1
|
Xu C, Gamil AAA, Wang X, Munang’andu HM, Evensen Ø. MAVS disruption impairs downstream signaling and results in higher virus replication levels of salmonid alphavirus subtype 3 but not infectious pancreatic necrosis virus in vitro. Front Immunol 2024; 15:1401086. [PMID: 38903507 PMCID: PMC11187282 DOI: 10.3389/fimmu.2024.1401086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
The mitochondrial anti-viral signaling (MAVS) protein is an intermediary adaptor protein of retinoic acid-inducible gene-1 (RIG-I) like receptor (RLR) signaling, which activates the transcription factor interferon (IFN) regulatory factor 3 (IRF3) and NF-kB to produce type I IFNs. MAVS expression has been reported in different fish species, but few studies have shown its functional role in anti-viral responses to fish viruses. In this study, we used the transcription activator-like effector nuclease (TALEN) as a gene editing tool to disrupt the function of MAVS in Chinook salmon (Oncorhynchus tshawytscha) embryonic cells (CHSE) to understand its role in induction of interferon I responses to infections with the (+) RNA virus salmonid alphavirus subtype 3 (SAV-3), and the dsRNA virus infectious pancreatic necrosis virus (IPNV) infection. A MAVS-disrupted CHSE clone with a 7-aa polypeptide (GVFVSRV) deletion mutation at the N-terminal of the CARD domain infected with SAV-3 resulted in significantly lower expression of IRF3, IFNa, and ISGs and increased viral titer (1.5 log10) compared to wild-type. In contrast, the IPNV titer in MAVS-disrupted cells was not different from the wild-type. Furthermore, overexpression of salmon MAVS in MAVS-disrupted CHSE cells rescued the impaired type I IFN-mediated anti-viral effect against SAV-3.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Amr A. A. Gamil
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Vaswani CM, Varkouhi AK, Gupta S, Ektesabi AM, Tsoporis JN, Yousef S, Plant PJ, da Silva AL, Cen Y, Tseng YC, Batah SS, Fabro AT, Advani SL, Advani A, Leong-Poi H, Marshall JC, Garcia CC, Rocco PRM, Albaiceta GM, Sebastian-Bolz S, Watts TH, Moraes TJ, Capelozzi VL, Dos Santos CC. Preventing occludin tight-junction disruption via inhibition of microRNA-193b-5p attenuates viral load and influenza-induced lung injury. Mol Ther 2023; 31:2681-2701. [PMID: 37340634 PMCID: PMC10491994 DOI: 10.1016/j.ymthe.2023.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Virus-induced lung injury is associated with loss of pulmonary epithelial-endothelial tight junction integrity. While the alveolar-capillary membrane may be an indirect target of injury, viruses may interact directly and/or indirectly with miRs to augment their replication potential and evade the host antiviral defense system. Here, we expose how the influenza virus (H1N1) capitalizes on host-derived interferon-induced, microRNA (miR)-193b-5p to target occludin and compromise antiviral defenses. Lung biopsies from patients infected with H1N1 revealed increased miR-193b-5p levels, marked reduction in occludin protein, and disruption of the alveolar-capillary barrier. In C57BL/6 mice, the expression of miR-193b-5p increased, and occludin decreased, 5-6 days post-infection with influenza (PR8). Inhibition of miR-193b-5p in primary human bronchial, pulmonary microvascular, and nasal epithelial cells enhanced antiviral responses. miR-193b-deficient mice were resistant to PR8. Knockdown of occludin, both in vitro and in vivo, and overexpression of miR-193b-5p reconstituted susceptibility to viral infection. miR-193b-5p inhibitor mitigated loss of occludin, improved viral clearance, reduced lung edema, and augmented survival in infected mice. Our results elucidate how the innate immune system may be exploited by the influenza virus and how strategies that prevent loss of occludin and preserve tight junction function may limit susceptibility to virus-induced lung injury.
