1
|
Zhao Z, Qin W, Li L, Zhao H, Ju F. Discovery of Candidatus Nitrosomaritimum as a New Genus of Ammonia-Oxidizing Archaea Widespread in Anoxic Saltmarsh Intertidal Aquifers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16040-16054. [PMID: 39115222 DOI: 10.1021/acs.est.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Ammonia-oxidizing archaea (AOA) are widely distributed in marine and terrestrial habitats, contributing significantly to global nitrogen and carbon cycles. However, their genomic diversity, ecological niches, and metabolic potentials in the anoxic intertidal aquifers remain poorly understood. Here, we discovered and named a novel AOA genus, Candidatus Nitrosomaritimum, from the intertidal aquifers of Yancheng Wetland, showing close metagenomic abundance to the previously acknowledged dominant Nitrosopumilus AOA. Further construction of ammonia monooxygenase-based phylogeny demonstrated the widespread distribution of Nitrosomaritimum AOA in global estuarine-coastal niches and marine sediment. Niche differentiation among sublineages of this new genus in anoxic intertidal aquifers is driven by salinity and dissolved oxygen gradients. Comparative genomics revealed that Candidatus Nitrosomaritimum has the genetic capacity to utilize urea and possesses high-affinity phosphate transporter systems (phnCDE) for surviving phosphorus-limited conditions. Additionally, it contains putative nosZ genes encoding nitrous-oxide (N2O) reductase for reducing N2O to nitrogen gas. Furthermore, we gained first genomic insights into the archaeal phylum Hydrothermarchaeota populations residing in intertidal aquifers and revealed their potential hydroxylamine-detoxification mutualism with AOA through utilizing the AOA-released extracellular hydroxylamine using hydroxylamine oxidoreductase. Together, this study unravels the overlooked role of priorly unknown but abundant AOA lineages of the newly discovered genus Candidatus Nitrosomaritimum in biological nitrogen transformation and their potential for nitrogen pollution mitigation in coastal environments.
Collapse
Affiliation(s)
- Ze Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Wei Qin
- School of Biological Sciences and Institute for Environmental Genomes, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ling Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Heping Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
2
|
Xie X, Deng X, Chen L, Yuan J, Chen H, Wei C, Liu X, Wuertz S, Qiu G. Integrated genomics provides insights into the evolution of the polyphosphate accumulation trait of Ca. Accumulibacter. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100353. [PMID: 39221073 PMCID: PMC11361876 DOI: 10.1016/j.ese.2023.100353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 09/04/2024]
Abstract
Candidatus Accumulibacter, a prominent polyphosphate-accumulating organism (PAO) in wastewater treatment, plays a crucial role in enhanced biological phosphorus removal (EBPR). The genetic underpinnings of its polyphosphate accumulation capabilities, however, remain largely unknown. Here, we conducted a comprehensive genomic analysis of Ca. Accumulibacter-PAOs and their relatives within the Rhodocyclaceae family, identifying 124 core genes acquired via horizontal gene transfer (HGT) at its least common ancestor. Metatranscriptomic analysis of an enrichment culture of Ca. Accumulibacter revealed active transcription of 44 of these genes during an EBPR cycle, notably including the polyphosphate kinase 2 (PPK2) gene instead of the commonly recognized polyphosphate kinase 1 (PPK1) gene. Intriguingly, the phosphate regulon (Pho) genes showed minimal transcriptions, pointing to a distinctive fact of Pho dysregulation, where PhoU, the phosphate signaling complex protein, was not regulating the high-affinity phosphate transport (Pst) system, resulting in continuous phosphate uptake. To prevent phosphate toxicity, Ca. Accumulibacter utilized the laterally acquired PPK2 to condense phosphate into polyphosphate, resulting in the polyphosphate-accumulating feature. This study provides novel insights into the evolutionary emergence of the polyphosphate-accumulating trait in Ca. Accumulibacter, offering potential advancements in understanding the PAO phenotype in the EBPR process.
Collapse
Affiliation(s)
- Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| |
Collapse
|
3
|
Dahar GY, Wang HW, Rajer FU, Jin P, Xu P, Abro MA, Qureshi AS, Karim A, Miao W. Comparative genomic analysis of Bacillus atrophaeus HAB-5 reveals genes associated with antimicrobial and plant growth-promoting activities. Front Microbiol 2024; 15:1384691. [PMID: 38989016 PMCID: PMC11233526 DOI: 10.3389/fmicb.2024.1384691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Bacillus atrophaeus HAB-5 is a plant growth-promoting rhizobacterium (PGPR) that exhibits several biotechnological traits, such as enhancing plant growth, colonizing the rhizosphere, and engaging in biocontrol activities. In this study, we conducted whole-genome sequencing of B. atrophaeus HAB-5 using the single-molecule real-time (SMRT) sequencing platform by Pacific Biosciences (PacBio; United States), which has a circular chromosome with a total length of 4,083,597 bp and a G + C content of 44.21%. The comparative genomic analysis of B. atrophaeus HAB-5 with other strains, Bacillus amyloliquefaciens DSM7, B. atrophaeus SRCM101359, Bacillus velezensis FZB42, B. velezensis HAB-2, and Bacillus subtilis 168, revealed that these strains share 2,465 CDSs, while 599 CDSs are exclusive to the B. atrophaeus HAB-5 strain. Many gene clusters in the B. atrophaeus HAB-5 genome are associated with the production of antimicrobial lipopeptides and polypeptides. These gene clusters comprise distinct enzymes that encode three NRPs, two Transat-Pks, one terpene, one lanthipeptide, one T3PKS, one Ripp, and one thiopeptide. In addition to the likely IAA-producing genes (trpA, trpB, trpC, trpD, trpE, trpS, ywkB, miaA, and nadE), there are probable genes that produce volatile chemicals (acoA, acoB, acoR, acuB, and acuC). Moreover, HAB-5 contained genes linked to iron transportation (fbpA, fetB, feuC, feuB, feuA, and fecD), sulfur metabolism (cysC, sat, cysK, cysS, and sulP), phosphorus solubilization (ispH, pstA, pstC, pstS, pstB, gltP, and phoH), and nitrogen fixation (nif3-like, gltP, gltX, glnR, glnA, nadR, nirB, nirD, nasD, narl, narH, narJ, and nark). In conclusion, this study provides a comprehensive genomic analysis of B. atrophaeus HAB-5, pinpointing the genes and genomic regions linked to the antimicrobial properties of the strain. These findings advance our knowledge of the genetic basis of the antimicrobial properties of B. atrophaeus and imply that HAB-5 may employ a variety of commercial biopesticides and biofertilizers as a substitute strategy to increase agricultural output and manage a variety of plant diseases.
Collapse
Affiliation(s)
- Ghulam Yaseen Dahar
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| | - Huan Wei Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| | - Faheem Uddin Rajer
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tando Jam, Pakistan
| | - Pengfie Jin
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| | - Peidong Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| | - Manzoor Ali Abro
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tando Jam, Pakistan
| | - Abdul Sattar Qureshi
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan
| | - Asad Karim
- Jamil-Ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| |
Collapse
|
4
|
Xie X, Deng X, Chen J, Chen L, Yuan J, Chen H, Wei C, Liu X, Qiu G. Two new clades recovered at high temperatures provide novel phylogenetic and genomic insights into Candidatus Accumulibacter. ISME COMMUNICATIONS 2024; 4:ycae049. [PMID: 38808122 PMCID: PMC11131965 DOI: 10.1093/ismeco/ycae049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/30/2024]
Abstract
Candidatus Accumulibacter, a key genus of polyphosphate-accumulating organisms, plays key roles in lab- and full-scale enhanced biological phosphorus removal (EBPR) systems. A total of 10 high-quality Ca. Accumulibacter genomes were recovered from EBPR systems operated at high temperatures, providing significantly updated phylogenetic and genomic insights into the Ca. Accumulibacter lineage. Among these genomes, clade IIF members SCELSE-3, SCELSE-4, and SCELSE-6 represent the to-date known genomes encoding a complete denitrification pathway, suggesting that Ca. Accumulibacter alone could achieve complete denitrification. Clade IIC members SSA1, SCUT-1, SCELCE-2, and SCELSE-8 lack the entire set of denitrifying genes, representing to-date known non-denitrifying Ca. Accumulibacter. A pan-genomic analysis with other Ca. Accumulibacter members suggested that all Ca. Accumulibacter likely has the potential to use dicarboxylic amino acids. Ca. Accumulibacter aalborgensis AALB and Ca. Accumulibacter affinis BAT3C720 seemed to be the only two members capable of using glucose for EBPR. A heat shock protein Hsp20 encoding gene was found exclusively in genomes recovered at high temperatures, which was absent in clades IA, IC, IG, IIA, IIB, IID, IIG, and II-I members. High transcription of this gene in clade IIC members SCUT-2 and SCUT-3 suggested its role in surviving high temperatures for Ca. Accumulibacter. Ambiguous clade identity was observed for newly recovered genomes (SCELSE-9 and SCELSE-10). Five machine learning models were developed using orthogroups as input features. Prediction results suggested that they belong to a new clade (IIK). The phylogeny of Ca. Accumulibacter was re-evaluated based on the laterally derived polyphosphokinase 2 gene, showing improved resolution in differentiating different clades.
Collapse
Affiliation(s)
- Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinling Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
5
|
Genome insights into the plant growth-promoting bacterium Saccharibacillus brassicae ATSA2 T. AMB Express 2023; 13:9. [PMID: 36680648 PMCID: PMC9867790 DOI: 10.1186/s13568-023-01514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Endophytes can facilitate the improvement of plant growth and health in agriculturally important crops, yet their genomes and secondary metabolites remain largely unexplored. We previously isolated Saccharibacillus brassicae strain ATSA2T from surface-sterilized seeds of kimchi cabbage and represented a novel species of the genus Saccharibacillus. In this study, we evaluated the plant growth-promoting (PGP) effect of strain ATSA2T in kimchi cabbage, bok choy, and pepper plants grown in soils. We found a significant effect on the shoot and root biomass, and chlorophyll contents following strain ATSA2T treatment. Strain ATSA2T displayed PGP traits such as indole acetic acid (IAA, 62.9 μg/mL) and siderophore production, and phosphate solubilization activity. Furthermore, genome analysis of this strain suggested the presence of gene clusters involved in iron acquisition (fhuABD, afuABC, fbpABC, and fepCDG) and phosphate solubilization (pstABCHS, phoABHLU, and phnCDEP) and other phytohormone biosynthesis genes, including indole-3-acetic acid (trpABCDEFG), in the genome. Interestingly, the secondary metabolites cerecidin, carotenoid, siderophore (staphylobactin), and bacillaene underlying plant growth promotion were found in the whole genome via antiSMASH analysis. Overall, physiological testing and genome analysis data provide comprehensive insights into plant growth-promoting mechanisms, suggesting the relevance of strain ATSA2T in agricultural biotechnology.
Collapse
|
6
|
Cao FT, Ma XL, Zhou XT, Han JC, Xiao X. Performance and mechanisms exploration of nano zinc oxide (nZnO) on anaerobic decolorization by Shewanella oneidensis MR-1. CHEMOSPHERE 2022; 305:135510. [PMID: 35772516 DOI: 10.1016/j.chemosphere.2022.135510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Although the ecological safety of nanomaterials is of widespread concern, their current ambient concentrations are not yet sufficient to cause serious toxic effects. Thus, the nontoxic bioimpact of nanomaterials in wastewater treatment has attracted increasing attention. In this study, the effect of nano zinc oxide (nZnO), one of the most widely used nanomaterials, on the anaerobic biodegradation of methyl orange (MO) by Shewanella oneidensis MR-1 was comprehensively investigated. High-dosage nZnO (>0.5 mg/L) caused severe toxic stress on S. oneidensis MR-1, resulting in the decrease in decolorization efficiency. However, nZnO at ambient concentrations could act as nanostimulants and promote the anaerobic removal of MO by S. oneidensis MR-1, which should be attributed to the improvement of decolorization efficiency rather than cell proliferation. The dissolved Zn2+ was found to contribute to the bioeffect of nZnO on MO decolorization. Further investigation revealed that low-dosage nZnO could promote the cell viability, membrane permeability, anaerobic metabolism, as well as related gene expression, indicating that nZnO facilitated rather than inhibited the anaerobic wastewater treatment under ambient conditions. Thus, this work provides a new insight into the bioeffect of nZnO in actual environment and facilitates the practical application of nanomaterials as nanostimulants in biological process.
Collapse
Affiliation(s)
- Feng-Ting Cao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xiao-Lin Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiang-Tong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jun-Cheng Han
- Department of Civil and Environmental Engineering, School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Xie ZX, Yan KQ, Kong LF, Gai YB, Jin T, He YB, Wang YY, Chen F, Lin L, Lin ZL, Xu HK, Shao ZZ, Liu SQ, Wang DZ. Metabolic tuning of a stable microbial community in the surface oligotrophic Indian Ocean revealed by integrated meta-omics. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:277-290. [PMID: 37073226 PMCID: PMC10077294 DOI: 10.1007/s42995-021-00119-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/25/2021] [Indexed: 05/03/2023]
Abstract
Understanding the mechanisms, structuring microbial communities in oligotrophic ocean surface waters remains a major ecological endeavor. Functional redundancy and metabolic tuning are two mechanisms that have been proposed to shape microbial response to environmental forcing. However, little is known about their roles in the oligotrophic surface ocean due to less integrative characterization of community taxonomy and function. Here, we applied an integrated meta-omics-based approach, from genes to proteins, to investigate the microbial community of the oligotrophic northern Indian Ocean. Insignificant spatial variabilities of both genomic and proteomic compositions indicated a stable microbial community that was dominated by Prochlorococcus, Synechococcus, and SAR11. However, fine tuning of some metabolic functions that are mainly driven by salinity and temperature was observed. Intriguingly, a tuning divergence occurred between metabolic potential and activity in response to different environmental perturbations. Our results indicate that metabolic tuning is an important mechanism for sustaining the stability of microbial communities in oligotrophic oceans. In addition, integrated meta-omics provides a powerful tool to comprehensively understand microbial behavior and function in the ocean. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00119-6.
Collapse
Affiliation(s)
- Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| | - Ke-Qiang Yan
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Shenzhen, 518083 China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083 China
| | - Ling-Fen Kong
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
| | - Ying-Bao Gai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, 361005 China
- State Key Laboratory Breeding Base of Marine Genetic Resources/Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005 China
| | - Tao Jin
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Shenzhen, 518083 China
| | - Yan-Bin He
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Shenzhen, 518083 China
| | - Ya-Yu Wang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Shenzhen, 518083 China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202 USA
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| | - Zhi-Long Lin
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Shenzhen, 518083 China
| | - Hong-Kai Xu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Shenzhen, 518083 China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083 China
| | - Zong-Ze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, 361005 China
- State Key Laboratory Breeding Base of Marine Genetic Resources/Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005 China
| | - Si-Qi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Shenzhen, 518083 China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| |
Collapse
|
8
|
Allen WJ, Corey RA, Watkins DW, Oliveira ASF, Hards K, Cook GM, Collinson I. Rate-limiting transport of positively charged arginine residues through the Sec-machinery is integral to the mechanism of protein secretion. eLife 2022; 11:e77586. [PMID: 35486093 PMCID: PMC9110029 DOI: 10.7554/elife.77586] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Transport of proteins across and into membranes is a fundamental biological process with the vast majority being conducted by the ubiquitous Sec machinery. In bacteria, this is usually achieved when the SecY-complex engages the cytosolic ATPase SecA (secretion) or translating ribosomes (insertion). Great strides have been made towards understanding the mechanism of protein translocation. Yet, important questions remain - notably, the nature of the individual steps that constitute transport, and how the proton-motive force (PMF) across the plasma membrane contributes. Here, we apply a recently developed high-resolution protein transport assay to explore these questions. We find that pre-protein transport is limited primarily by the diffusion of arginine residues across the membrane, particularly in the context of bulky hydrophobic sequences. This specific effect of arginine, caused by its positive charge, is mitigated for lysine which can be deprotonated and transported across the membrane in its neutral form. These observations have interesting implications for the mechanism of protein secretion, suggesting a simple mechanism through which the PMF can aid transport by enabling a 'proton ratchet', wherein re-protonation of exiting lysine residues prevents channel re-entry, biasing transport in the outward direction.
Collapse
Affiliation(s)
- William J Allen
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
| | - Robin A Corey
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
| | - Daniel W Watkins
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
| | - A Sofia F Oliveira
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
- School of Chemistry, University of Bristol, University WalkBristolUnited Kingdom
| | - Kiel Hards
- Department of Microbiology and Immunology, University of OtagoDunedinNew Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of OtagoDunedinNew Zealand
| | - Ian Collinson
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
| |
Collapse
|
9
|
Buetti-Dinh A, Ruinelli M, Czerski D, Scapozza C, Martignier A, Roman S, Caminada A, Tonolla M. Geochemical and metagenomics study of a metal-rich, green-turquoise-coloured stream in the southern Swiss Alps. PLoS One 2021; 16:e0248877. [PMID: 33784327 PMCID: PMC8009434 DOI: 10.1371/journal.pone.0248877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/07/2021] [Indexed: 12/02/2022] Open
Abstract
The Swiss Alpine environments are poorly described from a microbiological perspective. Near the Greina plateau in the Camadra valley in Ticino (southern Swiss Alps), a green-turquoise-coloured water spring streams off the mountain cliffs. Geochemical profiling revealed naturally elevated concentrations of heavy metals such as copper, lithium, zinc and cadmium, which are highly unusual for the geomorphology of the region. Of particular interest, was the presence of a thick biofilm, that was revealed by microscopic analysis to be mainly composed of Cyanobacteria. A metagenome was further assembled to detail the genes found in this environment. A multitude of genes for resistance/tolerance to high heavy metal concentrations were indeed found, such as, various transport systems, and genes involved in the synthesis of extracellular polymeric substances (EPS). EPS have been evoked as a central component in photosynthetic environments rich in heavy metals, for their ability to drive the sequestration of toxic, positively-charged metal ions under high regimes of cyanobacteria-driven photosynthesis. The results of this study provide a geochemical and microbiological description of this unusual environment in the southern Swiss Alps, the role of cyanobacterial photosynthesis in metal resistance, and the potential role of such microbial community in bioremediation of metal-contaminated environments.
Collapse
Affiliation(s)
- Antoine Buetti-Dinh
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (ABD); (MT)
| | - Michela Ruinelli
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Dorota Czerski
- Institute of Earth Sciences, University of Applied Sciences of Southern Switzerland (SUPSI), Trevano, Canobbio, Switzerland
| | - Cristian Scapozza
- Institute of Earth Sciences, University of Applied Sciences of Southern Switzerland (SUPSI), Trevano, Canobbio, Switzerland
| | - Agathe Martignier
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Annapaola Caminada
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (ABD); (MT)
| |
Collapse
|
10
|
Molecular Mechanisms of Phosphate Sensing, Transport and Signalling in Streptomyces and Related Actinobacteria. Int J Mol Sci 2021; 22:ijms22031129. [PMID: 33498785 PMCID: PMC7866108 DOI: 10.3390/ijms22031129] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Phosphorous, in the form of phosphate, is a key element in the nutrition of all living beings. In nature, it is present in the form of phosphate salts, organophosphates, and phosphonates. Bacteria transport inorganic phosphate by the high affinity phosphate transport system PstSCAB, and the low affinity PitH transporters. The PstSCAB system consists of four components. PstS is the phosphate binding protein and discriminates between arsenate and phosphate. In the Streptomyces species, the PstS protein, attached to the outer side of the cell membrane, is glycosylated and released as a soluble protein that lacks its phosphate binding ability. Transport of phosphate by the PstSCAB system is drastically regulated by the inorganic phosphate concentration and mediated by binding of phosphorylated PhoP to the promoter of the PstSCAB operon. In Mycobacterium smegmatis, an additional high affinity transport system, PhnCDE, is also under PhoP regulation. Additionally, Streptomyces have a duplicated low affinity phosphate transport system encoded by the pitH1–pitH2 genes. In this system phosphate is transported as a metal-phosphate complex in simport with protons. Expression of pitH2, but not that of pitH1 in Streptomyces coelicolor, is regulated by PhoP. Interestingly, in many Streptomyces species, three gene clusters pitH1–pstSCAB–ppk (for a polyphosphate kinase), are linked in a supercluster formed by nine genes related to phosphate metabolism. Glycerol-3-phosphate may be transported by the actinobacteria Corynebacterium glutamicum that contains a ugp gene cluster for glycerol-3-P uptake, but the ugp cluster is not present in Streptomyces genomes. Sugar phosphates and nucleotides are used as phosphate source by the Streptomyces species, but there is no evidence of the uhp gene involved in the transport of sugar phosphates. Sugar phosphates and nucleotides are dephosphorylated by extracellular phosphatases and nucleotidases. An isolated uhpT gene for a hexose phosphate antiporter is present in several pathogenic corynebacteria, such as Corynebacterium diphtheriae, but not in non-pathogenic ones. Phosphonates are molecules that contains phosphate linked covalently to a carbon atom through a very stable C–P bond. Their utilization requires the phnCDE genes for phosphonates/phosphate transport and genes for degradation, including those for the subunits of the C–P lyase. Strains of the Arthrobacter and Streptomyces genera were reported to degrade simple phosphonates, but bioinformatic analysis reveals that whole sets of genes for putative phosphonate degradation are present only in three Arthrobacter species and a few Streptomyces species. Genes encoding the C–P lyase subunits occur in several Streptomyces species associated with plant roots or with mangroves, but not in the laboratory model Streptomyces species; however, the phnCDE genes that encode phosphonates/phosphate transport systems are frequent in Streptomyces species, suggesting that these genes, in the absence of C–P lyase genes, might be used as surrogate phosphate transporters. In summary, Streptomyces and related actinobacteria seem to be less versatile in phosphate transport systems than Enterobacteria.
