to other serine proteases. The present study provides additional information and insight into the protease and antithrombotic activities of EuRP-61, which could contribute to further development of this enzyme for biomedical treatment.
Collapse
Affiliation(s)
- Jaruwan Siritapetawee
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jakrada Attarataya
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | | |
Collapse
|
5
|
Fang Y, Xiao H. The Aspartic Protease Yps3p and Cell Wall Glucanase Scw10p Are Novel Determinants That Enhance the Secretion of the Antitumor Triterpenoid GA-HLDOA in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:2917-2926. [PMID: 35969118 DOI: 10.1021/acssynbio.2c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Efficient bioproduction of triterpenoids is gaining increasing interest because of their significant biological applications; however, the secretion and bioproduction of triterpenoids are hindered by untapped genetic determinants. In our previous study, we observed that different engineered Saccharomyces cerevisiae strains exhibit different abilities for secreting the antitumor triterpenoid ganoderic acid 3-hydroxy-lanosta-8,24-dien-26-oic acid (GA-HLDOA). In the present study, we performed comparative proteomics analyses of the engineered strains and identified two genes, encoding an aspartic protease, YPS3, and a cell wall glucanase, SCW10, as the most effective determinants that enhance the secretion of GA-HLDOA. Compared with this control strain, strain BJ5464-r demonstrated an overexpression of YPS3 and SCW10 resulting in 3.9-fold and 4.7-fold higher secretion of GA-HLDOA, respectively, and these increases were accompanied by an increase in cell permeability. Moreover, compared with the YPS3-overexpressing strain, the SCW10-overexpressing strain had a thinner outer mannan layer. Our findings offer valuable insights into designing microbial cell factories for the efficient secretion of triterpenoids.
Collapse
Affiliation(s)
- Yubo Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| |
Collapse
|
6
|
Paul S, Duhan JS, Jaiswal S, Angadi UB, Sharma R, Raghav N, Gupta OP, Sheoran S, Sharma P, Singh R, Rai A, Singh GP, Kumar D, Iquebal MA, Tiwari R. RNA-Seq Analysis of Developing Grains of Wheat to Intrigue Into the Complex Molecular Mechanism of the Heat Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:904392. [PMID: 35720556 PMCID: PMC9201344 DOI: 10.3389/fpls.2022.904392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Heat stress is one of the significant constraints affecting wheat production worldwide. To ensure food security for ever-increasing world population, improving wheat for heat stress tolerance is needed in the presently drifting climatic conditions. At the molecular level, heat stress tolerance in wheat is governed by a complex interplay of various heat stress-associated genes. We used a comparative transcriptome sequencing approach to study the effect of heat stress (5°C above ambient threshold temperature of 20°C) during grain filling stages in wheat genotype K7903 (Halna). At 7 DPA (days post-anthesis), heat stress treatment was given at four stages: 0, 24, 48, and 120 h. In total, 115,656 wheat genes were identified, including 309 differentially expressed genes (DEGs) involved in many critical processes, such as signal transduction, starch synthetic pathway, antioxidant pathway, and heat stress-responsive conserved and uncharacterized putative genes that play an essential role in maintaining the grain filling rate at the high temperature. A total of 98,412 Simple Sequences Repeats (SSR) were identified from de novo transcriptome assembly of wheat and validated. The miRNA target prediction from differential expressed genes was performed by psRNATarget server against 119 mature miRNA. Further, 107,107 variants including 80,936 Single nucleotide polymorphism (SNPs) and 26,171 insertion/deletion (Indels) were also identified in de novo transcriptome assembly of wheat and wheat genome Ensembl version 31. The present study enriches our understanding of known heat response mechanisms during the grain filling stage supported by discovery of novel transcripts, microsatellite markers, putative miRNA targets, and genetic variant. This enhances gene functions and regulators, paving the way for improved heat tolerance in wheat varieties, making them more suitable for production in the current climate change scenario.
Collapse
Affiliation(s)
- Surinder Paul
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, India
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
- ICAR, National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, India
| | | | - Sarika Jaiswal
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavappa B. Angadi
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ruchika Sharma
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Nishu Raghav
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Om Prakash Gupta
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sonia Sheoran
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Rajender Singh
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Rai
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Dinesh Kumar
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
- Department of Biotechnology, Central University of Haryana, Gurgaon, India
| | - Mir Asif Iquebal
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratan Tiwari
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
7
|
Kowalczewski PŁ, Olejnik A, Świtek S, Bzducha-Wróbel A, Kubiak P, Kujawska M, Lewandowicz G. Bioactive compounds of potato ( Solanum tuberosum L.) juice: from industry waste to food and medical applications. CRITICAL REVIEWS IN PLANT SCIENCES 2022; 41:52-89. [DOI: 10.1080/07352689.2022.2057749] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Stanisław Świtek
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Kubiak
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Grażyna Lewandowicz
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
8
|
HERRERA MELANIEDGÓMEZ, LUACES PAULAALAYÓN, LIGGIERI CONSTANZA, BRUNO MARIELA, AVANZA MARÍAVICTORIA. Proteolytic characterization of a novel enzymatic extract from Bromelia serra leaves. AN ACAD BRAS CIENC 2022; 94:e20201871. [DOI: 10.1590/0001-3765202220201871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- MELANIE D. GÓMEZ HERRERA
- Instituto de Química Básica y Aplicada del Nordeste Argentino- IQUIBA NEA (UNNE-CONICET), Argentina; Universidad Nacional del Nordeste, Argentina
| | | | | | - MARIELA BRUNO
- Centro de Investigación de Proteínas Vegetales (CIProVe), Argentina
| | - MARÍA VICTORIA AVANZA
- Instituto de Química Básica y Aplicada del Nordeste Argentino- IQUIBA NEA (UNNE-CONICET), Argentina
| |
Collapse
|
9
|
Mesas FA, Terrile MC, Silveyra MX, Zuñiga A, Rodriguez MS, Casalongué CA, Mendieta JR. The Water-Soluble Chitosan Derivative, N-Methylene Phosphonic Chitosan, Is an Effective Fungicide against the Phytopathogen Fusarium eumartii. THE PLANT PATHOLOGY JOURNAL 2021; 37:533-542. [PMID: 34897246 PMCID: PMC8666248 DOI: 10.5423/ppj.oa.06.2021.0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/18/2021] [Indexed: 05/05/2023]
Abstract
Chitosan has been considered an environmental-friendly polymer. However, its use in agriculture has not been extended yet due to its relatively low solubility in water. N-Methylene phosphonic chitosan (NMPC) is a water-soluble derivative prepared by adding a phosphonic group to chitosan. This study demonstrates that NMPC has a fungicidal effect on the phytopathogenic fungus Fusarium solani f. sp. eumartii (F. eumartii) judged by the inhibition of F. eumartti mycelial growth and spore germination. NMPC affected fungal membrane permeability, reactive oxygen species production, and cell death. Also, this chitosan-derivative exerted antifungal effects against two other phytopathogens, Botrytis cinerea, and Phytophthora infestans. NMPC did not affect tomato cell viability at the same doses applied to these phytopathogens to exert fungicide action. In addition to water solubility, the selective biological cytotoxicity of NMPC adds value in its application as an antimicrobial agent in agriculture.