Collapse
Affiliation(s)
- Chirag M Vaswani
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Amir K Varkouhi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Sahil Gupta
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Amin M Ektesabi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - James N Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Sadiya Yousef
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Pamela J Plant
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Adriana L da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Brazil
| | - Yuchen Cen
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON, Canada
| | - Yi-Chieh Tseng
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON, Canada
| | - Sabrina S Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Alexandre T Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Howard Leong-Poi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John C Marshall
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cristiana C Garcia
- Laboratory of Respiratory, Exanthematic Viruses, Enterovirus and Viral Emergencies, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil; Integrated Research Group on Biomarkers. René Rachou Institute, FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Brazil
| | - Guillermo M Albaiceta
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain; CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Steffen Sebastian-Bolz
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tania H Watts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Theo J Moraes
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON, Canada; Department of Pediatrics University of Toronto and Respirology, Hospital for Sick Children, Toronto, ON, Canada
| | - Vera L Capelozzi
- Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Claudia C Dos Santos
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Interdepartmental Division of Critical Care, St Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Velayutham TS, Ivanciuc T, Garofalo RP, Casola A. Role of human metapneumovirus glycoprotein G in modulation of immune responses. Front Immunol 2022; 13:962925. [PMID: 35958551 PMCID: PMC9357950 DOI: 10.3389/fimmu.2022.962925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Human metapneumovirus (hMPV) is an important pathogen responsible for acute respiratory tract infections in children, the elderly, and immunocompromised patients, with no effective treatment or vaccine currently available. Knowledge of virus- and host-specific mechanisms contributing to the pathogenesis of hMPV infection is still limited. Studies have shown that hMPV surface glycoprotein G is an important virulence factor, by inhibiting innate immune signaling in airway epithelial cells and immune cells. In this study, we investigated the role of G protein in modulating innate and adaptive immune responses in mice infected with a recombinant virus with deletion of G protein (rhMPV-ΔG). Results show that rhMPV-ΔG was strongly attenuated, as it did not induce significant clinical disease, airway obstruction and airway hyperresponsiveness (AHR), compared to infection with a control strain (rhMPV-WT). By analysis of cells in bronchoalveolar fluid and lung tissue, as well as cytokine production, we found that G protein mediates aspects of both innate and adaptive immune responses, including neutrophils, dendritic cells, natural killer cells and B cells. Lung T cells recruited in response to rhMPV-ΔG had a significantly higher activated phenotype compared to those present after rhMPV-WT infection. Despite highly attenuation characterized by low levels of replication in the lung, rhMPV-ΔG was able to induce neutralizing antibodies and to protect mice from a secondary hMPV challenge. However, challenged mice that had received rhMPV-ΔG as primary infection showed some signs of lung disease at the earliest time points, which were less evident in mice that had received the rhMPV-WT strain as primary infection. These results demonstrate some of the mechanisms by which G protein could contribute to airway disease and modulate immune response to hMPV infection.
Collapse
Affiliation(s)
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Antonella Casola, ; Roberto P. Garofalo,
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Antonella Casola, ; Roberto P. Garofalo,
| |
Collapse
|
4
|
Ailenberg M, Kapus A, Leung CH, Szaszi K, Williams P, diCiano-Oliveira C, Marshall JC, Rotstein OD. ACTIVATION OF THE MITOCHONDRIAL ANTIVIRAL SIGNALING PROTEIN (MAVS) FOLLOWING LIVER ISCHEMIA/REPERFUSION AND ITS EFFECT ON INFLAMMATION AND INJURY. Shock 2022; 58:78-89. [PMID: 35670454 PMCID: PMC9415233 DOI: 10.1097/shk.0000000000001949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Resuscitation of trauma patients after hemorrhagic shock causes global I/R, which may contribute to organ dysfunction. Oxidative stress resulting from I/R is known to induce signaling pathways leading to the production of inflammatory molecules culminating in organ dysfunction/injury. Our recent work demonstrated that oxidative stress was able to induce activation of the mitochondrial antiviral signaling protein (MAVS), a protein known to be involved in antiviral immunity, in an in vitro model. We therefore hypothesized that the MAVS pathway might be involved in I/R-induced inflammation and injury. The present studies show that MAVS is activated in vivo by liver I/R and in vitro in RAW 264.7 cells by hypoxia/reoxygenation (H/R). We utilized both in vivo (liver I/R in MAVS knockout mice) and in vitro (MAVS siRNA in RAW 264.7 cells followed by H/R) models to study the role of MAVS activation on downstream events. In vivo , we demonstrated augmented injury and inflammation in MAVS knockout mice compared with wild-type animals; as shown by increased hepatocellular injury, induction of hepatocyte apoptosis augmented plasma TNF-α levels. Further, in vitro silencing of MAVS by specific siRNA in RAW 264.7 and exposure of the cells to H/R caused activation of mitophagy. This may represent a compensatory response to increased liver inflammation. We conclude that activation of MAVS by hypoxia/reoxygenation dampens inflammation, potentially suggesting a novel target for intervention.