Collapse
|
11
|
Proteomics of extracellular vesicles produced by Granulicatella adiacens, which causes infective endocarditis. PLoS One 2020; 15:e0227657. [PMID: 33216751 PMCID: PMC7679012 DOI: 10.1371/journal.pone.0227657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
When oral bacteria accidentally enter the bloodstream due to transient tissue damage during dental procedures, they have the potential to attach to the endocardium or an equivalent surface of an indwelling prosthesis and cause infection. Many bacterial species produce extracellular vesicles (EVs) as part of normal physiology, but also use it as a virulence strategy. In this study, it was hypothesized that Granulicatella adiacens produce EVs that possibly help it in virulence. Therefore, the objectives were to isolate and characterize EVs produced by G. adiacens and to investigate its immune-stimulatory effects. The reference strain G. adiacens CCUG 27809 was cultured on chocolate blood agar for 2 days. From subsequent broth culture, the EVs were isolated using differential centrifugation and filtration protocol and then observed using scanning electron microscopy. Proteins in the vesicle preparation were identified by nano LC-ESI-MS/MS. The EVs proteome was analyzed and characterized using different bioinformatics tools. The immune-stimulatory effect of the EVs was studied via ELISA quantification of IL-8, IL-1β and CCL5, major proinflammatory cytokines, produced from stimulated human PBMCs. It was revealed that G. adiacens produced EVs, ranging in diameter from 30 to 250 nm. Overall, G. adiacens EVs contained 112 proteins. The proteome consists of several ribosomal proteins, DNA associated proteins, binding proteins, and metabolic enzymes. It was also shown that these EVs carry putative virulence factors including moonlighting proteins. These EVs were able to induce the production of IL-8, IL-1β and CCL5 from human PBMCs. Further functional characterization of the G. adiacens EVs may provide new insights into virulence mechanisms of this important but less studied oral bacterial species.
Collapse
|
12
|
Sheridan PO, Raguideau S, Quince C, Holden J, Zhang L, Williams TA, Gubry-Rangin C. Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nat Commun 2020; 11:5494. [PMID: 33127895 PMCID: PMC7603488 DOI: 10.1038/s41467-020-19132-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/21/2020] [Indexed: 11/08/2022] Open
Abstract
Ammonia-oxidising archaea of the phylum Thaumarchaeota are important organisms in the nitrogen cycle, but the mechanisms driving their radiation into diverse ecosystems remain underexplored. Here, existing thaumarchaeotal genomes are complemented with 12 genomes belonging to the previously under-sampled Nitrososphaerales to investigate the impact of lateral gene transfer (LGT), gene duplication and loss across thaumarchaeotal evolution. We reveal a major role for gene duplication in driving genome expansion subsequent to early LGT. In particular, two large LGT events are identified into Nitrososphaerales and the fate of these gene families is highly lineage-specific, being lost in some descendant lineages, but undergoing extensive duplication in others, suggesting niche-specific roles. Notably, some genes involved in carbohydrate transport or coenzyme metabolism were duplicated, likely facilitating niche specialisation in soils and sediments. Overall, our results suggest that LGT followed by gene duplication drives Nitrososphaerales evolution, highlighting a previously under-appreciated mechanism of genome expansion in archaea.
Collapse
Affiliation(s)
- Paul O Sheridan
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Christopher Quince
- Warwick Medical School, University of Warwick, Coventry, UK
- Organisms and Ecosystems, Earlham Institute, Norwich, UK
- Gut Microbes and Health, Quadram Institute, Norwich, UK
| | - Jennifer Holden
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Lihong Zhang
- European Centre for Environment and Human Health, Medical School, University of Exeter, Exeter, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
13
|
Zhang L, Liu L, Wang KF, Xu L, Zhou L, Wang W, Li C, Xu Z, Shi T, Chen H, Li Y, Xu H, Yang X, Zhu Z, Chen B, Li D, Zhan G, Zhang SL, Zhang LX, Tan GY. Phosphate limitation increases coenzyme Q 10 production in industrial Rhodobacter sphaeroides HY01. Synth Syst Biotechnol 2019; 4:212-219. [PMID: 31890925 PMCID: PMC6909082 DOI: 10.1016/j.synbio.2019.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/02/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an important component of the respiratory chain in humans and some bacteria. As a high-value-added nutraceutical antioxidant, CoQ10 has excellent capacity to prevent cardiovascular disease. The content of CoQ10 in the industrial Rhodobacter sphaeroides HY01 is hundreds of folds higher than normal physiological levels. In this study, we found that overexpression or optimization of the synthetic pathway failed CoQ10 overproduction in the HY01 strain. Moreover, under phosphate- limited conditions (decreased phosphate or in the absence of inorganic phosphate addition), CoQ10 production increased significantly by 12% to220 mg/L, biomass decreased by 12%, and the CoQ10 productivity of unit cells increased by 27%. In subsequent fed-batch fermentation, CoQ10 production reached 272 mg/L in the shake-flask fermentation and 1.95 g/L in a 100-L bioreactor under phosphate limitation. Furthermore, to understand the mechanism associated with CoQ10 overproduction under phosphate- limited conditions, the comparatve transcriptome analysis was performed. These results indicated that phosphate limitation combined with glucose fed-batch fermentation represented an effective strategy for CoQ10 production in the HY01. Phosphate limitation induced a pleiotropic effect on cell metabolism, and that improved CoQ10 biosynthesis efficiency was possibly related to the disturbance of energy metabolism and redox potential.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Leshi Liu
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Ke-Feng Wang
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Lan Xu
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 Beichen West Road, Beijing, 100101, China
| | - Liming Zhou
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 Beichen West Road, Beijing, 100101, China
| | - Chuan Li
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Zheng Xu
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 Beichen West Road, Beijing, 100101, China
| | - Tong Shi
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Haihong Chen
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Yuanhang Li
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Hui Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - XiuLiang Yang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd, No. 117 Qixing River Road, Zibo, 255130, China
| | - Zhichun Zhu
- Inner Mongolia Kingdomway Pharmaceutical Co., Ltd, Tuoketuo Power Industrial Park, Hohhot, 010206, China
| | - Biqin Chen
- Inner Mongolia Kingdomway Pharmaceutical Co., Ltd, Tuoketuo Power Industrial Park, Hohhot, 010206, China
| | - Dan Li
- Inner Mongolia Kingdomway Pharmaceutical Co., Ltd, Tuoketuo Power Industrial Park, Hohhot, 010206, China
| | - Guanghuang Zhan
- Inner Mongolia Kingdomway Pharmaceutical Co., Ltd, Tuoketuo Power Industrial Park, Hohhot, 010206, China
| | - Si-Liang Zhang
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Li-Xin Zhang
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
14
|
Islam ZF, Cordero PRF, Greening C. Putative Iron-Sulfur Proteins Are Required for Hydrogen Consumption and Enhance Survival of Mycobacteria. Front Microbiol 2019; 10:2749. [PMID: 31824474 PMCID: PMC6883350 DOI: 10.3389/fmicb.2019.02749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/12/2019] [Indexed: 01/01/2023] Open
Abstract
Aerobic soil bacteria persist by scavenging molecular hydrogen (H2) from the atmosphere. This key process is the primary sink in the biogeochemical hydrogen cycle and supports the productivity of oligotrophic ecosystems. In Mycobacterium smegmatis, atmospheric H2 oxidation is catalyzed by two phylogenetically distinct [NiFe]-hydrogenases, Huc (group 2a) and Hhy (group 1h). However, it is currently unresolved how these enzymes transfer electrons derived from H2 oxidation into the aerobic respiratory chain. In this work, we used genetic approaches to confirm that two putative iron-sulfur cluster proteins encoded on the hydrogenase structural operons, HucE and HhyE, are required for H2 consumption in M. smegmatis. Sequence analysis show that these proteins, while homologous, fall into distinct phylogenetic clades and have distinct metal-binding motifs. H2 oxidation was reduced when the genes encoding these proteins were deleted individually and was eliminated when they were deleted in combination. In turn, the growth yield and long-term survival of these deletion strains was modestly but significantly reduced compared to the parent strain. In both biochemical and phenotypic assays, the mutant strains lacking the putative iron-sulfur proteins phenocopied those of hydrogenase structural subunit mutants. We hypothesize that these proteins mediate electron transfer between the catalytic subunits of the hydrogenases and the menaquinone pool of the M. smegmatis respiratory chain; however, other roles (e.g., in maturation) are also plausible and further work is required to resolve their role. The conserved nature of these proteins within most Hhy- or Huc-encoding organisms suggests that these proteins are important determinants of atmospheric H2 oxidation.
Collapse
Affiliation(s)
| | | | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
15
|
Cordero PRF, Grinter R, Hards K, Cryle MJ, Warr CG, Cook GM, Greening C. Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. J Biol Chem 2019; 294:18980-18991. [PMID: 31624148 DOI: 10.1074/jbc.ra119.011076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
To persist when nutrient sources are limited, aerobic soil bacteria metabolize atmospheric hydrogen (H2). This process is the primary sink in the global H2 cycle and supports the productivity of microbes in oligotrophic environments. H2-metabolizing bacteria possess [NiFe] hydrogenases that oxidize H2 to subatmospheric concentrations. The soil saprophyte Mycobacterium smegmatis has two such [NiFe] hydrogenases, designated Huc and Hhy, that belong to different phylogenetic subgroups. Both Huc and Hhy are oxygen-tolerant, oxidize H2 to subatmospheric concentrations, and enhance bacterial survival during hypoxia and carbon limitation. Why does M. smegmatis require two hydrogenases with a seemingly similar function? In this work, we resolved this question by showing that Huc and Hhy are differentially expressed, localized, and integrated into the respiratory chain. Huc is active in late exponential and early stationary phases, supporting energy conservation during mixotrophic growth and transition into dormancy. In contrast, Hhy is most active during long-term persistence, providing energy for maintenance processes following carbon exhaustion. We also show that Huc and Hhy are obligately linked to the aerobic respiratory chain via the menaquinone pool and are differentially affected by respiratory uncouplers. Consistently, these two enzymes interacted differentially with the respiratory terminal oxidases. Huc exclusively donated electrons to, and possibly physically associated with, the proton-pumping cytochrome bcc-aa 3 supercomplex. In contrast the more promiscuous Hhy also provided electrons to the cytochrome bd oxidase complex. These results indicate that, despite their similar characteristics, Huc and Hhy perform distinct functions during mycobacterial growth and survival.
Collapse
Affiliation(s)
- Paul R F Cordero
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Rhys Grinter
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, OTA 9016, New Zealand
| | - Max J Cryle
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Coral G Warr
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.,School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, OTA 9016, New Zealand
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
16
|
Zhang S, Song W, Wemheuer B, Reveillaud J, Webster N, Thomas T. Comparative Genomics Reveals Ecological and Evolutionary Insights into Sponge-Associated Thaumarchaeota. mSystems 2019; 4:e00288-19. [PMID: 31409660 PMCID: PMC6697440 DOI: 10.1128/msystems.00288-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023] Open
Abstract
Thaumarchaeota are frequently reported to associate with marine sponges (phylum Porifera); however, little is known about the features that distinguish them from their free-living thaumarchaeal counterparts. In this study, thaumarchaeal metagenome-assembled genomes (MAGs) were reconstructed from metagenomic data sets derived from the marine sponges Hexadella detritifera, Hexadella cf. detritifera, and Stylissa flabelliformis Phylogenetic and taxonomic analyses revealed that the three thaumarchaeal MAGs represent two new species within the genus Nitrosopumilus and one novel genus, for which we propose the names "Candidatus UNitrosopumilus hexadellus," "Candidatus UNitrosopumilus detritiferus," and "Candidatus UCenporiarchaeum stylissum" (the U superscript indicates that the taxon is uncultured). Comparison of these genomes to data from the Sponge Earth Microbiome Project revealed that "Ca UCenporiarchaeum stylissum" has been exclusively detected in sponges and can hence be classified as a specialist, while "Ca UNitrosopumilus detritiferus" and "Ca UNitrosopumilus hexadellus" are also detected outside the sponge holobiont and likely lead a generalist lifestyle. Comparison of the sponge-associated MAGs to genomes of free-living Thaumarchaeota revealed signatures that indicate functional features of a sponge-associated lifestyle, and these features were related to nutrient transport and metabolism, restriction-modification, defense mechanisms, and host interactions. Each species exhibited distinct functional traits, suggesting that they have reached different stages of evolutionary adaptation and/or occupy distinct ecological niches within their sponge hosts. Our study therefore offers new evolutionary and ecological insights into the symbiosis between sponges and their thaumarchaeal symbionts.IMPORTANCE Sponges represent ecologically important models to understand the evolution of symbiotic interactions of metazoans with microbial symbionts. Thaumarchaeota are commonly found in sponges, but their potential adaptations to a host-associated lifestyle are largely unknown. Here, we present three novel sponge-associated thaumarchaeal species and compare their genomic and predicted functional features with those of closely related free-living counterparts. We found different degrees of specialization of these thaumarchaeal species to the sponge environment that is reflected in their host distribution and their predicted molecular and metabolic properties. Our results indicate that Thaumarchaeota may have reached different stages of evolutionary adaptation in their symbiosis with sponges.
Collapse
Affiliation(s)
- Shan Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
| | - Weizhi Song
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
| | - Bernd Wemheuer
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, France
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Torsten Thomas
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
17
|
Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME JOURNAL 2019; 13:2868-2881. [PMID: 31358912 PMCID: PMC6794299 DOI: 10.1038/s41396-019-0479-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 11/09/2022]
Abstract
Carbon monoxide (CO) is a ubiquitous atmospheric trace gas produced by natural and anthropogenic sources. Some aerobic bacteria can oxidize atmospheric CO and, collectively, they account for the net loss of ~250 teragrams of CO from the atmosphere each year. However, the physiological role, genetic basis, and ecological distribution of this process remain incompletely resolved. In this work, we addressed these knowledge gaps through culture-based and culture-independent work. We confirmed through shotgun proteomic and transcriptional analysis that the genetically tractable aerobic soil actinobacterium Mycobacterium smegmatis upregulates expression of a form I molydenum-copper carbon monoxide dehydrogenase by 50-fold when exhausted for organic carbon substrates. Whole-cell biochemical assays in wild-type and mutant backgrounds confirmed that this organism aerobically respires CO, including at sub-atmospheric concentrations, using the enzyme. Contrary to current paradigms on CO oxidation, the enzyme did not support chemolithoautotrophic growth and was dispensable for CO detoxification. However, it significantly enhanced long-term survival, suggesting that atmospheric CO serves a supplemental energy source during organic carbon starvation. Phylogenetic analysis indicated that atmospheric CO oxidation is widespread and an ancestral trait of CO dehydrogenases. Homologous enzymes are encoded by 685 sequenced species of bacteria and archaea, including from seven dominant soil phyla, and we confirmed genes encoding this enzyme are abundant and expressed in terrestrial and marine environments. On this basis, we propose a new survival-centric model for the evolution of aerobic CO oxidation and conclude that, like atmospheric H2, atmospheric CO is a major energy source supporting persistence of aerobic heterotrophic bacteria in deprived or changeable environments.
Collapse
|
18
|
Liu Y, Lai Q, Shao Z. The complete genome sequence of Thalassospira indica PB8BT insights into adaptation to the marine environment. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Stasi R, Neves HI, Spira B. Phosphate uptake by the phosphonate transport system PhnCDE. BMC Microbiol 2019; 19:79. [PMID: 30991951 PMCID: PMC6469041 DOI: 10.1186/s12866-019-1445-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/26/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Phosphate is a fundamental nutrient for all creatures. It is thus not surprising that a single bacterium carries different transport systems for this molecule, each usually operating under different environmental conditions. The phosphonate transport system of E. coli K-12 is cryptic due to an 8 bp insertion in the phnE ORF. RESULTS Here we report that an E. coli K-12 strain carrying the triple knockout ΔpitA Δpst Δugp reverted the phnE mutation when plated on complex medium containing phosphate as the main phosphorus source. It is also shown that PhnCDE takes up orthophosphate with transport kinetics compatible with that of the canonical transport system PitA and that Pi-uptake via PhnCDE is sufficient to enable bacterial growth. Ugp, a glycerol phosphate transporter, is unable to take up phosphate. CONCLUSIONS The phosphonate transport system, which is normally cryptic in E. coli laboratory strains is activated upon selection in rich medium and takes up orthophosphate in the absence of the two canonical phosphate-uptake systems. Based on these findings, the PhnCDE system can be considered a genuine phosphate transport system.
Collapse
Affiliation(s)
- Raffaele Stasi
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo-SP, Brazil
| | - Henrique Iglesias Neves
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo-SP, Brazil
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo-SP, Brazil.
| |
Collapse
|
20
|
Lu X, Williams Z, Hards K, Tang J, Cheung CY, Aung HL, Wang B, Liu Z, Hu X, Lenaerts A, Woolhiser L, Hastings C, Zhang X, Wang Z, Rhee K, Ding K, Zhang T, Cook GM. Pyrazolo[1,5- a]pyridine Inhibitor of the Respiratory Cytochrome bcc Complex for the Treatment of Drug-Resistant Tuberculosis. ACS Infect Dis 2019; 5:239-249. [PMID: 30485737 DOI: 10.1021/acsinfecdis.8b00225] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Respiration is a promising target for the development of new antimycobacterial agents, with a growing number of compounds in clinical development entering this target space. However, more candidate inhibitors are needed to expand the therapeutic options available for drug-resistant Mycobacterium tuberculosis infection. Here, we characterize a putative respiratory complex III (QcrB) inhibitor, TB47: a pyrazolo[1,5- a]pyridine-3-carboxamide. TB47 is active (MIC between 0.016 and 0.500 μg/mL) against a panel of 56 M. tuberculosis clinical isolates, including 37 multi-drug-resistant and two extensively drug-resistant strains. Pharmacokinetic and toxicity studies showed promising profiles, including negligible CYP450 interactions, cytotoxicity, and hERG channel inhibition. Consistent with other reported QcrB inhibitors, TB47 inhibits oxygen consumption only when the alternative oxidase, cytochrome bd, is deleted. A point mutation in the qcrB cd2-loop (H190Y, M. smegmatis numbering) rescues the inhibitory effects of TB47. Metabolomic profiling of TB47-treated M. tuberculosis H37Rv cultures revealed accumulation of steps in the TCA cycle and pentose phosphate pathway that are linked to reducing equivalents, suggesting that TB47 causes metabolic redox stress. In mouse infection models, a TB47 monotherapy was not bactericidal. However, TB47 was strongly synergistic with pyrazinamide and rifampicin, suggesting a promising role in combination therapies. We propose that TB47 is an effective lead compound for the development of novel tuberculosis chemotherapies.
Collapse
Affiliation(s)
- Xiaoyun Lu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zoe Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Jian Tang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Htin Lin Aung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Bangxing Wang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Huangpu District, Guangzhou 510530, China
- Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei 230009, China
| | - Zhiyong Liu
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xianglong Hu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Anne Lenaerts
- Colorado State University, 200W Lake Street, Fort Collins, Colorado 80523, United States
| | - Lisa Woolhiser
- Colorado State University, 200W Lake Street, Fort Collins, Colorado 80523, United States
| | - Courtney Hastings
- Colorado State University, 200W Lake Street, Fort Collins, Colorado 80523, United States
| | - Xiantao Zhang
- Guangzhou Eggbio Co., Ltd., 3 Ju Quan Road, Science Park, Guangzhou 510663, China
| | - Zhe Wang
- Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021, United States
| | - Kyu Rhee
- Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021, United States
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Tianyu Zhang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Gregory M. Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| |
Collapse
|
21
|
Harold LK, Antoney J, Ahmed FH, Hards K, Carr PD, Rapson T, Greening C, Jackson CJ, Cook GM. FAD-sequestering proteins protect mycobacteria against hypoxic and oxidative stress. J Biol Chem 2018; 294:2903-2912. [PMID: 30567740 DOI: 10.1074/jbc.ra118.006237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
The ability to persist in the absence of growth triggered by low oxygen levels is a critical process for the survival of mycobacterial species in many environmental niches. MSMEG_5243 (fsq), a gene of unknown function in Mycobacterium smegmatis, is up-regulated in response to hypoxia and regulated by DosRDosS/DosT, an oxygen- and redox-sensing two-component system that is highly conserved in mycobacteria. In this communication, we demonstrate that MSMEG_5243 is a flavin-sequestering protein and henceforth refer to it as Fsq. Using an array of biochemical and structural analyses, we show that Fsq is a member of the diverse superfamily of flavin- and deazaflavin-dependent oxidoreductases (FDORs) and is widely distributed in mycobacterial species. We created a markerless deletion mutant of fsq and demonstrate that fsq is required for cell survival during hypoxia. Using fsq deletion and overexpression, we found that fsq enhances cellular resistance to hydrogen peroxide treatment. The X-ray crystal structure of Fsq, solved to 2.7 Å, revealed a homodimeric organization with FAD bound noncovalently. The Fsq structure also uncovered no potential substrate-binding cavities, as the FAD is fully enclosed, and electrochemical studies indicated that the Fsq:FAD complex is relatively inert and does not share common properties with electron-transfer proteins. Taken together, our results suggest that Fsq reduces the formation of reactive oxygen species (ROS) by sequestering free FAD during recovery from hypoxia, thereby protecting the cofactor from undergoing autoxidation to produce ROS. This finding represents a new paradigm in mycobacterial adaptation to hypoxia.
Collapse
Affiliation(s)
- Liam K Harold
- From the Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - James Antoney
- Research School of Chemistry, The Australian National University, Canberra, Australia.,The Commonwealth Scientific and Industrial Research Organisation, Land and Water Flagship, Canberra, Australian Capital Territory, Australia, and
| | - F Hafna Ahmed
- Research School of Chemistry, The Australian National University, Canberra, Australia.,The Commonwealth Scientific and Industrial Research Organisation, Land and Water Flagship, Canberra, Australian Capital Territory, Australia, and
| | - Kiel Hards
- From the Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Paul D Carr
- Research School of Chemistry, The Australian National University, Canberra, Australia
| | - Trevor Rapson
- The Commonwealth Scientific and Industrial Research Organisation, Land and Water Flagship, Canberra, Australian Capital Territory, Australia, and
| | - Chris Greening
- The Commonwealth Scientific and Industrial Research Organisation, Land and Water Flagship, Canberra, Australian Capital Territory, Australia, and .,School of Biological Sciences, Monash University, Melbourne, Australia
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Canberra, Australia,
| | - Gregory M Cook
- From the Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand, .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| |
Collapse
|
22
|
Teixeira RD, Guzzo CR, Arévalo SJ, Andrade MO, Abrahão J, de Souza RF, Farah CS. A bipartite periplasmic receptor-diguanylate cyclase pair (XAC2383-XAC2382) in the bacterium Xanthomonas citri. J Biol Chem 2018; 293:10767-10781. [PMID: 29728456 DOI: 10.1074/jbc.ra118.003475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 04/27/2018] [Indexed: 11/06/2022] Open
Abstract
The second messenger cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of bacterial lifestyle, controlling several behaviors, including the switch between sessile and motile states. The c-di-GMP levels are controlled by the interplay between diguanylate cyclases (DGCs) and phosphodiesterases, which synthesize and hydrolyze this second messenger, respectively. These enzymes often contain additional domains that regulate activity via binding of small molecules, covalent modification, or protein-protein interactions. A major challenge remains to understand how DGC activity is regulated by these additional domains or interaction partners in specific signaling pathways. Here, we identified a pair of co-transcribed genes (xac2382 and xac2383) in the phytopathogenic, Gram-negative bacterium Xanthomonas citri subsp. citri (Xac), whose mutations resulted in opposing motility phenotypes. We show that the periplasmic cache domain of XAC2382, a membrane-associated DGC, interacts with XAC2383, a periplasmic binding protein, and we provide evidence that this interaction regulates XAC2382 DGC activity. Moreover, we solved the crystal structure of XAC2383 with different ligands, indicating a preference for negatively charged phosphate-containing compounds. We propose that XAC2383 acts as a periplasmic sensor that, upon binding its ligand, inhibits the DGC activity of XAC2382. Of note, we also found that this previously uncharacterized signal transduction system is present in several other bacterial phyla, including Gram-positive bacteria. Phylogenetic analysis of homologs of the XAC2382-XAC2383 pair supports several independent origins that created new combinations of XAC2382 homologs with a conserved periplasmic cache domain with different cytoplasmic output module architectures.
Collapse
Affiliation(s)
- Raphael D Teixeira
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000
| | - Cristiane R Guzzo
- the Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, and
| | - Santiago Justo Arévalo
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000
| | - Maxuel O Andrade
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000
| | - Josielle Abrahão
- the Departamento de Química Orgânica, Instituto de Química, Universidade de Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Robson F de Souza
- the Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, and
| | - Chuck S Farah
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000,
| |
Collapse
|
23
|
Ulrich EC, Kamat SS, Hove-Jensen B, Zechel DL. Methylphosphonic Acid Biosynthesis and Catabolism in Pelagic Archaea and Bacteria. Methods Enzymol 2018; 605:351-426. [DOI: 10.1016/bs.mie.2018.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Brokaw AM, Eide BJ, Muradian M, Boster JM, Tischler AD. Mycobacterium smegmatis PhoU Proteins Have Overlapping Functions in Phosphate Signaling and Are Essential. Front Microbiol 2017; 8:2523. [PMID: 29326670 PMCID: PMC5741670 DOI: 10.3389/fmicb.2017.02523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
Many bacteria regulate gene expression in response to phosphate availability using a two-component signal transduction system, the activity of which is controlled by interaction with the Pst phosphate specific transporter and a cytoplasmic protein PhoU. Mycobacterium tuberculosis, the causative agent of tuberculosis, requires its phosphate sensing signal transduction system for virulence and antibiotic tolerance, but the molecular mechanisms of phosphate sensing remain poorly characterized. M. smegmatis serves as a model for studying mycobacterial pathogens including M. tuberculosis. M. smegmatis encodes two proteins with similarity to PhoU, but it was unknown if both proteins participated in signal transduction with the phosphate-responsive SenX3-RegX3 two-component system. We constructed phoU single and double deletion mutants and tested expression of genes in the RegX3 regulon. Only the ΔphoU1ΔphoU2 mutant exhibited constitutive activation of all the RegX3-regulated genes examined, suggesting that M. smegmatis PhoU1 and PhoU2 have overlapping functions in inhibiting activity of the SenX3-RegX3 two-component system when phosphate is readily available. The ΔphoU1ΔphoU2 mutant also exhibited decreased tolerance to several anti-tubercular drugs. However, a complex plasmid swapping strategy was required to generate the ΔphoU1ΔphoU2 mutant, suggesting that either phoU1 or phoU2 is essential for in vitro growth of M. smegmatis. Using whole-genome sequencing, we demonstrated that all five of the ΔphoU1ΔphoU2 mutants we isolated had independent suppressor mutations predicted to disrupt the function of the Pst phosphate transporter, suggesting that in the absence of the PhoU proteins phosphate uptake by the Pst system is toxic. Collectively, our data demonstrate that the two M. smegmatis PhoU orthologs have overlapping functions in both controlling SenX3-RegX3 activity in response to phosphate availability and regulating phosphate transport by the Pst system. Our results suggest that M. smegmatis can serve as a tractable model for further characterization of the molecular mechanism of phosphate sensing in mycobacteria and to screen for compounds that would interfere with signal transduction and thereby increase the efficacy of existing anti-tubercular antibiotics.
Collapse
Affiliation(s)
- Alyssa M Brokaw
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin J Eide
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Michael Muradian
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua M Boster
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Anna D Tischler
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
25
|
Mortuza R, Aung HL, Taiaroa G, Opel-Reading HK, Kleffmann T, Cook GM, Krause KL. Overexpression of a newly identified d-amino acid transaminase inMycobacterium smegmatiscomplements glutamate racemase deletion. Mol Microbiol 2017; 107:198-213. [DOI: 10.1111/mmi.13877] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Roman Mortuza
- Department of Biochemistry; University of Otago; Otago New Zealand
- Department of Microbiology and Immunology; University of Otago; Otago New Zealand
| | - Htin Lin Aung
- Department of Microbiology and Immunology; University of Otago; Otago New Zealand
| | - George Taiaroa
- Department of Microbiology and Immunology; University of Otago; Otago New Zealand
| | | | | | - Gregory M. Cook
- Department of Microbiology and Immunology; University of Otago; Otago New Zealand
| | - Kurt L. Krause
- Department of Biochemistry; University of Otago; Otago New Zealand
| |
Collapse
|
26
|
Structural features of PhoX, one of the phosphate-binding proteins from Pho regulon of Xanthomonas citri. PLoS One 2017; 12:e0178162. [PMID: 28542513 PMCID: PMC5439949 DOI: 10.1371/journal.pone.0178162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/08/2017] [Indexed: 11/19/2022] Open
Abstract
In Escherichia coli, the ATP-Binding Cassette transporter for phosphate is encoded by the pstSCAB operon. PstS is the periplasmic component responsible for affinity and specificity of the system and has also been related to a regulatory role and chemotaxis during depletion of phosphate. Xanthomonas citri has two phosphate-binding proteins: PstS and PhoX, which are differentially expressed under phosphate limitation. In this work, we focused on PhoX characterization and comparison with PstS. The PhoX three-dimensional structure was solved in a closed conformation with a phosphate engulfed in the binding site pocket between two domains. Comparison between PhoX and PstS revealed that they originated from gene duplication, but despite their similarities they show significant differences in the region that interacts with the permeases.
Collapse
|
27
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
28
|
Role of Phosphate Transport System Component PstB1 in Phosphate Internalization by Nostoc punctiforme. Appl Environ Microbiol 2016; 82:6344-6356. [PMID: 27542935 DOI: 10.1128/aem.01336-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/11/2016] [Indexed: 11/20/2022] Open
Abstract
In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB-) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme IMPORTANCE: Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the synthesis of active uptake systems. The Pst phosphate transport system is one such system, responsible for the internalization of phosphate when cells are in phosphate-limited environments. Our investigations reveal the presence of multiple Pst phosphate uptake systems that exist across three distinct operons in Nostoc punctiforme and functionally characterize the role of the gene product PstB1 as being crucial for the maintenance of phosphate accumulation. We demonstrate that the genes pstB2, pstB3, and pstB4 show alterations in expression to compensate for the deletion of pstB1 The overall outcomes of this work provide insights as to the complex transport mechanisms that exist in cyanobacteria like N. punctiforme, allowing them to thrive in low-phosphate environments.
Collapse
|
29
|
Petridis M, Vickers C, Robson J, McKenzie JL, Bereza M, Sharrock A, Aung HL, Arcus VL, Cook GM. Structure and Function of AmtR in Mycobacterium smegmatis: Implications for Post-Transcriptional Regulation of Urea Metabolism through a Small Antisense RNA. J Mol Biol 2016; 428:4315-4329. [PMID: 27640309 DOI: 10.1016/j.jmb.2016.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/19/2023]
Abstract
Soil-dwelling bacteria of the phylum actinomycetes generally harbor either GlnR or AmtR as a global regulator of nitrogen metabolism. Mycobacterium smegmatis harbors both of these canonical regulators; GlnR regulates the expression of key genes involved in nitrogen metabolism, while the function and signal transduction pathway of AmtR in M. smegmatis remains largely unknown. Here, we report the structure and function of the M. smegmatis AmtR and describe the role of AmtR in the regulation of nitrogen metabolism in response to nitrogen availability. To determine the function of AmtR in M. smegmatis, we performed genome-wide expression profiling comparing the wild-type versus an ∆amtR mutant and identified significant changes in the expression of 11 genes, including an operon involved in urea degradation. An AmtR consensus-binding motif (CTGTC-N4-GACAG) was identified in the promoter region of this operon, and ligand-independent, high-affinity AmtR binding was validated by both electrophoretic mobility shift assays and surface plasmon resonance measurements. We confirmed the transcription of a cis-encoded small RNA complementary to the gene encoding AmtR under nitrogen excess, and we propose a post-transcriptional regulatory mechanism for AmtR. The three-dimensional X-ray structure of AmtR at 2.0Å revealed an overall TetR-like dimeric structure, and the alignment of the M. smegmatis AmtR and Corynebacterium glutamicum AmtR regulatory domains showed poor structural conservation, providing a potential explanation for the lack of M. smegmatis AmtR interaction with the adenylylated PII protein. Taken together, our data suggest an AmtR (repressor)/GlnR (activator) competitive binding mechanism for transcriptional regulation of urea metabolism that is controlled by a cis-encoded small antisense RNA.
Collapse
Affiliation(s)
- Michael Petridis
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - Chelsea Vickers
- Department of Biological Sciences, University of Waikato, Hamilton 3240, New Zealand.
| | - Jennifer Robson
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - Joanna L McKenzie
- Department of Biological Sciences, University of Waikato, Hamilton 3240, New Zealand.
| | - Magdalena Bereza
- Department of Biological Sciences, University of Waikato, Hamilton 3240, New Zealand.
| | - Abigail Sharrock
- Department of Biological Sciences, University of Waikato, Hamilton 3240, New Zealand.
| | - Htin Lin Aung
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - Vickery L Arcus
- Department of Biological Sciences, University of Waikato, Hamilton 3240, New Zealand.
| | - Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand.
| |
Collapse
|
30
|
Tischler AD, Leistikow RL, Ramakrishnan P, Voskuil MI, McKinney JD. Mycobacterium tuberculosis Phosphate Uptake System Component PstA2 Is Not Required for Gene Regulation or Virulence. PLoS One 2016; 11:e0161467. [PMID: 27557082 PMCID: PMC4996455 DOI: 10.1371/journal.pone.0161467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/05/2016] [Indexed: 11/19/2022] Open
Abstract
The Mycobacterium tuberculosis genome encodes two complete high-affinity Pst phosphate-specific transporters. We previously demonstrated that a membrane-spanning component of one Pst system, PstA1, was essential both for M. tuberculosis virulence and for regulation of gene expression in response to external phosphate availability. To determine if the alternative Pst system is similarly required for virulence or gene regulation, we constructed a deletion of pstA2. Transcriptome analysis revealed that PstA2 is not required for regulation of gene expression in phosphate-replete growth conditions. PstA2 was also dispensable for replication and virulence of M. tuberculosis in a mouse aerosol infection model. However, a ΔpstA1ΔpstA2 double mutant was attenuated in mice lacking the cytokine interferon-gamma, suggesting that M. tuberculosis requires high-affinity phosphate transport to survive phosphate limitation encountered in the host. Surprisingly, ΔpstA2 bacteria were more resistant to acid stress in vitro. This phenotype is intrinsic to the alternative Pst transporter since a ΔpstS1 mutant exhibited similar acid resistance. Our data indicate that the two M. tuberculosis Pst transporters have distinct physiological functions, with the PstA1 transporter being specifically involved in phosphate sensing and gene regulation while the PstA2 transporter influences survival in acidic conditions.
Collapse
Affiliation(s)
- Anna D. Tischler
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- * E-mail:
| | - Rachel L. Leistikow
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Pavithra Ramakrishnan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Martin I. Voskuil
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - John D. McKinney
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
31
|
Yan X, Luo X, Zhao M. Metagenomic analysis of microbial community in uranium-contaminated soil. Appl Microbiol Biotechnol 2015; 100:299-310. [PMID: 26433967 DOI: 10.1007/s00253-015-7003-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
Uranium tailing is a serious pollution challenge for the environment. Based on metagenomic sequencing analysis, we explored the functional and structural diversity of the microbial community in six soil samples taken at different soil depths from uranium-contaminated and uncontaminated areas. Kyoto Encyclopedia of Genes and Genomes Orthology (KO) groups were obtained using a Basic Local Alignment Search Tool search based on the universal protein resource database. The KO-pathway network was then constructed using the selected KOs. Finally, alpha and beta diversity analyses were performed to explore the differences in soil bacterial diversity between the radioactive soil and uncontaminated soil. In total, 30-68 million high-quality reads were obtained. Sequence assembly yielded 286,615 contigs; and these contigs mostly annotated to 1699 KOs. The KO distributions were similar among the six soil samples. Moreover, the proportion of the metabolism of other amino acids (e.g., beta-alanine, taurine, and hypotaurine) and signal transduction was significantly lower in radioactive soil than in uncontaminated soil, whereas the proportion of membrane transport and carbohydrate metabolism was higher. Additionally, KOs were mostly enriched in ATP-binding cassette transporters and two-component systems. According to diversity analyses, Actinobacteria and Proteobacteria were the dominant phyla in radioactive and uncontaminated soil, and Robiginitalea, Microlunatus, and Alicyclobacillus were the dominant genera in radioactive soil. Taken together, these results demonstrate that soil microbial community, structure, and functions show significant changes in uranium-contaminated soil. The dominant categories such as Actinobacteria and Proteobacteria may be applied in environmental governance for uranium-contaminated soil in southern China.
Collapse
Affiliation(s)
- Xun Yan
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.,College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar, Heilongjiang, 161006, China
| | - Xuegang Luo
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| |
Collapse
|
32
|
Aung HL, Dixon LL, Smith LJ, Sweeney NP, Robson JR, Berney M, Buxton RS, Green J, Cook GM. Novel regulatory roles of cAMP receptor proteins in fast-growing environmental mycobacteria. MICROBIOLOGY-SGM 2014; 161:648-61. [PMID: 25525207 DOI: 10.1099/mic.0.000015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mycobacterium smegmatis is a fast-growing, saprophytic, mycobacterial species that contains two cAMP-receptor protein (CRP) homologues designated herein as Crp1 and Crp2. Phylogenetic analysis suggests that Crp1 (Msmeg_0539) is uniquely present in fast-growing environmental mycobacteria, whereas Crp2 (Msmeg_6189) occurs in both fast- and slow-growing species. A crp1 mutant of M. smegmatis was readily obtained, but crp2 could not be deleted, suggesting it was essential for growth. A total of 239 genes were differentially regulated in response to crp1 deletion (loss of function), including genes coding for mycobacterial energy generation, solute transport and catabolism of carbon sources. To assess the role of Crp2 in M. smegmatis, the crp2 gene was overexpressed (gain of function) and transcriptional profiling studies revealed that 58 genes were differentially regulated. Identification of the CRP promoter consensus in M. smegmatis showed that both Crp1 and Crp2 recognized the same consensus sequence (TGTGN8CACA). Comparison of the Crp1- and Crp2-regulated genes revealed distinct but overlapping regulons with 11 genes in common, including those of the succinate dehydrogenase operon (MSMEG_0417-0420, sdh1). Expression of the sdh1 operon was negatively regulated by Crp1 and positively regulated by Crp2. Electrophoretic mobility shift assays with purified Crp1 and Crp2 demonstrated that Crp1 binding to the sdh1 promoter was cAMP-independent whereas Crp2 binding was cAMP-dependent. These data suggest that Crp1 and Crp2 respond to distinct signalling pathways in M. smegmatis to coordinate gene expression in response to carbon and energy supply.
Collapse
Affiliation(s)
- Htin Lin Aung
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Laura L Dixon
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Laura J Smith
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Nathan P Sweeney
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Jennifer R Robson
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael Berney
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roger S Buxton
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Jeffrey Green
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| |
Collapse
|
33
|
Essentiality of succinate dehydrogenase in Mycobacterium smegmatis and its role in the generation of the membrane potential under hypoxia. mBio 2014; 5:mBio.01093-14. [PMID: 25118234 PMCID: PMC4145680 DOI: 10.1128/mbio.01093-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Succinate:quinone oxidoreductase (Sdh) is a membrane-bound complex that couples the oxidation of succinate to fumarate in the cytoplasm to the reduction of quinone to quinol in the membrane. Mycobacterial species harbor genes for two putative sdh operons, but the individual roles of these two operons are unknown. In this communication, we show that Mycobacterium smegmatis mc2155 expresses two succinate dehydrogenases designated Sdh1 and Sdh2. Sdh1 is encoded by a five-gene operon (MSMEG_0416-MSMEG_0420), and Sdh2 is encoded by a four-gene operon (MSMEG_1672-MSMEG_1669). These two operons are differentially expressed in response to carbon limitation, hypoxia, and fumarate, as monitored by sdh promoter-lacZ fusions. While deletion of the sdh1 operon did not yield any growth phenotypes on succinate or other nonfermentable carbon sources, the sdh2 operon could be deleted only in a merodiploid background, demonstrating that Sdh2 is essential for growth. Sdh activity and succinate-dependent proton pumping were detected in cells grown aerobically, as well as under hypoxia. Fumarate reductase activity was absent under these conditions, indicating that neither Sdh1 nor Sdh2 could catalyze the reverse reaction. Sdh activity was inhibited by the Sdh inhibitor 3-nitroproprionate (3NP), and treatment with 3NP dissipated the membrane potential of wild-type or Δsdh1 mutant cells under hypoxia but not that of cells grown aerobically. These data imply that Sdh2 is the generator of the membrane potential under hypoxia, an essential role for the cell. Complex II or succinate dehydrogenase (Sdh) is a major respiratory enzyme that couples the oxidation of succinate to fumarate in the cytoplasm to the reduction of quinone to quinol in the membrane. Mycobacterial species harbor genes for two putative sdh operons, sdh1 and sdh2, but the individual roles of these two operons are unknown. In this communication, we show that sdh1 and sdh2 are differentially expressed in response to energy limitation, oxygen tension, and alternative electron acceptor availability, suggesting distinct functional cellular roles. Sdh2 was essential for growth and generation of the membrane potential in hypoxic cells. Given the essentiality of succinate dehydrogenase and oxidative phosphorylation in the growth cycle of Mycobacterium tuberculosis, the potential exists to develop new antituberculosis agents against the mycobacterial succinate dehydrogenase. This enzyme has been proposed as a potential target for the development of new chemotherapeutic agents against intracellular parasites and mitochondrion-associated disease.
Collapse
|
34
|
Crystal structure of PhnF, a GntR-family transcriptional regulator of phosphate transport in Mycobacterium smegmatis. J Bacteriol 2014; 196:3472-81. [PMID: 25049090 DOI: 10.1128/jb.01965-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bacterial uptake of phosphate is usually accomplished via high-affinity transporters that are commonly regulated by two-component systems, which are activated when the concentration of phosphate is low. Mycobacterium smegmatis possesses two such transporters, the widely distributed PstSCAB system and PhnDCE, a transporter that in other bacteria mediates the uptake of alternative phosphorus sources. We previously reported that the transcriptional regulator PhnF controls the production of the Phn system, acting as a repressor under high-phosphate conditions. Here we show that the phnDCE genes are common among environmental mycobacteria, where they are often associated with phnF-like genes. In contrast, pathogenic mycobacteria were not found to encode Phn-like systems but instead were found to possess multiple copies of the pst genes. A detailed biochemical analysis of PhnF binding to its identified binding sites in the phnD-phnF intergenic region of M. smegmatis has allowed us to propose a quantitative model for repressor binding, which shows that a PhnF dimer binds independently to each site. We present the crystal structure of M. smegmatis PhnF at 1.8-Å resolution, showing a homodimer with a helix-turn-helix N-terminal domain and a C-terminal domain with a UbiC transcription regulator-associated fold. The C-terminal domain crystallized with a bound sulfate ion instead of the so far unidentified physiological ligand, allowing the identification of residues involved in effector binding. Comparison of the positioning of the DNA binding domains in PhnF with that in homologous proteins suggests that its DNA binding activity is regulated via a conformational change in the linker region, triggering a movement of the N-terminal domains.
Collapse
|
35
|
Hypoxia-activated cytochrome bd expression in Mycobacterium smegmatis is cyclic AMP receptor protein dependent. J Bacteriol 2014; 196:3091-7. [PMID: 24936051 DOI: 10.1128/jb.01771-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mycobacteria are obligate aerobes and respire using two terminal respiratory oxidases, an aa3-type cytochrome c oxidase and a cytochrome bd-type menaquinol oxidase. Cytochrome bd is encoded by cydAB from the cydABDC gene cluster that is conserved throughout the mycobacterial genus. Here we report that cydAB and cydDC in Mycobacterium smegmatis constitute two separate operons under hypoxic growth conditions. The transcriptional start sites of both operons were mapped, and a series of cydA-lacZ and cydD-lacZ transcriptional reporter fusions were made to identify regulatory promoter elements. A 51-bp region was identified in the cydAB promoter that was required for maximal cydA-lacZ expression in response to hypoxia. A cyclic AMP receptor protein (CRP)-binding site (viz. GTGAN6CCACC) was identified in this region, and mutation of this site to CCCAN6CTTTC abolished cydA-lacZ expression in response to hypoxia. Binding of purified CRP (MSMEG_0539) to the cydAB promoter DNA was analyzed using electrophoretic mobility shift assays. CRP binding was dependent on GTGAN6CCACC and showed cyclic AMP (cAMP) dependency. No CRP site was present in the cydDC promoter, and a 10-bp inverted repeat (CGGTGGTACCGGTACCACCG) was required for maximal cydD-lacZ expression. Taken together, the data indicate that CRP is a direct regulator of cydAB expression in response to hypoxia and that the regulation of cydDC expression is CRP independent and under the control of an unknown regulator.
Collapse
|
36
|
Berney M, Greening C, Hards K, Collins D, Cook GM. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis. Environ Microbiol 2014; 16:318-30. [PMID: 24536093 DOI: 10.1111/1462-2920.12320] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycobacterium smegmatis is an obligate aerobe that harbours three predicted [NiFe] hydrogenases, Hyd1 (MSMEG_2262–2263), Hyd2 (MSMEG_2720-2719) and Hyd3 (MSMEG_3931-3928). We show here that these three enzymes differ in their phylogeny, regulation and catalytic activity. Phylogenetic analysis revealed that Hyd1 groups with hydrogenases that oxidize H2 produced by metabolic processes, and Hyd2 is homologous to a novel group of putative high-affinity hydrogenases. Hyd1 and Hyd2 respond to carbon and oxygen limitation, and, in the case of Hyd1, hydrogen supplementation. Hydrogen consumption measurements confirmed that both enzymes can oxidize hydrogen. In contrast, the phylogenetic analysis and activity measurements of Hyd3 are consistent with the enzyme evolving hydrogen. Hyd3 is controlled by DosR, a regulator that responds to hypoxic conditions. The strict dependence of hydrogen oxidation of Hyd1 and Hyd2 on oxygen suggests that the enzymes are oxygen tolerant and linked to the respiratory chain. This unique combination of hydrogenases allows M. smegmatis to oxidize hydrogen at high (Hyd1) and potentially tropospheric (Hyd2) concentrations, as well as recycle reduced equivalents by evolving hydrogen (Hyd3). The distribution of these hydrogenases throughout numerous soil and marine species of actinomycetes suggests that oxic hydrogen metabolism provides metabolic flexibility in environments with changing nutrient fluxes.
Collapse
|
37
|
Microbial ecology of an Antarctic hypersaline lake: genomic assessment of ecophysiology among dominant haloarchaea. ISME JOURNAL 2014; 8:1645-58. [PMID: 24553470 DOI: 10.1038/ismej.2014.18] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/29/2013] [Accepted: 01/17/2014] [Indexed: 11/08/2022]
Abstract
Deep Lake in Antarctica is a cold, hypersaline system where four types of haloarchaea representing distinct genera comprise >70% of the lake community: strain tADL ∼44%, strain DL31 ∼18%, Halorubrum lacusprofundi ∼10% and strain DL1 ∼0.3%. By performing comparative genomics, growth substrate assays, and analyses of distribution by lake depth, size partitioning and lake nutrient composition, we were able to infer important metabolic traits and ecophysiological characteristics of the four Antarctic haloarchaea that contribute to their hierarchical persistence and coexistence in Deep Lake. tADL is characterized by a capacity for motility via flagella (archaella) and gas vesicles, a highly saccharolytic metabolism, a preference for glycerol, and photoheterotrophic growth. In contrast, DL31 has a metabolism specialized in processing proteins and peptides, and appears to prefer an association with particulate organic matter, while lacking the genomic potential for motility. H. lacusprofundi is the least specialized, displaying a genomic potential for the utilization of diverse organic substrates. The least abundant species, DL1, is characterized by a preference for catabolism of amino acids, and is the only one species that lacks genes needed for glycerol degradation. Despite the four haloarchaea being distributed throughout the water column, our analyses describe a range of distinctive features, including preferences for substrates that are indicative of ecological niche partitioning. The individual characteristics could be responsible for shaping the composition of the haloarchaeal community throughout the lake by enabling selection of ecotypes and maintaining sympatric speciation.
Collapse
|
38
|
Identification and characterization of a bacitracin resistance network in Enterococcus faecalis. Antimicrob Agents Chemother 2013; 58:1425-33. [PMID: 24342648 DOI: 10.1128/aac.02111-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance of Enterococcus faecalis against antimicrobial peptides, both of host origin and produced by other bacteria of the gut microflora, is likely to be an important factor in the bacterium's success as an intestinal commensal. The aim of this study was to identify proteins with a role in resistance against the model antimicrobial peptide bacitracin. Proteome analysis of bacitracin-treated and untreated cells showed that bacitracin stress induced the expression of cell wall-biosynthetic proteins and caused metabolic rearrangements. Among the proteins with increased production, an ATP-binding cassette (ABC) transporter with similarity to known peptide antibiotic resistance systems was identified and shown to mediate resistance against bacitracin. Expression of the transporter was dependent on a two-component regulatory system and a second ABC transporter, which were identified by genome analysis. Both resistance and the regulatory pathway could be functionally transferred to Bacillus subtilis, proving the function and sufficiency of these components for bacitracin resistance. Our data therefore show that the two ABC transporters and the two-component system form a resistance network against antimicrobial peptides in E. faecalis, where one transporter acts as the sensor that activates the TCS to induce production of the second transporter, which mediates the actual resistance.
Collapse
|
39
|
Wilson CM, Rodriguez M, Johnson CM, Martin SL, Chu TM, Wolfinger RD, Hauser LJ, Land ML, Klingeman DM, Syed MH, Ragauskas AJ, Tschaplinski TJ, Mielenz JR, Brown SD. Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:179. [PMID: 24295562 PMCID: PMC3880215 DOI: 10.1186/1754-6834-6-179] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/19/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP) biocatalyst for cellulosic ethanol production. The aim of this study was to investigate C. thermocellum genes required to ferment biomass substrates and to conduct a robust comparison of DNA microarray and RNA sequencing (RNA-seq) analytical platforms. RESULTS C. thermocellum ATCC 27405 fermentations were conducted with a 5 g/L solid substrate loading of either pretreated switchgrass or Populus. Quantitative saccharification and inductively coupled plasma emission spectroscopy (ICP-ES) for elemental analysis revealed composition differences between biomass substrates, which may have influenced growth and transcriptomic profiles. High quality RNA was prepared for C. thermocellum grown on solid substrates and transcriptome profiles were obtained for two time points during active growth (12 hours and 37 hours postinoculation). A comparison of two transcriptomic analytical techniques, microarray and RNA-seq, was performed and the data analyzed for statistical significance. Large expression differences for cellulosomal genes were not observed. We updated gene predictions for the strain and a small novel gene, Cthe_3383, with a putative AgrD peptide quorum sensing function was among the most highly expressed genes. RNA-seq data also supported different small regulatory RNA predictions over others. The DNA microarray gave a greater number (2,351) of significant genes relative to RNA-seq (280 genes when normalized by the kernel density mean of M component (KDMM) method) in an analysis of variance (ANOVA) testing method with a 5% false discovery rate (FDR). When a 2-fold difference in expression threshold was applied, 73 genes were significantly differentially expressed in common between the two techniques. Sulfate and phosphate uptake/utilization genes, along with genes for a putative efflux pump system were some of the most differentially regulated transcripts when profiles for C. thermocellum grown on either pretreated switchgrass or Populus were compared. CONCLUSIONS Our results suggest that a high degree of agreement in differential gene expression measurements between transcriptomic platforms is possible, but choosing an appropriate normalization regime is essential.
Collapse
Affiliation(s)
- Charlotte M Wilson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Courtney M Johnson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | - Loren J Hauser
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Miriam L Land
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mustafa H Syed
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Arthur J Ragauskas
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jonathan R Mielenz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Steven D Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
40
|
Global control of GacA in secondary metabolism, primary metabolism, secretion systems, and motility in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol 2013; 195:3387-400. [PMID: 23708134 DOI: 10.1128/jb.00214-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rhizobacterium Pseudomonas aeruginosa M18 can produce a broad spectrum of secondary metabolites, including the antibiotics pyoluteorin (Plt) and phenazine-1-carboxylic acid (PCA), hydrogen cyanide, and the siderophores pyoverdine and pyochelin. The antibiotic biosynthesis of M18 is coordinately controlled by multiple distinct regulatory pathways, of which the GacS/GacA system activates Plt biosynthesis but strongly downregulates PCA biosynthesis. Here, we investigated the global influence of a gacA mutation on the M18 transcriptome and related metabolic and physiological processes. Transcriptome profiling revealed that the transcript levels of 839 genes, which account for approximately 15% of the annotated genes in the M18 genome, were significantly influenced by the gacA mutation during the early stationary growth phase of M18. Most secondary metabolic gene clusters, such as pvd, pch, plt, amb, and hcn, were activated by GacA. The GacA regulon also included genes encoding extracellular enzymes and cytochrome oxidases. Interestingly, the primary metabolism involved in the assimilation and metabolism of phosphorus, sulfur, and nitrogen sources was also notably regulated by GacA. Another important category of the GacA regulon was secretion systems, including H1, H2, and H3 (type VI secretion systems [T6SSs]), Hxc (T2SS), and Has and Apr (T1SSs), and CupE and Tad pili. More remarkably, GacA inhibited swimming, swarming, and twitching motilities. Taken together, the Gac-initiated global regulation, which was mostly mediated through multiple regulatory systems or factors, was mainly involved in secondary and primary metabolism, secretion systems, motility, etc., contributing to ecological or nutritional competence, ion homeostasis, and biocontrol in M18.
Collapse
|
41
|
Shaaly A, Kalamorz F, Gebhard S, Cook GM. Undecaprenyl pyrophosphate phosphatase confers low-level resistance to bacitracin in Enterococcus faecalis. J Antimicrob Chemother 2013; 68:1583-93. [PMID: 23460607 DOI: 10.1093/jac/dkt048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Undecaprenyl pyrophosphate phosphatases (UppPs) have been implicated in bacitracin resistance in some bacterial genera and the aim of this study was to determine the role of UppPs in mediating low-level bacitracin resistance in Enterococcus faecalis. METHODS The uppP gene was identified in the genomes of laboratory (JH2-2) and clinical (V583) strains of E. faecalis. Gene fusions (uppP-lacZ) and 5'-RACE were used to study uppP expression. The uppP gene in both strains was inactivated and mutants were studied for antimicrobial susceptibility and their susceptibilities to various stress agents. RESULTS The UppP protein from E. faecalis showed high sequence identity to the Escherichia coli BacA-type UppP and was predicted to be a hydrophobic protein with eight transmembrane helices. The expression of uppP-lacZ was constitutive and not affected by bacitracin or cell wall-active antimicrobials. E. faecalis uppP mutants showed no significant changes in growth rate, colony morphology and biofilm formation. The uppP mutants exhibited increased susceptibility to bacitracin (MICs=3-6 mg/L) relative to the isogenic wild-type (MICs=32-48 mg/L). When uppP was expressed in a wild-type background, the MIC of bacitracin increased to 128-≥256 mg/L. The MICs of cefoxitin, teicoplanin, vancomycin, gentamicin, enrofloxacin and d-cycloserine were unaltered in the uppP mutant relative to the wild-type, as were susceptibilities to other stress agents (glycine, lysozyme, NaCl, SDS, low and high pH, oxidative stress and ethanol). CONCLUSIONS The results demonstrate that low-level bacitracin resistance in E. faecalis is mediated by a BacA-type UppP.
Collapse
Affiliation(s)
- Aishath Shaaly
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
42
|
Kawakoshi A, Nakazawa H, Fukada J, Sasagawa M, Katano Y, Nakamura S, Hosoyama A, Sasaki H, Ichikawa N, Hanada S, Kamagata Y, Nakamura K, Yamazaki S, Fujita N. Deciphering the genome of polyphosphate accumulating actinobacterium Microlunatus phosphovorus. DNA Res 2012; 19:383-94. [PMID: 22923697 PMCID: PMC3473371 DOI: 10.1093/dnares/dss020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Polyphosphate accumulating organisms (PAOs) belong mostly to Proteobacteria and Actinobacteria and are quite divergent. Under aerobic conditions, they accumulate intracellular polyphosphate (polyP), while they typically synthesize polyhydroxyalkanoates (PHAs) under anaerobic conditions. Many ecological, physiological, and genomic analyses have been performed with proteobacterial PAOs, but few with actinobacterial PAOs. In this study, the whole genome sequence of an actinobacterial PAO, Microlunatus phosphovorus NM-1T (NBRC 101784T), was determined. The number of genes for polyP metabolism was greater in M. phosphovorus than in other actinobacteria; it possesses genes for four polyP kinases (ppks), two polyP-dependent glucokinases (ppgks), and three phosphate transporters (pits). In contrast, it harbours only a single ppx gene for exopolyphosphatase, although two copies of ppx are generally present in other actinobacteria. Furthermore, M. phosphovorus lacks the phaABC genes for PHA synthesis and the actP gene encoding an acetate/H+ symporter, both of which play crucial roles in anaerobic PHA accumulation in proteobacterial PAOs. Thus, while the general features of M. phosphovorus regarding aerobic polyP accumulation are similar to those of proteobacterial PAOs, its anaerobic polyP use and PHA synthesis appear to be different.
Collapse
Affiliation(s)
- Akatsuki Kawakoshi
- Biological Resource Center, National Institute of Technology and Evaluation, 2-10-49 Nishihara, Tokyo 151-0066, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Berney M, Weimar MR, Heikal A, Cook GM. Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia. Mol Microbiol 2012; 84:664-81. [PMID: 22507203 DOI: 10.1111/j.1365-2958.2012.08053.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Genes with a role in proline metabolism are strongly expressed when mycobacterial cells are exposed to nutrient starvation and hypoxia. Here we show that proline metabolism in mycobacteria is mediated by the monofunctional enzymes Δ(1) -pyrroline-5-carboxylate dehydrogenase (PruA) and proline dehydrogenase (PruB). Proline metabolism was controlled by a unique membrane-associated DNA-binding protein PruC. Under hypoxia, addition of proline led to higher biomass production than in the absence of proline despite excess carbon and nitrogen. To identify the mechanism responsible for this enhanced growth, microarray analysis of wild-type Mycobacterium smegmatis versus pruC mutant was performed. Expression of the DNA repair machinery and glyoxalases was increased in the pruC mutant. Glyoxalases are proposed to degrade methylglyoxal, a toxic metabolite produced by various bacteria due to an imbalance in intermediary metabolism, suggesting the pruC mutant was under methylglyoxal stress. Consistent with this notion, pruB and pruC mutants were hypersensitive to methylglyoxal. Δ(1) -pyrroline-5-carboxylate is reported to react with methylglyoxal to form non-toxic 2-acetyl-1-pyrroline, thus providing a link between proline metabolism and methylglyoxal detoxification. In support of this mechanism, we show that proline metabolism protects mycobacterial cells from methylglyoxal toxicity and that functional proline dehydrogenase, but not Δ(1) -pyrroline-5-carboxylate dehydrogenase, is essential for this protective effect.
Collapse
Affiliation(s)
- Michael Berney
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
44
|
A VapBC toxin-antitoxin module is a posttranscriptional regulator of metabolic flux in mycobacteria. J Bacteriol 2012; 194:2189-204. [PMID: 22366418 DOI: 10.1128/jb.06790-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The largest family of toxin-antitoxin (TA) modules are encoded by the vapBC operons, but their roles in bacterial physiology remain enigmatic. Microarray analysis in Mycobacterium smegmatis overexpressing VapC/VapBC revealed a high percentage of downregulated genes with annotated roles in carbon transport and metabolism, suggesting that VapC was targeting specific metabolic mRNA transcripts. To validate this hypothesis, purified VapC was used to identify the RNA cleavage site in vitro. VapC had RNase activity that was sequence specific, cleaving single-stranded RNA substrates at AUAU and AUAA in vitro and in vivo (viz., MSMEG_2121 to MSMEG_2124). A bioinformatic analysis of these regions suggested that an RNA hairpin 3' of the AUA(U/A) motif is also required for efficient cleavage. VapC-mediated regulation in vivo was demonstrated by showing that MSMEG_2124 (dhaF) and MSMEG_2121 (dhaM) were upregulated in a ΔvapBC mutant growing on glycerol. The ΔvapBC mutant had a specific rate of glycerol consumption that was 2.4-fold higher than that of the wild type during exponential growth. This increased rate of glycerol consumption was not used for generating bacterial biomass, suggesting that metabolism by the ΔvapBC mutant was uncoupled from growth. These data suggest a model in which VapC regulates the rate of glycerol utilization to match the anabolic demands of the cell, allowing for fine-tuning of the catabolic rate at a posttranscriptional level.
Collapse
|
45
|
Luz DE, Nepomuceno RSL, Spira B, Ferreira RCC. The Pst system of Streptococcus mutans is important for phosphate transport and adhesion to abiotic surfaces. Mol Oral Microbiol 2012; 27:172-81. [PMID: 22520387 DOI: 10.1111/j.2041-1014.2012.00641.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Pst system is a high-affinity inorganic phosphate transporter found in many bacterial species. Streptococcus mutans, the etiological agent of tooth decay, carries a single copy of the pst operon composed of six cistrons (pstS, pstC1, pstC, pstB, smu.1134 and phoU). Here, we show that deletion of pstS, encoding the phosphate-binding protein, reduces phosphate uptake and impairs cell growth, which can be restored upon enrichment of the medium with high concentrations of inorganic phosphate. The relevance of Pst for growth was also demonstrated in the wild-type strain treated with an anti-PstS antibody. Nevertheless, a reduced ability to bind to saliva-coated surfaces was observed, along with the reduction of extracellular polysaccharide production, although no difference on pH acidification was observed between mutant and wild-type strains. Taken together, the present data indicate that the S. mutans Pst system participates in phosphate uptake, cell growth and expression of virulence-associated traits.
Collapse
Affiliation(s)
- D E Luz
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
46
|
Frampton R, Aggio RBM, Villas-Bôas SG, Arcus VL, Cook GM. Toxin-antitoxin systems of Mycobacterium smegmatis are essential for cell survival. J Biol Chem 2011; 287:5340-56. [PMID: 22199354 DOI: 10.1074/jbc.m111.286856] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of chromosomal toxin-antitoxin (TA) modules in bacterial physiology remains enigmatic despite their abundance in the genomes of many bacteria. Mycobacterium smegmatis contains three putative TA systems, VapBC, MazEF, and Phd/Doc, and previous work from our group has shown VapBC to be a bona fide TA system. In this study, we show that MazEF and Phd/Doc are also TA systems that are constitutively expressed, transcribed as leaderless transcripts, and subject to autoregulation, and expression of the toxin component leads to growth inhibition that can be rescued by the cognate antitoxin. No phenotype was identified for deletions of the individual TA systems, but a triple deletion strain (ΔvapBC, mazEF, phd/doc), designated ΔTA(triple), exhibited a survival defect in complex growth medium demonstrating an essential role for these TA modules in mycobacterial survival. Transcriptomic analysis revealed no significant differences in gene expression between wild type and the ΔTA(triple) mutant under these conditions suggesting that the growth defect was not at a transcriptional level. Metabolomic analysis demonstrated that in response to starvation in complex medium, both the wild type and ΔTA(triple) mutant consumed a wide range of amino acids from the external milieu. Analysis of intracellular metabolites revealed a significant difference in the levels of branched-chain amino acids between the wild type and ΔTA(triple) mutant, which are proposed to play essential roles in monitoring the nutritional supply and physiological state of the cell and linking catabolic with anabolic reactions. Disruption of this balance in the ΔTA(triple) mutant may explain the survival defect in complex growth medium.
Collapse
Affiliation(s)
- Rebekah Frampton
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
47
|
Uptake of sulfate but not phosphate by Mycobacterium tuberculosis is slower than that for Mycobacterium smegmatis. J Bacteriol 2011; 194:956-64. [PMID: 22194452 DOI: 10.1128/jb.06132-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the metabolic pathways used by Mycobacterium tuberculosis during infection is important for understanding its nutrient requirements and host adaptation. However, uptake, the first step in the utilization of nutrients, is poorly understood for many essential nutrients, such as inorganic anions. Here, we show that M. tuberculosis utilizes nitrate as the sole nitrogen source, albeit at lower efficiency than asparagine, glutamate, and arginine. The growth of the porin triple mutant M. smegmatis ML16 in media with limiting amounts of nitrate and sulfate as sole nitrogen and sulfur sources, respectively, was delayed compared to that of the wild-type strain. The uptake of sulfate was 40-fold slower than that of the wild-type strain, indicating that the efficient uptake of these anions is dependent on porins. The uptake by M. tuberculosis of sulfate and phosphate was approximately 40- and 10-fold slower than that of M. smegmatis, respectively, which is consistent with the slower growth of M. tuberculosis. However, the uptake of these anions by M. tuberculosis is orders of magnitude faster than diffusion through lipid membranes, indicating that unknown outer membrane proteins are required to facilitate this process.
Collapse
|
48
|
Dianišková P, Korduláková J, Skovierová H, Kaur D, Jackson M, Brennan PJ, Mikušová K. Investigation of ABC transporter from mycobacterial arabinogalactan biosynthetic cluster. Gen Physiol Biophys 2011; 30:239-50. [PMID: 21952433 DOI: 10.4149/gpb_2011_03_239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two genes from the "mycobacterial arabinogalactan biosynthetic cluster" spanning the region from Rv3779 to Rv3809c in the genome of Mycobacterium tuberculosis H37Rv were annotated as possible components of the ATP-binding cassette transporter. Rv3781 encodes a nucleotide-binding domain and Rv3783 determines production of a membrane-spanning domain. We have examined possible roles of these genes in mycobacterial cell wall biosynthesis through inactivation of their respective orthologs in Mycobacterium smegmatis mc(2)155, phenotypic characterization of the mutant strains via metabolic labeling with [U-(14)C]-glucose, cell-free reactions with UDP-[U-(14)C]-galactose monitoring galactan build-up and transcriptional analysis. Several lines of evidence suggest that this ABC transporter is involved in biosynthesis of arabinogalactan, although more investigation is needed to establish its precise role or the transported substrate.
Collapse
|
49
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
50
|
Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS One 2010; 5:e8614. [PMID: 20062806 PMCID: PMC2799521 DOI: 10.1371/journal.pone.0008614] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 12/10/2009] [Indexed: 12/27/2022] Open
Abstract
Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture. When M. smegmatis is switched from a 4.6 h to a 69 h doubling time at a constant oxygen saturation of 50%, the cells respond through the down regulation of respiratory chain components and the F1Fo-ATP synthase, consistent with the cells lower demand for energy at a reduced growth rate. This was paralleled by an up regulation of molecular machinery that allowed more efficient energy generation (i.e. Complex I) and the use of alternative electron donors (e.g. hydrogenases and primary dehydrogenases) to maintain the flow of reducing equivalents to the electron transport chain during conditions of severe energy limitation. A hydrogenase mutant showed a 40% reduction in growth yield highlighting the importance of this enzyme in adaptation to low energy supply. Slow growing cells at 50% oxygen saturation subjected to hypoxia (0.6% oxygen saturation) responded by switching on oxygen scavenging cytochrome bd, proton-translocating cytochrome bc1-aa3 supercomplex, another putative hydrogenase, and by substituting NAD+-dependent enzymes with ferredoxin-dependent enzymes thus highlighting a new pattern of mycobacterial adaptation to hypoxia. The expression of ferredoxins and a hydrogenase provides a potential conduit for disposing of and transferring electrons in the absence of exogenous electron acceptors. The use of ferredoxin-dependent enzymes would allow the cell to maintain a high carbon flux through its central carbon metabolism independent of the NAD+/NADH ratio. These data demonstrate the remarkable metabolic plasticity of the mycobacterial cell and provide a new framework for understanding their ability to survive under low energy conditions and hypoxia.
Collapse
|