Collapse
Affiliation(s)
- Florencia Anabel Mesas
- Instituto de Investigaciones Biológicas, UE CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250 (7600) Mar del Plata,
Argentina
| | - María Cecilia Terrile
- Instituto de Investigaciones Biológicas, UE CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250 (7600) Mar del Plata,
Argentina
| | - María Ximena Silveyra
- Instituto de Investigaciones Biológicas, UE CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250 (7600) Mar del Plata,
Argentina
| | - Adriana Zuñiga
- INQUISUR, Departamento de Química, Universidad Nacional del Sur-CONICET, Av. Alem 1253, (8000) Bahía Blanca,
Argentina
| | - María Susana Rodriguez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur-CONICET, Av. Alem 1253, (8000) Bahía Blanca,
Argentina
| | - Claudia Anahí Casalongué
- Instituto de Investigaciones Biológicas, UE CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250 (7600) Mar del Plata,
Argentina
- Co-corresponding authors: C. Casalongué, Phone) +54-223-4753030, FAX) +54-223-4724143, E-mail)
| | - Julieta Renée Mendieta
- Instituto de Investigaciones Biológicas, UE CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250 (7600) Mar del Plata,
Argentina
- Co-corresponding authors: C. Casalongué, Phone) +54-223-4753030, FAX) +54-223-4724143, E-mail)
| |
Collapse
|
10
|
Zhao X, Ma X, Dupius JH, Qi R, Tian JJ, Chen J, Ou X, Qian Z, Liang D, Wang P, Yada RY, Wang S. Negatively charged phospholipids accelerate the membrane fusion activity of the plant-specific insert domain of an aspartic protease. J Biol Chem 2021; 298:101430. [PMID: 34801553 PMCID: PMC8683733 DOI: 10.1016/j.jbc.2021.101430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022] Open
Abstract
Various plants use antimicrobial proteins/peptides to resist phytopathogens. In the potato, Solanum tuberosum, the plant-specific insert (PSI) domain of an aspartic protease performs this role by disrupting phytopathogen plasma membranes. However, the mechanism by which PSI selects target membranes has not been elucidated. Here, we studied PSI-induced membrane fusion, focusing on the effects of lipid composition on fusion efficiency. Membrane fusion by the PSI involves an intermediate state whereby adjacent liposomes share their bilayers. We found that increasing the concentration of negatively charged phosphatidylserine (PS) phospholipids substantially accelerated PSI-mediated membrane fusion. NMR data demonstrated that PS did not affect the binding between the PSI and liposomes but had seminal effects on the dynamics of PSI interaction with liposomes. In PS-free liposomes, the PSI underwent significant motion, which was suppressed on PS-contained liposomes. Molecular dynamics simulations showed that the PSI binds to PS-containing membranes with a dominant angle ranging from −31° to 30°, with respect to the bilayer, and is closer to the membrane surfaces. In contrast, PSI is mobile and exhibits multiple topological states on the surface of PS-free membranes. Taken together, our data suggested that PS lipids limit the motion of the anchored PSI, bringing it closer to the membrane surface and efficiently bridging different liposomes to accelerate fusion. As most phytopathogens have a higher content of negatively charged lipids as compared with host cells, these results indicate that the PSI selectively targets negatively charged lipids, which likely represents a way of distinguishing the pathogen from the host.
Collapse
Affiliation(s)
- Xiaoli Zhao
- College of Chemistry and Molecular Engineering and Beijing NMR Center, Peking University, Beijing, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Beijing National Laboratory for Molecular Sciences, Beijing, China
| | - Xiaomin Ma
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - John H Dupius
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ruxi Qi
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Jenny Jingxin Tian
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiaxin Chen
- College of Chemistry and Molecular Engineering and Beijing NMR Center, Peking University, Beijing, China
| | - Xiuyuan Ou
- MOH Key Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Zhaohui Qian
- MOH Key Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Dehai Liang
- College of Chemistry and Molecular Engineering and Beijing NMR Center, Peking University, Beijing, China
| | - Peiyi Wang
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China.
| | - Rickey Y Yada
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Shenlin Wang
- College of Chemistry and Molecular Engineering and Beijing NMR Center, Peking University, Beijing, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Beijing National Laboratory for Molecular Sciences, Beijing, China.
| |
Collapse
|
11
|
Godson A, van der Hoorn RAL. The front line of defence: a meta-analysis of apoplastic proteases in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3381-3394. [PMID: 33462613 PMCID: PMC8042752 DOI: 10.1093/jxb/eraa602] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/23/2020] [Indexed: 05/13/2023]
Abstract
Secreted proteases act at the front line of defence and play pivotal roles in disease resistance. However, the criteria for apoplastic immune proteases are not always defined and followed. Here, we critically reviewed 46 apoplastic proteases that function in plant defence. We found that most apoplastic immune proteases are induced upon infection, and 17 proteases are genetically required for the immune response. Proteolytic activity has been confirmed for most of the proteases but is rarely shown to be required for biological function, and the apoplastic location of proteases can be subjective and dynamic. Pathogen-derived inhibitors have only been described for cysteine and serine proteases, and the selection pressure acting on immune proteases is rarely investigated. We discuss six different mechanisms by which these proteases mediate plant immunity and summarize the challenges for future research.
Collapse
Affiliation(s)
- Alice Godson
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
12
|
Ibañez IL, Muñoz FF, Zoppi J, Abaurrea RA, Scandogliero EA, Durán H, Guevara MG. In vivo tumor growth inhibition by Solanum tuberosum aspartic protease 3 (StAP3) treatment. Bioorg Med Chem Lett 2021; 41:127959. [PMID: 33766772 DOI: 10.1016/j.bmcl.2021.127959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Solanum tuberosum aspartic Proteases (StAPs) show selective plasma membrane permeabilization, inducing cytotoxicity of cancer cells versus normal cells in vitro. Herein, we aimed to evaluate both StAP3 systemic toxicity and antitumoral activity against human melanoma in vivo. The toxicity of a single high dose of StAP3 (10 µg/g body weight, intraperitoneally) was assessed in a Balb/c mice model. Subcutaneous A375 human melanoma xenografts in athymic nude (nu/nu) mice were induced. Once tumors developed (mean larger dimension = 3.8 ± 0.09 mm), mice were StAP3-treated (6 µg/g body weight, subcutaneously under the tumor at a single dose). For both models, controls were treated with physiologic saline solution. StAP3-treated mice showed a significant inhibition of tumor growth (p < 0.05) compared with controls. No signs of toxicity were detected in StAP3-treated mice in both models. These results suggest the potential of these plant proteases as anticancer agents.
Collapse
Affiliation(s)
- Irene L Ibañez
- Institute of Nanoscience and Nanotechnology (INN), National Atomic Energy Commission (CNEA), National Scientific and Technical Research Council (CONICET), Constituyentes Node, Av. General Paz 1499, (B1650KNA) San Martín, Buenos Aires, Argentina
| | - Fernando F Muñoz
- Biological Research Institute, National Council of Scientific and Technique Research (IIB-CONICET), Funes 3250 7600, Mar del Plata, Argentina; National University of Mar del Plata, School of Science, 7600 Mar del Plata, Argentina
| | - Jorge Zoppi
- Hospital of Community. Laboratory of Pathology B7602CMB Mar del Plata, Argentina
| | - Ricardo A Abaurrea
- Laboratory of Clinical and Bacteriological Analysis (BAS), 7600 Mar del Plata, Argentina
| | - Eduardo A Scandogliero
- Laboratory of Clinical and Bacteriological Analysis (BAS), 7600 Mar del Plata, Argentina
| | - Hebe Durán
- Institute of Nanoscience and Nanotechnology (INN), National Atomic Energy Commission (CNEA), National Scientific and Technical Research Council (CONICET), Constituyentes Node, Av. General Paz 1499, (B1650KNA) San Martín, Buenos Aires, Argentina.
| | - María Gabriela Guevara
- Biological Research Institute, National Council of Scientific and Technique Research (IIB-CONICET), Funes 3250 7600, Mar del Plata, Argentina; National University of Mar del Plata, School of Science, 7600 Mar del Plata, Argentina.
| |
Collapse
|
13
|
Antibacterial Effectiveness of Four Concentrations of the Hydroalcoholic Extract of Solanum tuberosum ( Tocosh) against Streptococcus mutans ATCC 25175 TM: A Comparative In Vitro Study. Int J Dent 2020; 2020:8856382. [PMID: 33082785 PMCID: PMC7556267 DOI: 10.1155/2020/8856382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022] Open
Abstract
Objective. To determine the in vitro antibacterial effect of four concentrations of the hydroalcoholic extract of Solanum tuberosum “tocosh” (HET) against Streptococcus mutans ATCC 25175TM. Methods. This was a prospective, experimental, comparative study. Fermented tocosh was subjected to hydric stress to obtain a hydroalcoholic extract at four different concentrations: 100%, 50%, 75%, and 25%. S. mutans strains were cultured in brain heart infusion agar using the swab technique. The antibacterial effectiveness of HET was evaluated following the Kirby–Bauer disk diffusion method and compared with 0.12% chlorhexidine (positive control group). Results. The highest mean inhibitory effect was achieved with HET at 100% (33.1 ± 2.2 mm, showing a gradual reduction in the other HET groups at 75%, 50%, and 25% (29.7 ± 1.3 mm, 26.6 ± 2.0, and 20.1 ± 1.8 mm, respectively)). Inferential analysis found statistically significant differences among all the experimental groups (p=0.001). The post hoc analysis also showed significant differences among all the experimental groups evaluated; however, there were no significant differences between HET 50% and chlorhexidine 0.12% (p>0.05). Conclusions. It was found that the highest antibacterial effectiveness was obtained by HET 100%, being even higher than the 0.12% chlorhexidine positive control, and was statistically significant. Post hoc analysis showed that almost all the concentrations showed optimal efficacy against S. mutans.
Collapse
|
14
|
Lin B, Qing X, Liao J, Zhuo K. Role of Protein Glycosylation in Host-Pathogen Interaction. Cells 2020; 9:E1022. [PMID: 32326128 PMCID: PMC7226260 DOI: 10.3390/cells9041022] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Host-pathogen interactions are fundamental to our understanding of infectious diseases. Protein glycosylation is one kind of common post-translational modification, forming glycoproteins and modulating numerous important biological processes. It also occurs in host-pathogen interaction, affecting host resistance or pathogen virulence often because glycans regulate protein conformation, activity, and stability, etc. This review summarizes various roles of different glycoproteins during the interaction, which include: host glycoproteins prevent pathogens as barriers; pathogen glycoproteins promote pathogens to attack host proteins as weapons; pathogens glycosylate proteins of the host to enhance virulence; and hosts sense pathogen glycoproteins to induce resistance. In addition, this review also intends to summarize the roles of lectin (a class of protein entangled with glycoprotein) in host-pathogen interactions, including bacterial adhesins, viral lectins or host lectins. Although these studies show the importance of protein glycosylation in host-pathogen interaction, much remains to be discovered about the interaction mechanism.
Collapse
Affiliation(s)
- Borong Lin
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Xue Qing
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Jinling Liao
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Kan Zhuo
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Sebastián D, Fernando FD, Raúl DG, Gabriela GM. Overexpression of Arabidopsis aspartic protease APA1 gene confers drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110406. [PMID: 32005402 DOI: 10.1016/j.plantsci.2020.110406] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 05/12/2023]
Abstract
Drought is an environmental stress that severely affects plant growth and crop production. Different studies have focused on drought responses but the molecular bases that regulate these mechanisms are still unclear. We report the participation of Aspartic Protease (APA1) in drought tolerance. Overexpressing APA1 Arabidopsis plants (OE-APA1), showed a phenotype more tolerant to drought compared with WT. On the contrary, apa1 insertional lines were more sensitive to this stress compared to WT plants. Morphological and physiological differences related with the water loss were observed between leaves of OE- APA1 and WT plants. OE-APA1 leaves showed lower stomata index and stomata density as well as a smaller of the stomatic aperture compared to WT plants. qPCR analysis in OE-APA1 leaves, showed higher expression levels of genes related to ABA signaling and synthesis. Analysis of plant lines expressing APA1 promoter fused to GUS showed that APA1 is expressed in epidermal and stomata cells. In summary, this work suggests that APA1 is involved in ABA-dependent response that its overexpression confers drought tolerance in Arabidopsis.
Collapse
Affiliation(s)
- D'Ippólito Sebastián
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - Fiol Diego Fernando
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - Daleo Gustavo Raúl
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - Guevara María Gabriela
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina.
| |
Collapse
|
16
|
Cotabarren J, Lufrano D, Parisi MG, Obregón WD. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110398. [PMID: 32005400 DOI: 10.1016/j.plantsci.2019.110398] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Protease inhibitors (PIs) are regulatory proteins found in numerous animal tissues and fluids, plants, and microorganisms that reduce and inhibit the exacerbated and uncontrolled activity of the target proteases. Specific PIs are also effective tools for inactivating proteases involved in human diseases like arthritis, pancreatitis, hepatitis, cancer, AIDS, thrombosis, emphysema, hypertension, and muscular dystrophy among others. Plant PIs-small peptides with a high content of cystine residues in disulfide bridges-possess a remarkable resistance to heat treatment and a high stability against shifts in pH, denaturing agents, ionic strength, and proteolysis. In recent years, novel biologic activities have been reported for plant PIs, including antimicrobial, anticoagulant, antioxidant action plus inhibition of tumor-cell growth; thus pointing to possible applications in medicine, agriculture, and biotechnology. In this review, we provide a comparative overview of plant-PIs classifying them in four groups according of their thermal and pH stability (high stability and hyperstable -to temperature and to pHs-, respectively), then emphasizing the relevance of the physicochemical characteristics of these proteins for potential biotechnological and industrial applications. Finally, we analyze the biologic activities of the stable protease inhibitors previously characterized that are the most relevant to potential applications in biomedicine, the food industry, and agriculture.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Daniela Lufrano
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Mónica Graciela Parisi
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján, 6700, Buenos Aires, Argentina.
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| |
Collapse
|
17
|
Antifungal and antimicrobial proteins and peptides of potato (Solanum tuberosum L.) tubers and their applications. Appl Microbiol Biotechnol 2019; 103:5533-5547. [PMID: 31144014 DOI: 10.1007/s00253-019-09887-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/13/2023]
Abstract
Potato proteins are well known for their nutritional, emulsifying, foaming, gel forming or antioxidant properties that all make from them valuable protein source for food industry. Antifungal, antimicrobial and also antiviral properties, described for potato proteins in the review, enrich the possibilities of potato protein usage. Potato proteins were divided into patatin, protease inhibitors and fraction of other proteins that also included, besides others, proteins involved in potato defence physiology. All these proteins groups provide proteins and peptides with antifungal and/or antimicrobial actions. Patatins, obtained from cultivars with resistance to Phytophthora infestans, were able to inhibit spore germination of this pathogen. Protease inhibitors represent the structurally heterogeneous group with broad range of antifungal and antimicrobial activities. Potato protease inhibitors I and II reduced the growth of Phytophthora infestans, Rhizoctonia solani and Botrytis cinerea or of the fungi of Fusarium genus. Members of Kunitz family (proteins Potide-G, AFP-J, Potamin-1 or PG-2) were able to inhibit serious pathogens such as Staphylococcus aureus, Listeria monocytogenes, Escherichia coli or Candida albicans. Potato snakins, defensins and pseudothionins are discussed for their ability to inhibit serious potato fungi as well as bacterial pathogens. Potato proteins with the ability to inhibit growth of pathogens were used for developing of pathogen-resistant transgenic plants for crop improvement. Incorporation of potato antifungal and antimicrobial proteins in feed and food products or food packages for elimination of hygienically risk pathogens brings new possibility of potato protein usage.