Collapse
Affiliation(s)
- Menachem Ailenberg
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - Chung Ho Leung
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - Katalin Szaszi
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - Philip Williams
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - Caterina diCiano-Oliveira
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - John C. Marshall
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - Ori D. Rotstein
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| |
Collapse
|
5
|
Ren J, Wu W, Zhang K, Choi EJ, Wang P, Ivanciuc T, Peniche A, Qian Y, Garofalo RP, Zhou J, Bao X. Exchange Protein Directly Activated by cAMP 2 Enhances Respiratory Syncytial Virus-Induced Pulmonary Disease in Mice. Front Immunol 2021; 12:757758. [PMID: 34733289 PMCID: PMC8558466 DOI: 10.3389/fimmu.2021.757758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in young children. It is also a significant contributor to upper respiratory tract infections, therefore, a major cause for visits to the pediatrician. High morbidity and mortality are associated with high-risk populations including premature infants, the elderly, and the immunocompromised. However, no effective and specific treatment is available. Recently, we discovered that an exchange protein directly activated by cyclic AMP 2 (EPAC2) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, EPAC2 promotes RSV replication and pro-inflammatory cytokine/chemokine induction. However, the overall role of EPAC2 in the pulmonary responses to RSV has not been investigated. Herein, we found that EPAC2-deficient mice (KO) or mice treated with an EPAC2-specific inhibitor showed a significant decrease in body weight loss, airway hyperresponsiveness, and pulmonary inflammation, compared with wild-type (WT) or vehicle-treated mice. Overall, this study demonstrates the critical contribution of the EPAC2-mediated pathway to airway diseases in experimental RSV infection, suggesting the possibility to target EPAC2 as a promising treatment modality for RSV.
Collapse
Affiliation(s)
- Junping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Wenzhe Wu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Ke Zhang
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Department of Chemistry, University of Houston Clear Lake, Clear Lake, TX, United States
| | - Eun-Jin Choi
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Alex Peniche
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Youwen Qian
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Institute of Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Institute of Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
6
|
Avian Metapneumovirus Subgroup C Induces Mitochondrial Antiviral Signaling Protein Degradation through the Ubiquitin-Proteasome Pathway. Viruses 2021; 13:v13101990. [PMID: 34696420 PMCID: PMC8537000 DOI: 10.3390/v13101990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial antiviral signaling (MAVS) protein, a critical adapter, links the upstream recognition of viral RNA to downstream antiviral signal transduction. However, the interaction mechanism between avian metapneumovirus subgroup C (aMPV/C) infection and MAVS remains unclear. Here, we confirmed that aMPV/C infection induced a reduction in MAVS expression in Vero cells in a dose-dependent manner, and active aMPV/C replication was required for MAVS decrease. We also found that the reduction in MAVS occurred at the post-translational level rather than at the transcriptional level. Different inhibitors were used to examine the effect of proteasome or autophagy on the regulation of MAVS. Treatment with a proteasome inhibitor MG132 effectively blocked MAVS degradation. Moreover, we demonstrated that MAVS mainly underwent K48-linked ubiquitination in the presence of MG132 in aMPV/C-infected cells, with amino acids 363, 462, and 501 of MAVS being pivotal sites in the formation of polyubiquitin chains. Finally, E3 ubiquitin ligases for MAVS degradation were screened and identified and RNF5 targeting MAVS at Lysine 363 and 462 was shown to involve in MAVS degradation in aMPV/C-infected Vero cells. Overall, these results reveal the molecular mechanism underlying aMPV/C infection-induced MAVS degradation by the ubiquitin-proteasome pathway.
Collapse
|
7
|
Miao Q, Qi R, Meng C, Zhu J, Tang A, Dong D, Guo H, van Oers MM, Pijlman GP, Liu G. Caprine MAVS Is a RIG-I Interacting Type I Interferon Inducer Downregulated by Peste des Petits Ruminants Virus Infection. Viruses 2021; 13:v13030409. [PMID: 33807534 PMCID: PMC7998690 DOI: 10.3390/v13030409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
The mitochondrial antiviral-signaling protein (MAVS, also known as VISA, IPS-1, or CARDIF) plays an essential role in the type I interferon (IFN) response and in retinoic acid-inducible gene I (RIG-I) mediated antiviral innate immunity in mammals. In this study, the caprine MAVS gene (caMAVS, 1566 bp) was identified and cloned. The caMAVS shares the highest amino acid similarity (98.1%) with the predicted sheep MAVS. Confocal microscopy analysis of partial deletion mutants of caMAVS revealed that the transmembrane and the so-called Non-Characterized domains are indispensable for intracellular localization to mitochondria. Overexpression of caMAVS in caprine endometrial epithelial cells up-regulated the mRNA levels of caprine interferon-stimulated genes. We concluded that caprine MAVS mediates the activation of the type I IFN pathway. We further demonstrated that both the CARD-like domain and the transmembrane domain of caMAVS were essential for the activation of the IFN-β promotor. The interaction between caMAVS and caprine RIG-I and the vital role of the CARD and NC domain in this interaction was demonstrated by co-immunoprecipitation. Upon infection with the Peste des Petits Ruminants Virus (PPRV, genus Morbillivirus), the level of MAVS was greatly reduced. This reduction was prevented by the addition of the proteasome inhibitor MG132. Moreover, we found that viral protein V could interact and colocalize with MAVS. Together, we identified caMAVS as a RIG-I interactive protein involved in the activation of type I IFN pathways in caprine cells and as a target for PPRV immune evasion.
Collapse
Affiliation(s)
- Qiuhong Miao
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Q.M.); (R.Q.); (C.M.); (J.Z.); (A.T.); (D.D.); (H.G.)
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Ruibing Qi
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Q.M.); (R.Q.); (C.M.); (J.Z.); (A.T.); (D.D.); (H.G.)
| | - Chunchun Meng
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Q.M.); (R.Q.); (C.M.); (J.Z.); (A.T.); (D.D.); (H.G.)
| | - Jie Zhu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Q.M.); (R.Q.); (C.M.); (J.Z.); (A.T.); (D.D.); (H.G.)
| | - Aoxing Tang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Q.M.); (R.Q.); (C.M.); (J.Z.); (A.T.); (D.D.); (H.G.)
| | - Dandan Dong
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Q.M.); (R.Q.); (C.M.); (J.Z.); (A.T.); (D.D.); (H.G.)
| | - Hongyuan Guo
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Q.M.); (R.Q.); (C.M.); (J.Z.); (A.T.); (D.D.); (H.G.)
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
- Correspondence: (G.P.P.); (G.L.)
| | - Guangqing Liu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Q.M.); (R.Q.); (C.M.); (J.Z.); (A.T.); (D.D.); (H.G.)
- Correspondence: (G.P.P.); (G.L.)
| |
Collapse
|
8
|
Choi EJ, Wu W, Chen Y, Yan W, