1
|
Hassan M, Shahzadi S, Iqbal MS, Yaseeen Z, Kloczkowski A. Exploration of microRNAs as transcriptional regulator in mumps virus infection through computational studies. Sci Rep 2024; 14:18850. [PMID: 39143101 PMCID: PMC11324793 DOI: 10.1038/s41598-024-67717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Mumps is a common childhood infection caused by the mumps virus (MuV). Aseptic meningitis and encephalitis are usual symptoms of mumps together with orchitis and oophoritis that can arise in males and females, respectively. We have used computational tools: RNA22, miRanda and psRNATarget to predict the microRNA-mRNA binding sites to find the putative microRNAs playing role in the host response to mumps virus infection. Our computational studies indicate that hsa-mir-3155a is most likely involved in mumps infection. This was further investigated by the prediction of binding sites of hsa-mir-3155a to the MuV genome. Additionally, structure prediction using MC-Fold and MC-Sym, respectively has been applied to predict the 3D structures of miRNA and mRNA. The miRNA-mRNA interaction profile between has been confirmed through molecular docking simulation studies. Taken together, the putative miRNA (hsa_miR_6794_5p) has been found to be most likely involved in the regulation of transcriptional activity in the MuV infection.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Zainab Yaseeen
- Department of Biotechnology, Faculty of Science and Technology (FOST), University of Central Punjab, Johar Town, Lahore, Pakistan
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Paskey AC, Lim XF, Ng JHJ, Rice GK, Chia WN, Philipson CW, Foo R, Cer RZ, Long KA, Lueder MR, Glang L, Frey KG, Hamilton T, Mendenhall IH, Smith GJ, Anderson DE, Wang LF, Bishop-Lilly KA. Genomic Characterization of a Relative of Mumps Virus in Lesser Dawn Bats of Southeast Asia. Viruses 2023; 15:v15030659. [PMID: 36992368 PMCID: PMC10053730 DOI: 10.3390/v15030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The importance of genomic surveillance on emerging diseases continues to be highlighted with the ongoing SARS-CoV-2 pandemic. Here, we present an analysis of a new bat-borne mumps virus (MuV) in a captive colony of lesser dawn bats (Eonycteris spelaea). This report describes an investigation of MuV-specific data originally collected as part of a longitudinal virome study of apparently healthy, captive lesser dawn bats in Southeast Asia (BioProject ID PRJNA561193) which was the first report of a MuV-like virus, named dawn bat paramyxovirus (DbPV), in bats outside of Africa. More in-depth analysis of these original RNA sequences in the current report reveals that the new DbPV genome shares only 86% amino acid identity with the RNA-dependent RNA polymerase of its closest relative, the African bat-borne mumps virus (AbMuV). While there is no obvious immediate cause for concern, it is important to continue investigating and monitoring bat-borne MuVs to determine the risk of human infection.
Collapse
Affiliation(s)
- Adrian C. Paskey
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Xiao Fang Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Justin H. J. Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Gregory K. Rice
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Casandra W. Philipson
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Randy Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Regina Z. Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Kyle A. Long
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Matthew R. Lueder
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Lindsay Glang
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Kenneth G. Frey
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Theron Hamilton
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Gavin J. Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Danielle E. Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kimberly A. Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Correspondence:
| |
Collapse
|
3
|
Improved Immunogenicity of the Inactivated F Genotype Mumps Vaccine against Diverse Circulating Mumps Viruses in Mice. Vaccines (Basel) 2023; 11:vaccines11010106. [PMID: 36679951 PMCID: PMC9862704 DOI: 10.3390/vaccines11010106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Mumps is an acute infectious disease caused by the mumps virus (MuV). Despite high global vaccination coverage, mumps outbreaks continue to occur, even in vaccinated populations. Therefore, we aimed to identify candidate vaccines that can induce an immunogenic response against diverse MuV genotypes with greater efficacy than the currently available options. Vaccine candidates were sourced using formalin-inactivated viral strains. The inactivated vaccines were administered to BALB/c mice (through a primer and booster dose administered after a three-week interval). We tested the neutralizing antibodies of the candidate vaccines against various MuV genotypes to determine their overall efficacy. The formalin-inactivated F genotype vaccine was found to have higher cross-neutralizing titers against genotypes F, H, and G as well as significant Th1 cytokines responses, IFN-γ, TNF-α, and IL-2 than the Jeryl Lynn (JL) vaccine. Our findings suggest that the inactivated F genotype mumps vaccine has higher immunogenicity than the JL vaccine against diverse circulating MuVs.