Collapse
|
18
|
Díaz ME, Rocha GF, Kise F, Rosso AM, Guevara MG, Parisi MG. Antimicrobial activity of an aspartic protease from Salpichroa origanifolia fruits. Lett Appl Microbiol 2018; 67:168-174. [PMID: 29740840 DOI: 10.1111/lam.13006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/09/2018] [Accepted: 04/24/2018] [Indexed: 02/03/2023]
Abstract
Plant proteases play a fundamental role in several processes like growth, development and in response to biotic and abiotic stress. In particular, aspartic proteases (AP) are expressed in different plant organs and have antimicrobial activity. Previously, we purified an AP from Salpichroa origanifolia fruits called salpichroin. The aim of this work was to determine the cytotoxic activity of this enzyme on selected plant and human pathogens. For this purpose, the growth of the selected pathogens was analysed after exposure to different concentrations of salpichroin. The results showed that the enzyme was capable of inhibiting Fusarium solani and Staphylococcus aureus in a dose-dependent manner. It was determined that 1·2 μmol l-1 of salpichroin was necessary to inhibit 50% of conidial germination, and the minimal bactericidal concentration was between 1·9 and 2·5 μmol l-1 . Using SYTOX Green dye we were able to demonstrate that salpichroin cause membrane permeabilization. Moreover, the enzyme treated with its specific inhibitor pepstatin A did not lose its antibacterial activity. This finding demonstrates that the cytotoxic activity of salpichroin is due to the alteration of the cell plasma membrane barrier but not due to its proteolytic activity. Antimicrobial activity of the AP could represent a potential alternative for the control of pathogens that affect humans or crops of economic interest. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides insights into the antimicrobial activity of an aspartic protease isolated from Salpichroa origanifolia fruits on plant and human pathogens. The proteinase inhibited Fusarium solani and Staphylococcus aureus in a dose-dependent manner due to the alteration of the cell plasma membrane barrier but not due to its proteolytic activity. Antimicrobial activity of salpichroin suggests its potential applications as an important tool for the control of pathogenic micro-organisms affecting humans and crops of economic interest. Therefore, it would represent a new alternative to avoid the problems of environmental pollution and antimicrobial resistance.
Collapse
Affiliation(s)
- M E Díaz
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
| | - G F Rocha
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
| | - F Kise
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
| | - A M Rosso
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
| | - M G Guevara
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina.,Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - M G Parisi
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
| |
Collapse
|
19
|
Frey ME, D'Ippolito S, Pepe A, Daleo GR, Guevara MG. Transgenic expression of plant-specific insert of potato aspartic proteases (StAP-PSI) confers enhanced resistance to Botrytis cinerea in Arabidopsis thaliana. PHYTOCHEMISTRY 2018; 149:1-11. [PMID: 29428248 DOI: 10.1016/j.phytochem.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 05/20/2023]
Abstract
The plant-specific insert of Solanum tuberosum aspartic proteases (StAP-PSI) has high structural similarity with NK-lysin and granulysin, two saposin-like proteins (SAPLIPs) with antimicrobial activity. Recombinant StAP-PSI and some SAPLIPs show antimicrobial activity against pathogens that affect human and plants. In this work, we transformed Arabidopsis thaliana plants with StAP-PSI encoding sequence with its corresponding signal peptide under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Results obtained show that StAP-PSI significantly enhances Arabidopsis resistance against Botrytis cinerea infection. StAP-PSI is secreted into the leaf apoplast and acts directly against pathogens; thereby complementing plant innate immune responses. Data obtained from real-time PCR assays show that the constitutive expression of StAP-PSI induces the expression of genes that regulate jasmonic acid signalling pathway, such as PDF1.2, in response to infection due to necrotrophic pathogens. On the other hand, according to the data described for other antimicrobial peptides, the presence of the StAP-PSI protein in the apoplast of A. thaliana leaves is responsible for the expression of salicylic acid-associated genes, such as PR-1, irrespective of infection with B. cinerea. These results indicate that the increased resistance demonstrated by A. thaliana plants that constitutively express StAP-PSI owing to B. cinerea infection compared to the wild-type plants is a consequence of two factors, i.e., the antifungal activity of StAP-PSI and the overexpression of A. thaliana defense genes induced by the constitutive expression of StAP-PSI. We suggest that the use of this protein would help in minimizing the ecological and health risks that arise from the use of pesticides. We suggest that the use of this protein would help in minimizing the ecological and health risks that arise from the spreading of resistance of agriculturally important pathogens.
Collapse
Affiliation(s)
- María Eugenia Frey
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - Sebastián D'Ippolito
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - Alfonso Pepe
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - Gustavo Raúl Daleo
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - María Gabriela Guevara
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina.
| |
Collapse
|
20
|
Bryksa BC, Yada RY. Protein Structure Insights into the Bilayer Interactions of the Saposin-Like Domain of Solanum tuberosum Aspartic Protease. Sci Rep 2017; 7:16911. [PMID: 29208977 PMCID: PMC5717070 DOI: 10.1038/s41598-017-16734-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
Many plant aspartic proteases contain a saposin-like domain whose principal functions are intracellular sorting and host defence. Its structure is characterised by helical segments cross-linked by three highly conserved cystines. The present study on the saposin-like domain of Solanum tuberosum aspartic protease revealed that acidification from inactive to active conditions causes dimerisation and a strand-to-helix secondary structure transition independent of bilayer interaction. Bilayer fusion was shown to occur under reducing conditions yielding a faster shift to larger vesicle sizes relative to native conditions, implying that a lower level structural motif might be bilayer-active. Characterisation of peptide sequences based on the domain’s secondary structural regions showed helix-3 to be active (~4% of the full domain’s activity), and mutation of its sole positively charged residue resulted in loss of activity and disordering of structure. Also, the peptides’ respective circular dichroism spectra suggested that native folding within the full domain is dependent on surrounding structure. Overall, the present study reveals that the aspartic protease saposin-like domain active structure is an open saposin fold dimer whose formation is pH-dependent, and that a bilayer-active motif shared among non-saposin membrane-active proteins including certain plant defence proteins is nested within an overall structure essential for native functionality.
Collapse
Affiliation(s)
- Brian C Bryksa
- Ontario Agricultural College, University of Guelph, N1G 2W1, Guelph, Ontario, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada.
| |
Collapse
|
21
|
Balakireva AV, Kuznetsova NV, Petushkova AI, Savvateeva LV, Zamyatnin AA. Trends and Prospects of Plant Proteases in Therapeutics. Curr Med Chem 2017; 26:465-486. [PMID: 29173148 DOI: 10.2174/0929867325666171123204403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/19/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
The main function of proteases in any living organism is the cleavage of proteins resulting in the degradation of damaged, misfolded and potentially harmful proteins and therefore providing the cell with amino acids essential for the synthesis of new proteins. Besides this main function, proteases may play an important role as signal molecules and participate in numerous protein cascades to maintain the vital processes of an organism. Plant proteases are no exception to this rule. Moreover, in contrast to humanencoded enzymes, many plant proteases possess exceptional features such as higher stability, unique substrate specificity and a wide pH range for enzymatic activity. These valuable features make plant-derived proteolytic enzymes suitable for many biomedical applications, and furthermore, the plants can serve as factories for protein production. Plant proteases are already applied in the treatment of several pathological conditions in the human organism. Some of the enzymes possess antitumour, antibacterial and antifungal activity. The collagenolytic activity of plant proteases determines important medical applications such as the healing of wounds and burn debridement. Plant proteases may affect blood coagulation processes and can be applied in the treatment of digestive disorders. The present review summarizes recent advances and possible applications for plant proteases in biomedicine, and proposes further development of plant-derived proteolytic enzymes in the biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
- Anastasia V Balakireva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation
| | - Natalia V Kuznetsova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation
| | | | - Lyudmila V Savvateeva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation
| | - Andrey A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation.,Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russian Federation
| |
Collapse
|
22
|
Bryksa BC, Grahame DA, Yada RY. Comparative structure-function characterization of the saposin-like domains from potato, barley, cardoon and Arabidopsis aspartic proteases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1008-1018. [DOI: 10.1016/j.bbamem.2017.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
|
23
|
Oliveira HP, Silva RGG, Oliveira JTA, Sousa DOB, Pereira ML, Souza PFN, Soares AA, Gomes VM, Monteiro-Moreira ACO, Moreno FBMB, Vasconcelos IM. A novel peroxidase purified from Marsdenia megalantha latex inhibits phytopathogenic fungi mediated by cell membrane permeabilization. Int J Biol Macromol 2017; 96:743-753. [PMID: 28057569 DOI: 10.1016/j.ijbiomac.2016.12.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
Abstract
An antifungal class III peroxidase was purified from Marsdenia megalantha latex (named Mo-POX) using DEAE-cellulose and gel filtration chromatography on a Superose 12 HR 10/30 column. Mm-POX has an apparent molecular mass of 67.0kDa and a pI of 5.2, shares identity with other peroxidases, and follows Michaelis-Menten kinetics. It has a high affinity for guaiacol and hydrogen peroxide. The pH and temperature optima for Mm-POX were 5.0-7.0 and 60°C, respectively. The catalytic activity of Mm-POX was decreased in the presence of classic peroxidase inhibitors including azide, dithiothreitol, ethylenediamine tetraacetic acid, and sodium metabisulfite and high concentrations of Na+, Mn+, and salicylic acid. In contrast, Ca+ and Mg+, even at low concentrations, enhanced the Mm-POX enzymatic activity. This protein inhibited the germination of the conidia of the phytopathogenic fungi Fusarium oxysporum and Fusarium solani by acting through a membrane permeabilization mechanism. Mm-POX also induced oxidative stress in F. solani. Mm-POX is the first enzyme to be isolated from the M. megalantha species and it has potential use in the control of plant disease caused by important phytopathogenic fungi. This adds biotechnological value to this enzyme.
Collapse
Affiliation(s)
- Henrique P Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60440-900 Fortaleza, CE, Brazil; University of International Integration of the Afro-Brazilian Lusophony, 62790-000 Redençao, CE, Brazil
| | - Rodolpho G G Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60440-900 Fortaleza, CE, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60440-900 Fortaleza, CE, Brazil
| | - Daniele O B Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60440-900 Fortaleza, CE, Brazil
| | - Mirella L Pereira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60440-900 Fortaleza, CE, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60440-900 Fortaleza, CE, Brazil
| | - Arlete A Soares
- Department of Biology, Federal University of Ceara, 60440-900 Fortaleza, CE, Brazil
| | - Valdirene M Gomes
- Center of Bioscience and Biotechnology, State University of North Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | | | | | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60440-900 Fortaleza, CE, Brazil.
| |
Collapse
|
24
|
Transcriptome analysis of genes related to resistance against powdery mildew in wheat-Thinopyrum alien addition disomic line germplasm SN6306. Gene 2016; 590:5-17. [PMID: 27265028 DOI: 10.1016/j.gene.2016.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/02/2016] [Accepted: 06/01/2016] [Indexed: 11/21/2022]
Abstract
Wheat powdery mildew, which is mainly caused by Blumeria graminis f. sp. tritici (Bgt), seriously damages wheat production. The wheat-Thinopyrum intermedium alien addition disomic line germplasm SN6306, being one of the important sources of genes for wheat resistance, is highly resistant to Bgt E09 and to many other powdery mildew physiological races. However, knowledge on the resistance mechanism of SN6306 remains limited. Our study employed high-throughput RNA sequencing based on next-generation sequencing technology (Illumina) to obtain an overview of the transcriptome characteristics of SN6306 and its parent wheat Yannong 15 (YN15) during Bgt infection. The sequencing generated 104,773 unigenes, 9909 of which showed varied expression levels. Among the 9909 unigenes, 1678 unigenes showed 0 reads in YN15. The expression levels in Bgt-inoculated SN6306 and YN15 of exactly 39 unigenes that showed 0 or considerably low reads in YN15 were validated to identify the genes involved in Bgt resistance. Among the 39 unigenes, 12 unigenes were upregulated in SN6306 by 3-45 times. These unigenes mainly encoded kinase, synthase, proteases, and signal transduction proteins, which may play an important role in the resistance against Bgt. To confirm whether the unigenes that showed 0 reads in YN15 are really unique to SN6306, 8 unigenes were cloned and sequenced. Results showed that the selected unigenes are more similar to SN6306 and Th. intermedium than to the wheat cultivar YN15. The sequencing results further confirmed that the unigenes showing 0 reads in YN15 are unique to SN6306 and are most likely derived from Th. intermedium (Host) Nevski. Thus, the genes from Th. intermedium most probably conferred the resistance of SN6306 to Bgt.
Collapse
|
25
|
Chen HJ, Huang YH, Huang GJ, Huang SS, Chow TJ, Lin YH. Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence. JOURNAL OF PLANT PHYSIOLOGY 2015; 180:1-17. [PMID: 25886396 DOI: 10.1016/j.jplph.2015.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Plant aspartic proteases are generally divided into three categories: typical, nucellin-like, and atypical aspartic proteases based on their gene and protein structures. In this report, a full-length cDNA SPAP1 was cloned from sweet potato leaves, which contained 1515 nucleotides (504 amino acids) and exhibited high amino acid sequence identity (ca. 51-72%) with plant typical aspartic proteases, including tomato LeAspP, potato StAsp, and wheat WAP2. SPAP1 also contained conserved DTG and DSG amino acid residues within its catalytic domain and plant specific insert (PSI) at the C-terminus. The cDNA corresponding to the mature protein (starting from the 66th to 311th amino acid residues) without PSI domain was constructed with pET30a expression vector for fusion protein and antibody production. RT-PCR and protein blot hybridization showed that SPAP1 expression level was the highest in L3 mature leaves, then gradually declined until L5 completely yellow leaves. Ethephon, an ethylene-releasing compound, also enhanced SPAP1 expression at the time much earlier than the onset of leaf senescence. Exogenous application of SPAP1 fusion protein promoted ethephon-induced leaf senescence, which could be abolished by pre-treatment of SPAP1 fusion protein with (a) 95 °C for 5 min, (b) aspartic protease inhibitor pepstatin A, and (c) anti-SPAP1 antibody, respectively. Exogenous SPAP1 fusion protein, whereas, did not significantly affect leaf senescence under dark. These data conclude that sweet potato SPAP1 is a functional typical aspartic protease and participates in ethephon-mediated leaf senescence. The SPAP1-promoted leaf senescence and its activity are likely not associated with the PSI domain. Interaction of ethephon-inducible components for effective SPAP1 promotion on leaf senescence is also suggested.
Collapse
Affiliation(s)
- Hsien-Jung Chen
- Department of Biological Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan.
| | - Yu-Hsuan Huang
- Department of Biological Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
| | - Guan-Jhong Huang
- Graduate Institute of Chinese Pharmaceutical Sciences, China Medical University, 404 Taichung, Taiwan
| | - Shyh-Shyun Huang
- Graduate Institute of Chinese Pharmaceutical Sciences, China Medical University, 404 Taichung, Taiwan
| | - Te-Jin Chow
- Department of Biotechnology, Fooyin University, 831 Kaohsiung, Taiwan
| | - Yaw-Huei Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, 115 Taipei, Taiwan.
| |
Collapse
|
26
|
Terrile MC, Mansilla AY, Albertengo L, Rodríguez MS, Casalongué CA. Nitric-oxide-mediated cell death is triggered by chitosan in Fusarium eumartii spores. PEST MANAGEMENT SCIENCE 2015; 71:668-74. [PMID: 24764137 DOI: 10.1002/ps.3814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 05/10/2023]
Abstract
BACKGROUND The genus Fusarium comprises a heterogeneous group of fungi important for agriculture. Fusarium solani f. sp. eumartii (F. eumartii), historically considered to be a fungal pathogen of potato, has also been associated with tomato disease. Currently, chitosan and its derivatives have been receiving more attention as environmentally friendly antimicrobial compounds in sustainable practices. The aim of the present work was to characterize downstream events associated with the mode of action of chitosan, including nitrosative reactive species, in order to identify new biomarkers of its cytotoxic action. RESULTS Data indicated that chitosan-mediated nitric oxide (NO) production might lead to conidial death, concomitant with the strong reduction in fungal pathogenicity in tomato plants. Following chitosan applications, a notably dose-dependent reduction in conidial viability was demonstrated in F. eumartii. Thereafter, the infectivity of chitosan-treated spores was tested by a bioassay using tomato seedlings. CONCLUSION All these data highlight NO valuable properties as a quantitative and qualitative biomarker of cytotoxic action of chitosan in conidial cells. In addition, these findings place the chitosan assayed here as a fungicide with a high potential of application in sustainable horticultural practices.
Collapse
Affiliation(s)
- María Cecilia Terrile
- Instituto de Investigaciones Biológicas, UE CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
27
|
Batista AB, Oliveira JTA, Gifoni JM, Pereira ML, Almeida MGG, Gomes VM, Da Cunha M, Ribeiro SFF, Dias GB, Beltramini LM, Lopes JLS, Grangeiro TB, Vasconcelos IM. New insights into the structure and mode of action of Mo-CBP3, an antifungal chitin-binding protein of Moringa oleifera seeds. PLoS One 2014; 9:e111427. [PMID: 25347074 PMCID: PMC4210214 DOI: 10.1371/journal.pone.0111427] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/27/2014] [Indexed: 11/18/2022] Open
Abstract
Mo-CBP3 is a chitin-binding protein purified from Moringa oleifera Lam. seeds that displays inhibitory activity against phytopathogenic fungi. This study investigated the structural properties and the antifungal mode of action of this protein. To this end, circular dichroism spectroscopy, antifungal assays, measurements of the production of reactive oxygen species and microscopic analyses were utilized. Mo-CBP3 is composed of 30.3% α-helices, 16.3% β-sheets, 22.3% turns and 30.4% unordered forms. The Mo-CBP3 structure is highly stable and retains its antifungal activity regardless of temperature and pH. Fusarium solani was used as a model organism for studying the mechanisms by which this protein acts as an antifungal agent. Mo-CBP3 significantly inhibited spore germination and mycelial growth at 0.05 mg.mL-1. Mo-CBP3 has both fungistatic and fungicidal effects, depending on the concentration used. Binding of Mo-CBP3 to the fungal cell surface is achieved, at least in part, via electrostatic interactions, as salt was able to reduce its inhibitory effect. Mo-CBP3 induced the production of ROS and caused disorganization of both the cytoplasm and the plasma membrane in F. solani cells. Based on its high stability and specific toxicity, with broad-spectrum efficacy against important phytopathogenic fungi at low inhibitory concentrations but not to human cells, Mo-CBP3 has great potential for the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogens.
Collapse
Affiliation(s)
- Adelina B. Batista
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José T. A. Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Juliana M. Gifoni
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Mirella L. Pereira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marina G. G. Almeida
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Valdirene M. Gomes
- Bioscience and Biotecnology Center, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Maura Da Cunha
- Bioscience and Biotecnology Center, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Suzanna F. F. Ribeiro
- Bioscience and Biotecnology Center, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Germana B. Dias
- Bioscience and Biotecnology Center, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Leila M. Beltramini
- Physics Institute of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - José Luiz S. Lopes
- Physics Institute of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | | | - Ilka M. Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
28
|
Muñoz F, Caracciolo PC, Daleo G, Abraham GA, Guevara MG. Evaluation of in vitro cytotoxic activity of mono-PEGylated StAP3 ( Solanum tuberosum aspartic protease 3) forms. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2014; 3:1-7. [PMID: 28626641 PMCID: PMC5466107 DOI: 10.1016/j.btre.2014.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
StAP3 is a plant aspartic protease with cytotoxic activity toward a broad spectrum of pathogens, including potato and human pathogen microorganisms, and cancer cells, but not against human T cells, human red blood cells or plant cells. For this reason, StAP3 could be a promising and potential drug candidate for future therapies. In this work, the improvement of the performance of StAP3 was achieved by means of a modification with PEG. The separation of a mono-PEGylated StAP3 fraction was easily performed by gel filtration chromatography. The mono-PEGylated StAP3 fraction was studied in terms of in vitro antimicrobial activity, exhibiting higher antimicrobial activity against Fusarium solani spores and Bacillus cereus, but slightly lower activity against Escherichia coli than native protein. Such increase in antifungal activity has not been reported previously for a PEGylated plant protein. In addition, PEGylation did not affect the selective cytotoxicity of StAP3, since no hemolytic activity was observed.
Collapse
Key Words
- AMPPs, antimicrobial proteins and peptides
- ATCC, American Type Culture Collection
- Antimicrobial protein
- BSA, bovine serum albumin
- DTT, dithiothreitol
- PBS, phosphate buffered saline
- PDA, potato dextrose agar
- PEG, polyethylene glycol
- PEGylation
- Plant aspartic protease
- SDS, sodium dodecyl sulphate
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- Selective cytotoxicity
- StAP3, Solanum tuberosum aspartic protease 3
- StAsp-PSI, plant-specific insert of potato aspartic protease
- hRBC, Fresh human red blood cells
- mPEG-SVA, succinimidyl valerate monomethoxy polyethylene glycol
Collapse
Affiliation(s)
- Fernando Muñoz
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Pablo C. Caracciolo
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, 7600, Mar del Plata, Argentina
| | - Gustavo Daleo
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Gustavo A. Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, 7600, Mar del Plata, Argentina
| | - M. Gabriela Guevara
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| |
Collapse
|
29
|
Ramos MV, Souza DP, Gomes MTR, Freitas CDT, Carvalho CPS, Júnior PAVR, Salas CE. A Phytopathogenic Cysteine Peptidase from Latex of Wild Rubber Vine Cryptostegia grandiflora. Protein J 2014; 33:199-209. [DOI: 10.1007/s10930-014-9551-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Muñoz F, Palomares-Jerez MF, Daleo G, Villalaín J, Guevara MG. Possible mechanism of structural transformations induced by StAsp-PSI in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:339-47. [DOI: 10.1016/j.bbamem.2013.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 01/19/2023]
|
31
|
Bae C, Kim SM, Lee DJ, Choi D. Multiple classes of immune-related proteases associated with the cell death response in pepper plants. PLoS One 2013; 8:e63533. [PMID: 23696830 PMCID: PMC3656034 DOI: 10.1371/journal.pone.0063533] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/04/2013] [Indexed: 01/07/2023] Open
Abstract
Proteases regulate a large number of biological processes in plants, such as metabolism, physiology, growth, and defense. In this study, we carried out virus-induced gene silencing assays with pepper cDNA clones to elucidate the biological roles of protease superfamilies. A total of 153 representative protease genes from pepper cDNA were selected and cloned into a Tobacco rattle virus-ligation independent cloning vector in a loss-of-function study. Silencing of 61 proteases resulted in altered phenotypes, such as the inhibition of shoot growth, abnormal leaf shape, leaf color change, and lethality. Furthermore, the silencing experiments revealed that multiple proteases play a role in cell death and immune response against avirulent and virulent pathogens. Among these 153 proteases, 34 modulated the hypersensitive cell death response caused by infection with an avirulent pathogen, and 16 proteases affected disease symptom development caused by a virulent pathogen. Specifically, we provide experimental evidence for the roles of multiple protease genes in plant development and immune defense following pathogen infection. With these results, we created a broad sketch of each protease function. This information will provide basic information for further understanding the roles of the protease superfamily in plant growth, development, and defense.
Collapse
Affiliation(s)
- Chungyun Bae
- Department of Plant Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Su-min Kim
- Department of Plant Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Dong Ju Lee
- Higher Education Center for Bioregulator Research, Chonnam National University, Gwangju, Korea
| | - Doil Choi
- Department of Plant Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
32
|
Hydrolytic enzymes and quorum sensing inhibitors from endophytic fungi of Ventilago madraspatana Gaertn. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2013. [DOI: 10.1016/j.bcab.2013.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
|
34
|
Muñoz F, Palomares-Jerez MF, Daleo G, Villalaín J, Guevara MG. Cholesterol and membrane phospholipid compositions modulate the leakage capacity of the swaposin domain from a potato aspartic protease (StAsp-PSI). Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1038-44. [DOI: 10.1016/j.bbalip.2011.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/08/2011] [Accepted: 08/03/2011] [Indexed: 12/26/2022]
|
35
|
Souza DP, Freitas CDT, Pereira DA, Nogueira FC, Silva FDA, Salas CE, Ramos MV. Laticifer proteins play a defensive role against hemibiotrophic and necrotrophic phytopathogens. PLANTA 2011; 234:183-193. [PMID: 21394468 DOI: 10.1007/s00425-011-1392-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/22/2011] [Indexed: 05/30/2023]
Abstract
Proteins from latex of Calotropis procera (CpLP), Plumeria rubra (PrLP), Carica candamarcensis (P1G10) and Euphorbia tirucalli (EtLP) were tested for antifungal activity against phytopathogens. CpLP and P1G10 inhibited each fungi analyzed. PrLP and EtLP did not exert inhibition. CpLP and P1G10 exhibited preferential inhibitory activity towards R. solani (IC₅₀ = 20.7 and 25.3 µg/ml, respectively). The inhibitory activity was lost after heat treatment or proteolysis, providing evidence for the involvement of proteins in the inhibitory effect. Treatment of CpLP or P1G10 with Dithiothreitol improved both, the endogenous proteolytic activity and the antifungal properties. Conversely, pre-treatment of CpLP or P1G10 with iodoacetamide drastically reduced endogenous proteolytic activities and partially abrogated antifungal activity. Similar results were observed when spores were challenged to germinate in the presence of laticifer proteins. The purified cysteine proteinase CMS2MS2 from Carica candamarcensis latex or papain (E.C. 3.4.22.2), a cysteine proteinase from latex of Carica papaya L., but not trypsin (EC 3.4.21.4) or chymotrypsin (EC 3.4.21.1), two serine proteases, replicated the results obtained with CpLP or P1G10, thus restricting the antifungal property to latex plant cysteine proteinases. CpLP, CMS2MS2 and papain induced production of reactive oxygen species in spores of F. solani, suggesting that inhibition could be linked to oxidative stress. Proteome analysis of CpLP by 2-D electrophoresis and MALDI-TOF-TOF confirmed the existence of various pathogenic-related proteins such as chitinases, peroxidases and osmotins. The results support that laticifer proteins are part of plant defense repertoire against phytopathogenic fungi.
Collapse
Affiliation(s)
- Diego P Souza
- Departamento de Bioquímica e Biologia, Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, Ceará, CEP 60451-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
The inter-generic fungicidal activity of Xanthophyllomyces dendrorhous. J Microbiol 2011; 48:822-8. [PMID: 21221941 DOI: 10.1007/s12275-010-0180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/22/2010] [Indexed: 10/18/2022]
Abstract
In this study, the existence of intra-specific and inter-generic fungicidal activity in Xanthophyllomyces dendrorhous and Phaffia rhodozyma strains isolated from different regions of the earth was examined. Assays were performed under several culture conditions, showing that all the analyzed X. dendrorhous and P. rhodozyma strains have killing activity against Kloeckera apiculata, Rhodotorula sloffiae, and R. minuta. This activity was greater in rich media at a pH from 4.6 to 5.0. Extracellular protein extracts with fungicidal activity were obtained from cultures of all strains, and their characterization suggested that a protein of 33 kDa is the antifungal factor. According to peptide mass fingerprinting and an analysis of the results with the MASCOT search engine, this protein was identified as an aspartic protease. Additionally, extrachromosomal double-stranded DNA elements (dsDNAs) were observed in all X. dendrorhous and P. rhodozyma strains. Although there is a high variability, two dsDNAs of 5.4 and 6.8 kb are present in all strains.
Collapse
|
37
|
Native and Biotechnologically Engineered Plant Proteases with Industrial Applications. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0431-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Muñoz FF, Mendieta JR, Pagano MR, Paggi RA, Daleo GR, Guevara MG. The swaposin-like domain of potato aspartic protease (StAsp-PSI) exerts antimicrobial activity on plant and human pathogens. Peptides 2010; 31:777-85. [PMID: 20153392 DOI: 10.1016/j.peptides.2010.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 02/03/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
Plant-specific insert domain (PSI) is a region of approximately 100 amino acid residues present in most plant aspartic protease (AP) precursors. PSI is not a true saposin domain; it is the exchange of the N- and C-terminal portions of the saposin like domain. Hence, PSI is called a swaposin domain. Here, we report the cloned, heterologous expression and purification of PSI from StAsp 1 (Solanum tuberosum aspartic protease 1), called StAsp-PSI. Results obtained here show that StAsp-PSI is able to kill spores of two potato pathogens in a dose-dependent manner without any deleterious effect on plant cells. As reported for StAPs (S. tuberosum aspartic proteases), the StAsp-PSI ability to kill microbial pathogens is dependent on the direct interaction of the protein with the microbial cell wall/or membrane, leading to increased permeability and lysis. Additionally, we demonstrated that, like proteins of the SAPLIP family, StAsp-PSI and StAPs are cytotoxic to Gram-negative and Gram-positive bacteria in a dose dependent manner. The amino acid residues conserved in SP_B (pulmonary surfactant protein B) and StAsp-PSI could explain the cytotoxic activity exerted by StAsp-PSI and StAPs against Gram-positive bacteria. These results and data previously reported suggest that the presence of the PSI domain in mature StAPs could be related to their antimicrobial activity.
Collapse
Affiliation(s)
- Fernando F Muñoz
- Plant Biochemistry Laboratory, Biological Research Institute, National Scientific and Technical Research Council, University of Mar del Plata, Mar del Plata 7600, Argentina
| | | | | | | | | | | |
Collapse
|
39
|
Prasad BD, Creissen G, Lamb C, Chattoo BB. Heterologous expression and characterization of recombinant OsCDR1, a rice aspartic proteinase involved in disease resistance. Protein Expr Purif 2010; 72:169-74. [PMID: 20347986 DOI: 10.1016/j.pep.2010.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 11/16/2022]
Abstract
The Oryza sativa constitutive disease resistance 1 (OsCDR1) gene product is an aspartic proteinase that has been implicated in disease resistance signaling. This apoplastic enzyme is a member of the group of 'atypical' plant aspartic proteinases. Recombinant OsCDR1 expressed in Escherichia coli exhibited protease activity against succinylated-casein substrate. Inactivating the enzyme through modification of an aspartate residue present in the deduced active site completely abolished its proteinase activity. Infiltration of the OsCDR1 fusion protein into leaves of Arabidopsis plants induced PR2 transcripts in both the infiltrated leaf (primary) and in non-treated secondary leaves while the inactive recombinant protein failed to induce either local or systemic PR2. These findings demonstrate that OsCDR1 is capable of inducing systemic defense responses in plants.
Collapse
Affiliation(s)
- Bishun Deo Prasad
- Genome Research Centre, Department of Microbiology and Biotechnology Centre, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat 390002, India
| | | | | | | |
Collapse
|
40
|
A defensin with highly potent antipathogenic activities from the seeds of purple pole bean. Biosci Rep 2009; 30:101-9. [PMID: 19335335 DOI: 10.1042/bsr20090004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A 5443 Da peptide with sequence homology to defensins was purified from purple pole beans (Phaseolus vulgaris cv. 'Extra-long Purple Pole bean'). This peptide was isolated by adsorption on an affinity chromatographic medium Affi-Gel Blue gel and ion-exchange chromatographic media SP-Sepharose (sulfopropyl-Sepharose) and Mono S and by gel filtration on Superdex peptide. The peptide inhibited mycelial growth in Mycosphaerella arachidicola, Helminthosporium maydis, Fusarium oxysporum, Verticillium dahliae, Rhizoctonia solani, Candida albicans and Setosphaeria turcica with an IC50 of 0.8, 0.9, 2.3, 3.2, 4.3, 4.8 and 9.8 microM respectively. Its antifungal potency was higher than that of the plant defensin coccinin (IC50>50 microM). It induced membrane permeabilization in C. albicans as evidenced by SYTOX Green uptake, but did not affect erythrocyte membrane permeability. It inhibited growth in M. arachidicola by inducing chitin accumulation at hyphal tips as was shown by Congo Red staining. The antifungal activity was pH stable and thermostable. The peptide inhibited the proliferation of hepatoma (HepG2), breast cancer (MCF7), colon cancer (HT29) and cervical cancer (SiHa) cells but not that of human embryonic liver (WRL68) cells. Its anti-HepG2 activity (IC50=4.1+/-0.8 microM, n=3) was higher than that of another plant defensin, gymnin (IC50>50 microM). Its anti-MCF7 activity (IC50=8.3+/-0.3 microM, n=3) was similar to that of other plant defensins. It reduced the activity of HIV-1 reverse transcriptase with an IC50 of 0.5+/-0.1 microM, n=3, much more potently than other plant defensins (IC50>40 microM). There is the possibility of using the purple pole bean defensin for producing antifungal drugs and/or transgenic plants with fungal resistance.
Collapse
|
41
|
Mendieta JR, Fimognari C, Daleo GR, Hrelia P, Guevara MG. Cytotoxic effect of potato aspartic proteases (StAPs) on Jurkat T cells. Fitoterapia 2009; 81:329-35. [PMID: 19825400 DOI: 10.1016/j.fitote.2009.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/21/2009] [Accepted: 10/05/2009] [Indexed: 11/19/2022]
Abstract
StAPs are potato aspartic proteases with cytotoxic activity against plant pathogens and spermatozoa. StAPs cytotoxic activity is selective, since these proteins do not exert toxic effect on plant cells and erythrocytes. In this work, we investigated the capacity of StAPs to exert cytotoxicity on human leukaemia cells. Obtained results show that StAPs induce apoptosis on Jurkat T cells after a short time of incubation in a dose-dependent manner. However, no significative effect on the T lymphocytes viability was observed at all StAPs incubation times and concentrations tested. These results suggest that StAPs can be conceptually promising leads for cancer therapy.
Collapse
Affiliation(s)
- Julieta R Mendieta
- Institute of Biological Research, University of Mar del Plata, Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
42
|
Mazorra-Manzano MA, Yada RY. Expression and characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana. PHYTOCHEMISTRY 2008; 69:2439-2448. [PMID: 18796341 DOI: 10.1016/j.phytochem.2008.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/16/2008] [Accepted: 07/16/2008] [Indexed: 05/26/2023]
Abstract
The present study reports the recombinant expression, purification, and partial characterization of a typical aspartic proteinase from Arabidopsis thaliana (AtAP A1). The cDNA encoding the precursor of AtAP A1 was expressed as a functional protein using the yeast Pichia pastoris. The mature form of the rAtAP A1 was found to be a heterodimeric glycosylated protein with a molecular mass of 47kDa consisting of heavy and light chain components, approx. 32 and 16kDa, respectively, linked by disulfide bonds. Glycosylation occurred via the plant specific insert in the light chain. The catalytic properties of the rAtAP A1 were similar to other plant aspartic proteinases with activity in acid pH range, maximal activity at pH 4.0, K(m) of 44 microM, and k(cat) of 55 s(-1) using a synthetic substrate. The enzyme was inhibited by pepstatin A.
Collapse
|
43
|
Truernit E, Haseloff J. A simple way to identify non-viable cells within living plant tissue using confocal microscopy. PLANT METHODS 2008; 4:15. [PMID: 18573203 PMCID: PMC2442066 DOI: 10.1186/1746-4811-4-15] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 06/23/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant cell death is a normal process during plant development. Mutant plants may exhibit misregulation of this process, which can lead to severe growth defects. Simple ways of visualising cell death in living plant tissues can aid the study of plant development and physiology. RESULTS Spectral variants of the fluorescent SYTOX dyes were tested for their usefulness for the detection of non-viable cells within plant embryos and roots using confocal laser-scanning microscopy. The dyes were selective for non-viable cells and showed very little background staining in living cells. Simultaneous detection of SYTOX dye and fluorescent protein (e.g. GFP) fluorescence was possible. CONCLUSION The fluorescent SYTOX dyes are useful for an easy and quick first assay of plant cell viability in living plant samples using fluorescence and confocal laser-scanning microscopy.
Collapse
Affiliation(s)
- Elisabeth Truernit
- University of Cambridge, Department of Plant Sciences, Downing Site, Cambridge, CB2 3EA, UK
- INRA, Centre de Versailles, Institut Jean-Pierre Bourgin, Laboratoire de Biologie Cellulaire, Route de St-Cyr, 78026 Versailles cedex, France
| | - Jim Haseloff
- University of Cambridge, Department of Plant Sciences, Downing Site, Cambridge, CB2 3EA, UK
| |
Collapse
|
44
|
Pagano MR, Mendieta JR, Muñoz FF, Daleo GR, Guevara MG. Roles of glycosylation on the antifungal activity and apoplast accumulation of StAPs (Solanum tuberosum aspartic proteases). Int J Biol Macromol 2007; 41:512-20. [PMID: 17764734 DOI: 10.1016/j.ijbiomac.2007.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 11/26/2022]
Abstract
Specific roles of glycosylation appear to be protein-dependent. Plant aspartic proteases (APs) contain two or more consensus N-glycosylation sites; however, the importance of them is not well understood. StAPs (Solanum tuberosum aspartic proteases) are bifunctional proteins with both proteolytic and antimicrobial activities. These proteins are accumulated into the intercellular washing fluid of potato tubers and leaves after wounding or infection. In this paper we investigated the importance of glycosylation on the StAPs apoplast accumulation, biochemical parameters, and fungicidal activity. Assays to evaluate the importance of StAPs glycosylation groups by using glycosylation inhibitors demonstrate that carbohydrate portions are essential to StAPs accumulation into the apoplast of tubers and leaves after wounding or detachment, respectively. Bifunctional activity of StAPs is differentially affected by this post-translational modification. Results obtained show that not significant changes were produced in the physicochemical properties after StAPs deglycosylation (pH and thermal-optimum activity and index of protein surface hydrophobicity). Otherwise, StAPs antifungal activity is affected by deglycosylation. Deglycosylated StAPs (dgStAPs) fungicidal activity is lower than native StAPs at all concentrations and times assayed. In summary, glycosylation has not a significant role on the StAPs conformational structure. However, it is involved in the StAPs subcellular accumulation and antifungal activity suggesting that it could be necessary for StAPs membrane and/or protein interactions and subsequently its biological function(s).
Collapse
Affiliation(s)
- Mariana R Pagano
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1247, Argentina.
| | | | | | | | | |
Collapse
|
45
|
Cesari A, Falcinelli AL, Mendieta JR, Pagano MR, Mucci N, Daleo GR, Guevara MG. Potato aspartic proteases (StAPs) exert cytotoxic activity on bovine and human spermatozoa. Fertil Steril 2007; 88:1248-55. [PMID: 17509582 DOI: 10.1016/j.fertnstert.2007.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 02/06/2007] [Accepted: 02/06/2007] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To evaluate the in vitro spermicidal activity of Solanum tuberosum aspartic proteinases (StAPs) on bovine and human sperm. DESIGN Controlled laboratory study. SETTING Three research laboratories at a university of biologic science. ANIMAL(S) AND DONOR(S): Frozen semen from five Aberdeen Angus bulls and six proven fertile men volunteers. INTERVENTION(S) The effect of StAPs on sperm motility was studied in vitro by incubation of different concentrations of StAPs with sperm suspensions, and motility was assessed by direct microscopic observation. Membrane integrity was analyzed by SYTOX Green uptake after incubation with different StAP concentrations. The effect of StAPs was evaluated by human erythrocyte lysis, as a control in somatic cells. The StAPs binding was monitored by fluorescence. MAIN OUTCOME MEASURE(S) Total and progressive sperm motility; hypoosmotic swelling test and SYTOX Green uptake as a measure of membrane damage; fluorescein isothiocyanate-labeled StAP binding by an optical microscopy. RESULT(S) The StAPs reduced sperm motility in a dose-dependent manner, and 25 microM of StAP1 and 35 microM of StAP3 completely abolished the progressive motility. The StAPs were able to bind in the postacrosomal and midpiece region only in bovine sperm. Also, StAPs caused spermatozoa agglutination. In vitro cell toxicity was observed by a dose-dependent increase in hypoosmotic swelling negative sperm and SYTOX Green uptake in both human and bovine spermatozoa; however, no toxic effect was observed on erythrocytes. CONCLUSION(S) The spermicidal effect of StAPs involves plasma membrane permeabilization.
Collapse
Affiliation(s)
- Andreina Cesari
- Laboratory of Biochemistry and Molecular Biology of Microorganism and Spermatozoa, Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|