Collapse
|
4
|
Kidokoro M, Shiino T, Yamaguchi T, Nariai E, Kodama H, Nakata K, Sano T, Gotou K, Kisu T, Maruyama T, Kuba Y, Sakata W, Higashi T, Kiyota N, Sakai T, Yahiro S, Nagita A, Watanabe K, Hirokawa C, Hamabata H, Fujii Y, Yamamoto M, Yokoi H, Sakamoto M, Saito H, Shibata C, Inada M, Fujitani M, Minagawa H, Ito M, Shima A, Murano K, Katoh H, Kato F, Takeda M, Suga S. Nationwide and long-term molecular epidemiologic studies of mumps viruses that circulated in Japan between 1986 and 2017. Front Microbiol 2022; 13:728831. [PMID: 36386684 PMCID: PMC9650061 DOI: 10.3389/fmicb.2022.728831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
In Japan, major mumps outbreaks still occur every 4–5 years because of low mumps vaccine coverage (30–40%) owing to the voluntary immunization program. Herein, to prepare for a regular immunization program, we aimed to reveal the nationwide and long-term molecular epidemiological trends of the mumps virus (MuV) in Japan. Additionally, we performed whole-genome sequencing (WGS) using next-generation sequencing to assess results from conventional genotyping using MuV sequences of the small-hydrophobic (SH) gene. We analyzed 1,064 SH gene sequences from mumps clinical samples and MuV isolates collected from 25 prefectures from 1986 to 2017. The results showed that six genotypes, namely B (110), F (1), G (900), H (3), J (41), and L (9) were identified, and the dominant genotypes changed every decade in Japan since the 1980s. Genotype G has been exclusively circulating since the early 2000s. Seven clades were identified for genotype G using SH sequence-based classification. To verify the results, we performed WGS on 77 representative isolates of genotype G using NGS and phylogenetically analyzed them. Five clades were identified with high bootstrap values and designated as Japanese clade (JPC)-1, -2, -3, -4, -5. JPC-1 and -3 accounted for over 80% of the total genotype G isolates (68.3 and 13.8%, respectively). Of these, JPC-2 and -5, were newly identified clades in Japan through this study. This is the first report describing the nationwide and long-term molecular epidemiology of MuV in Japan. The results provide information about Japanese domestic genotypes, which is essential for evaluating the mumps elimination progress in Japan after the forthcoming introduction of the mumps vaccine into Japan’s regular immunization program. Furthermore, the study shows that WGS analysis using NGS is more accurate than results obtained from conventional SH sequence-based classification and is a powerful tool for accurate molecular epidemiology studies.
Collapse
Affiliation(s)
- Minoru Kidokoro
- Department of Quality Assurance, Radiation Safety, and Information Management, National Institute of Infectious Diseases, Tokyo, Japan
- *Correspondence: Minoru Kidokoro,
| | - Teiichiro Shiino
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomohiro Yamaguchi
- Public Hygiene Division, Gifu Prefectural Tono Region Public Health Center, Tajimi, Japan
| | - Eri Nariai
- Department of Health and Food Safety, Ishikawa Prefectural Institute of Public Health and Environmental Science, Kanazawa, Japan
| | - Hiroe Kodama
- Department of Health and Food Safety, Ishikawa Prefectural Institute of Public Health and Environmental Science, Kanazawa, Japan
| | - Keiko Nakata
- Division of Virology, Osaka Institute of Public Health, Osaka, Japan
| | - Takako Sano
- Division of Microbiology, Kanagawa Prefectural Institute of Public Health, Chigasaki, Japan
| | - Keiko Gotou
- Division of Virology, Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, Japan
| | - Tomoko Kisu
- Virus Research Center, Clinical Research Division, Sendai National Hospital, Sendai, Japan
| | - Tomomi Maruyama
- Department of Infectious Diseases, Gifu Prefectural Research Institute for Health and Environmental Sciences, Kakamigahara, Japan
| | - Yumani Kuba
- Department of Medical Microbiology and zoology, Okinawa Prefectural Institute of Health and Environment, Uruma, Japan
| | - Wakako Sakata
- Kitakyushu City Institute of Health and Environmental Sciences, Kitakyushu, Japan
| | - Teruaki Higashi
- Kitakyushu City Institute of Health and Environmental Sciences, Kitakyushu, Japan
| | - Naoko Kiyota
- Department of Microbiology, Kumamoto Prefectural Institute of Public-Health and Environmental Science, Uto, Japan
| | - Takashi Sakai
- Department of Microbiology, Kumamoto Prefectural Institute of Public-Health and Environmental Science, Uto, Japan
| | - Shunsuke Yahiro
- Department of Microbiology, Kumamoto Prefectural Institute of Public-Health and Environmental Science, Uto, Japan
| | - Akira Nagita
- Department of Pediatrics, Mizushima Central Hospital, Kurashiki, Japan
| | - Kaori Watanabe
- Virology Section, Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata, Japan
| | - Chika Hirokawa
- Virology Section, Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata, Japan
| | | | - Yoshiki Fujii
- Division of Biological Science, Hiroshima City Institute of Public Health, Hiroshima, Japan
| | - Miwako Yamamoto
- Division of Biological Science, Hiroshima City Institute of Public Health, Hiroshima, Japan
| | - Hajime Yokoi
- Health Science Division, Chiba City Institute of Health and Environment, Chiba, Japan
| | - Misako Sakamoto
- Health Science Division, Chiba City Institute of Health and Environment, Chiba, Japan
| | - Hiroyuki Saito
- Department of Microbiology, Akita Prefectural Research Center for Public Health and Environment, Akita, Japan
| | - Chihiro Shibata
- Department of Microbiology, Akita Prefectural Research Center for Public Health and Environment, Akita, Japan
| | - Machi Inada
- Virology and Epidemiology Division, Nara Prefecture Institute of Health, Sakurai, Japan
| | - Misako Fujitani
- Virology and Epidemiology Division, Nara Prefecture Institute of Health, Sakurai, Japan
| | - Hiroko Minagawa
- Laboratory of Virology, Aichi Prefectural Institute of Public Health, Nagoya, Japan
| | - Miyabi Ito
- Laboratory of Virology, Aichi Prefectural Institute of Public Health, Nagoya, Japan
| | - Akari Shima
- Microbiology Division, Saga Prefectural Institute of Public Health and Pharmaceutical Research, Saga, Japan
| | - Keiko Murano
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Katoh
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fumihiro Kato
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Suga
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Japan
| | | |
Collapse
|
5
|
Frost JR, Shaikh S, Severini A. Exploring the Mumps Virus Glycoproteins: A Review. Viruses 2022; 14:v14061335. [PMID: 35746805 PMCID: PMC9229384 DOI: 10.3390/v14061335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
The resurgence of mumps in vaccinated adult populations has raised concerns about possible waning vaccine immunity or a potential lack of protection to the circulating strain. A number of individual studies have investigated if there are amino acid variations between the circulating wild-type strains and vaccine strains. In these studies, the HN and F mumps surface glycoproteins have been of interest, because of their role in viral infection, and because the HN protein is the target of neutralizing antibodies. Here, we summarize the single nucleotide variants and their potential effect that have been identified between mumps genotypes in the HN and F proteins.
Collapse
Affiliation(s)
- Jasmine Rae Frost
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (J.R.F.); (S.S.)
| | - Saba Shaikh
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (J.R.F.); (S.S.)
| | - Alberto Severini
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (J.R.F.); (S.S.)
- JC Wilt Infectious Diseases Research Centre, NMLB, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Correspondence: ; Tel.: +1-204-789-6022; Fax: +1-204-318-2222
| |
Collapse
|
6
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
7
|
Current view on novel vaccine technologies to combat human infectious diseases. Appl Microbiol Biotechnol 2022; 106:25-56. [PMID: 34889981 PMCID: PMC8661323 DOI: 10.1007/s00253-021-11713-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Inactivated and live attenuated vaccines have improved human life and significantly reduced morbidity and mortality of several human infectious diseases. However, these vaccines have faults, such as reactivity or suboptimal efficacy and expensive and time-consuming development and production. Additionally, despite the enormous efforts to develop vaccines against some infectious diseases, the traditional technologies have not been successful in achieving this. At the same time, the concerns about emerging and re-emerging diseases urge the need to develop technologies that can be rapidly applied to combat the new challenges. Within the last two decades, the research of vaccine technologies has taken several directions to achieve safe, efficient, and economic platforms or technologies for novel vaccines. This review will give a brief overview of the current state of the novel vaccine technologies, new vaccine candidates in clinical trial phases 1-3 (listed by European Medicines Agency (EMA) and Food and Drug Administration (FDA)), and vaccines based on the novel technologies which have already been commercially available (approved by EMA and FDA) with the special reference to pandemic COVID-19 vaccines. KEY POINTS: • Vaccines of the new generation follow the minimalist strategy. • Some infectious diseases remain a challenge for the vaccine development. • The number of new vaccine candidates in the late phase clinical trials remains low.
Collapse
|
8
|
Siañez-Estrada LI, Rivera-Benítez JF, Rosas-Murrieta NH, Reyes-Leyva J, Santos-López G, Herrera-Camacho I. Immunoinformatics approach for predicting epitopes in HN and F proteins of Porcine rubulavirus. PLoS One 2020; 15:e0239785. [PMID: 32976525 PMCID: PMC7518572 DOI: 10.1371/journal.pone.0239785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Porcine rubulavirus (PRV), which belongs to the family Paramyxoviridae, causes blue eye disease in pigs, characterized by encephalitis and reproductive failure in newborn and adult pigs, respectively. There is no effective treatment against PRV and no information on the effectiveness of the available vaccines. Continuous outbreaks have occurred in Mexico since the early 1980s, which have caused serious economic losses to pig producers. Vaccination can be used to control this disease. Searching for effective antigen candidates against PRV, we first sequenced the PAC1 F protein, then we used various immunoinformatics tools to predict antigenic determinants of B-cells and T-cells against the two glycoproteins of the virus (HN and F proteins). Finally, we used AutoDock Vina to determine the binding energies. We obtained the F gene sequence of a PRV strain collected in the early 1990s in Mexico and compared its amino acid profile with previous and more recent strains, obtaining an identity similarity of 97.78 to 99.26%. For the F proteins, seven linear B-cell epitopes, six conformational B-cell epitopes and twenty-nine T-cell MHC class I epitopes were predicted. For the HN proteins, sixteen linear B-cell epitopes, seven conformational B-cell epitopes and thirty-four T-cell MHC class I epitopes were predicted. The ATRSETDYY and AAYTTTTCF epitopes of the HN protein might be important for neutralizing the viral infection. We determined the in silico binding energy between the predicted epitopes on the F and HN proteins and swine MHC-I molecules. The binding energy of these epitopes ranged from -5.8 to -7.8 kcal/mol. The present study aimed to assess the use of HN and F proteins as antigens, either as recombinant proteins or as a series of peptides that could activate different responses of the immune system. This may help identify relevant immunogens, saving time and costs in the development of new vaccines or diagnostic tools.
Collapse
Affiliation(s)
- Luis I. Siañez-Estrada
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social (IMSS), Metepec, México
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Ciudad de México, México
| | - Nora H. Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Julio Reyes-Leyva
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social (IMSS), Metepec, México
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social (IMSS), Metepec, México
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
9
|
Connell AR, Connell J, Leahy TR, Hassan J. Mumps Outbreaks in Vaccinated Populations-Is It Time to Re-assess the Clinical Efficacy of Vaccines? Front Immunol 2020; 11:2089. [PMID: 33072071 PMCID: PMC7531022 DOI: 10.3389/fimmu.2020.02089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/31/2020] [Indexed: 01/05/2023] Open
Abstract
History illustrates the remarkable public health impact of mass vaccination, by dramatically improving life expectancy and reducing the burden of infectious diseases and co-morbidities worldwide. It has been perceived that if an individual adhered to the MMR vaccine schedule that immunity to mumps virus (MuV) would be lifelong. Recent mumps outbreaks in individuals who had received two doses of the Measles Mumps Rubella (MMR) vaccine has challenged the efficacy of the MMR vaccine. However, clinical symptoms, complications, viral shedding and transmission associated with mumps infection has been shown to be reduced in vaccinated individuals, demonstrating a benefit of this vaccine. Therefore, the question of what constitutes a good mumps vaccine and how its impact is assessed in this modern era remains to be addressed. Epidemiology of the individuals most affected by the outbreaks (predominantly young adults) and variance in the circulating MuV genotype have been well-described alluding to a collection of influences such as vaccine hesitancy, heterogeneous vaccine uptake, primary, and/or secondary vaccine failures. This review aims to discuss in detail the interplay of factors thought to be contributing to the current mumps outbreaks seen in highly vaccinated populations. In addition, how mumps diagnoses has progressed and impacted the understanding of mumps infection since a mumps vaccine was first developed, the limitations of current laboratory tests in confirming protection in vaccinated individuals and how vaccine effectiveness is quantified are also considered. By highlighting knowledge gaps within this area, this state-of-the-art review proposes a change of perspective regarding the impact of a vaccine in a highly vaccinated population from a clinical, diagnostic and public perspective, highlighting a need for a paradigm shift on what is considered vaccine immunity.
Collapse
Affiliation(s)
- Anna R. Connell
- National Children's Research Centre, Children's Health Ireland, Dublin, Ireland
| | - Jeff Connell
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
| | - T. Ronan Leahy
- Children's Health Ireland, Dublin, Ireland
- Department of Pediatrics, University of Dublin, Trinity College, Dublin, Ireland
| | - Jaythoon Hassan
- National Children's Research Centre, Children's Health Ireland, Dublin, Ireland
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Mumps: an Update on Outbreaks, Vaccine Efficacy, and Genomic Diversity. Clin Microbiol Rev 2020; 33:33/2/e00151-19. [PMID: 32102901 DOI: 10.1128/cmr.00151-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mumps is an acute viral infection characterized by inflammation of the parotid and other salivary glands. Persons with mumps are infectious from 2 days before through 5 days after parotitis onset, and transmission is through respiratory droplets. Despite the success of mumps vaccination programs in the United States and parts of Europe, a recent increase in outbreaks of mumps virus infections among fully vaccinated populations has been reported. Although the effectiveness of the mumps virus component of the measles-mumps-rubella (MMR) vaccine is suboptimal, a range of contributing factors has led to these outbreaks occurring in high-vaccination-coverage settings, including the intensity of exposure, the possibility of vaccine strain mismatch, delayed implementation of control measures due to the timeliness of reporting, a lack of use of appropriate laboratory tests (such as reverse transcription-PCR), and time since last vaccination. The resurgence of mumps virus infections among previously vaccinated individuals over the past decade has prompted discussions about new strategies to mitigate the risk of future outbreaks. The decision to implement a third dose of the MMR vaccine in response to an outbreak should be considered in discussions with local public health agencies. Traditional public health measures, including the isolation of infectious persons, timely contact tracing, and effective communication and awareness education for the public and medical community, should remain key interventions for outbreak control. Maintaining high mumps vaccination coverage remains key to U.S. and global efforts to reduce disease incidence and rates of complications.
Collapse
|
11
|
Alkam D, Jenjaroenpun P, Wongsurawat T, Udaondo Z, Patumcharoenpol P, Robeson M, Haselow D, Mason W, Nookaew I, Ussery D, Jun SR. Genomic characterization of mumps viruses from a large-scale mumps outbreak in Arkansas, 2016. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 75:103965. [PMID: 31319177 PMCID: PMC6832845 DOI: 10.1016/j.meegid.2019.103965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 11/22/2022]
Abstract
In 2016, a year-long large-scale mumps outbreak occurred in Arkansas among a highly-vaccinated population. A total of 2954 mumps cases were identified during this outbreak. The majority of cases (1676 (57%)) were school-aged children (5-17 years), 1536 (92%) of these children had completed the mumps vaccination schedule. To weigh the possibility that the mumps virus evaded vaccine-induced immunity in the affected Arkansas population, we established a pipeline for genomic characterization of the outbreak strains. Our pipeline produces whole-genome sequences along with phylogenetic analysis of the outbreak mumps virus strains. We collected buccal swab samples of patients who tested positive for the mumps virus during the 2016 Arkansas outbreak, and used the portable Oxford Nanopore Technology to sequence the extracted strains. Our pipeline identified the genotype of the Arkansas mumps strains as genotype G and presented a genome-based phylogenetic tree with superior resolution to a standard small hydrophobic (SH) gene-based tree. We phylogenetically compared the Arkansas whole-genome sequences to all publicly available mumps strains. While these analyses show that the Arkansas mumps strains are evolutionarily distinct from the vaccine strains, we observed no correlation between vaccination history and phylogenetic grouping. Furthermore, we predicted potential B-cell epitopes encoded by the Arkansas mumps strains using a random forest prediction model trained on antibody-antigen protein structures. Over half of the predicted epitopes of the Jeryl-Lynn vaccine strains in the Hemagglutinin-Neuraminidase (HN) surface glycoprotein (a major target of neutralizing antibodies) region are missing in the Arkansas mumps strains. In-silico analyses of potential epitopes may indicate that the Arkansas mumps strains display antigens with reduced immunogenicity, which may contribute to reduced vaccine effectiveness. However, our in-silico findings should be assessed by robust experiments such as cross neutralization assays. Metadata analysis showed that vaccination history had no effect on the evolution of the Arkansas mumps strains during this outbreak. We conclude that the driving force behind the spread of the mumps virus in the 2016 Arkansas outbreak remains undetermined.
Collapse
Affiliation(s)
- Duah Alkam
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Preecha Patumcharoenpol
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Michael Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Dirk Haselow
- Arkansas Department of Health, 4815 W Markham St, Little Rock, AR 72205, USA.
| | - William Mason
- Arkansas Department of Health, 4815 W Markham St, Little Rock, AR 72205, USA.
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - David Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| |
Collapse
|
12
|
Differences in antigenic sites and other functional regions between genotype A and G mumps virus surface proteins. Sci Rep 2018; 8:13337. [PMID: 30190529 PMCID: PMC6127219 DOI: 10.1038/s41598-018-31630-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/22/2018] [Indexed: 11/08/2022] Open
Abstract
The surface proteins of the mumps virus, the fusion protein (F) and haemagglutinin-neuraminidase (HN), are key factors in mumps pathogenesis and are important targets for the immune response during mumps virus infection. We compared the predicted amino acid sequences of the F and HN genes from Dutch mumps virus samples from the pre-vaccine era (1957-1982) with mumps virus genotype G strains (from 2004 onwards). Genotype G is the most frequently detected mumps genotype in recent outbreaks in vaccinated communities, especially in Western Europe, the USA and Japan. Amino acid differences between the Jeryl Lynn vaccine strains (genotype A) and genotype G strains were predominantly located in known B-cell epitopes and in N-linked glycosylation sites on the HN protein. There were eight variable amino acid positions specific to genotype A or genotype G sequences in five known B-cell epitopes of the HN protein. These differences may account for the reported antigenic differences between Jeryl Lynn and genotype G strains. We also found amino acid differences in and near sites on the HN protein that have been reported to play a role in mumps virus pathogenesis. These differences may contribute to the occurrence of genotype G outbreaks in vaccinated communities.
Collapse
|
13
|
Assessment of one-dose mumps-containing vaccine effectiveness on wild-type genotype F mumps viruses circulating in mainland China. Vaccine 2018; 36:5725-5731. [DOI: 10.1016/j.vaccine.2018.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 11/20/2022]
|
14
|
Genotype replacement of the human parainfluenza virus type 2 in Croatia between 2011 and 2017 - the role of neutralising antibodies. Epidemiol Infect 2018; 146:1372-1383. [PMID: 29909804 DOI: 10.1017/s0950268818001693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Previously we reported on the HPIV2 genotype distribution in Croatia 2011-2014. Here we expand this period up to 2017 and confirm that G1a genotype has replaced G3 genotype from the period 2011-2014. Our hypothesis was that the G1a-to-G3 genotype replacement is an antibody-driven event. A cross-neutralisation with anti-HPIV2 sera specific for either G1a or G3 genotype revealed the presence of genotype-specific antigenic determinants. By the profound, in silico analyses three potential B cell epitopic regions were identified in the hemagglutinin neuraminidase (regions 314-361 and 474-490) and fusion protein (region 440-484). The region identified in the fusion protein does not show any unique site between the G1a and G3 isolates, five differentially glycosylated sites in the G1a and G3 genotype isolates were identified in epitopic regions of hemagglutinin neuraminidase. All positively selected codons were found to be located either in the region 314-316 or in the region 474-490 what indicates a strong positive selection in this region and reveals that these regions are susceptible to evolutionary pressure possibly caused by antibodies what gives a strong verification to our hypothesis that neutralising antibodies are a key determinant in the inherently complex adaptive evolution of HPIV2 in the region.
Collapse
|
15
|
May M, Rieder CA, Rowe RJ. Emergent lineages of mumps virus suggest the need for a polyvalent vaccine. Int J Infect Dis 2017; 66:1-4. [PMID: 28987391 DOI: 10.1016/j.ijid.2017.09.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 12/01/2022] Open
Abstract
Mumps outbreaks among vaccinated patients have become increasingly common in recent years. While there are multiple conditions driving this re-emergence, convention has suggested that these outbreaks are associated with waning immunity rather than vaccine escape. Molecular evidence from both the ongoing American and Dutch outbreaks in conjunction with recent structural biology studies challenge this convention, and suggest that emergent lineages of mumps virus exhibit key differences in antigenic epitopes from the vaccine strain employed: Jeryl-Lynn 5. The American and Dutch 2016-2017 outbreak lineages were examined using computational biology through the lens of diversity in immunogenic epitopes. Findings are discussed and the laboratory evidence indicating neutralization of heterologous mumps strains by serum from vaccinated individuals is reviewed. Taken together, it is concluded that the number of heterologous epitopes occurring in mumps virus in conjunction with waning immunity is facilitating small outbreaks in vaccinated patients, and that consideration of a polyvalent mumps vaccine is warranted.
Collapse
Affiliation(s)
- Meghan May
- University of New England, Biddeford, ME, USA.
| | | | | |
Collapse
|
16
|
Zengel J, Phan SI, Pickar A, Xu P, He B. Immunogenicity of mumps virus vaccine candidates matching circulating genotypes in the United States and China. Vaccine 2017; 35:3988-3994. [PMID: 28623030 PMCID: PMC5785236 DOI: 10.1016/j.vaccine.2017.05.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
Abstract
Mumps virus (MuV) causes acute infection in humans with characteristic swelling of the parotid gland. While vaccination has greatly reduced the incidence of MuV infection, there have been multiple large outbreaks of mumps virus (MuV) in highly vaccinated populations. The most common vaccine strain, Jeryl Lynn, belongs to genotype A, which is no longer a circulating genotype. We have developed two vaccine candidates that match the circulating genotypes in the United States (genotype G) and China (genotype F). We found that there was a significant decrease in the ability of the Jeryl Lynn vaccine to produce neutralizing antibody responses to non-matched viruses, when compared to either of our vaccine candidates. Our data suggests that an updated vaccine may allow for better immunity against the circulating MuV genotypes G and F.
Collapse
Affiliation(s)
- James Zengel
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - Shannon I Phan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - Adrian Pickar
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Pei Xu
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States; Marjorie B. Kovler Viral Oncology Labs, The University of Chicago, Chicago, IL 60637, United States
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.
| |
Collapse
|
17
|
Katoh H, Kubota T, Ihara T, Maeda K, Takeda M, Kidokoro M. Cross-Neutralization between Human and African Bat Mumps Viruses. Emerg Infect Dis 2016; 22:703-6. [PMID: 26982800 PMCID: PMC4806932 DOI: 10.3201/eid2204.151116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recently, a new paramyxovirus closely related to human mumps virus (MuV) was detected in bats. We generated recombinant MuVs carrying either or both of the fusion and hemagglutinin-neuraminidase bat virus glycoproteins. These viruses showed replication kinetics similar to human MuV in cultured cells and were neutralized efficiently by serum from healthy humans.
Collapse
|
18
|
Gouma S, Ten Hulscher HI, Schurink-van 't Klooster TM, de Melker HE, Boland GJ, Kaaijk P, van Els CACM, Koopmans MPG, van Binnendijk RS. Mumps-specific cross-neutralization by MMR vaccine-induced antibodies predicts protection against mumps virus infection. Vaccine 2016; 34:4166-4171. [PMID: 27372154 DOI: 10.1016/j.vaccine.2016.06.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Similar to other recent mumps genotype G outbreaks worldwide, most mumps patients during the recent mumps genotype G outbreaks in the Netherlands had received 2 doses of measles, mumps and rubella (MMR) vaccine during childhood. Here, we investigate the capacity of vaccine-induced antibodies to neutralize wild type mumps virus strains, including mumps virus genotype G. METHODS In this study, we tested 105 pre-outbreak serum samples from students who had received 2 MMR vaccine doses and who had no mumps virus infection (n=76), symptomatic mumps virus infection (n=10) or asymptomatic mumps virus infection (n=19) during the mumps outbreaks. In all samples, mumps-specific IgG concentrations were measured by multiplex immunoassay and neutralization titers were measured against the Jeryl Lynn vaccine strain and against wild type genotype G and genotype D mumps virus strains. RESULTS The correlation between mumps-specific IgG concentrations and neutralization titers against Jeryl Lynn was poor, which suggests that IgG concentrations do not adequately represent immunological protection against mumps virus infection by antibody neutralization. Pre-outbreak neutralization titers in infected persons were significantly lower against genotype G than against the vaccine strain. Furthermore, antibody neutralization of wild type mumps virus genotype G and genotype D was significantly reduced in pre-outbreak samples from infected persons as compared with non-infected persons. No statistically significant difference was found for the vaccine strain. The sensitivity/specificity ratio was largest for neutralization of the genotype G strain as compared with the genotype D strain and the vaccine strain. CONCLUSIONS The reduced neutralization of wild type mumps virus strains in MMR vaccinated persons prior to infection indicates that pre-outbreak mumps virus neutralization is partly strain-specific and that neutralization differs between infected and non-infected persons. Therefore, we recommend the use of wild type mumps virus neutralization assays as preferred tool for surveillance of protection against mumps virus infection.
Collapse
Affiliation(s)
- Sigrid Gouma
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands; Department of Viroscience, Erasmus University Medical Centre, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Hinke I Ten Hulscher
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Tessa M Schurink-van 't Klooster
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Hester E de Melker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Greet J Boland
- Department of Medical Microbiology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| | - Patricia Kaaijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Marion P G Koopmans
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands; Department of Viroscience, Erasmus University Medical Centre, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Rob S van Binnendijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| |
Collapse
|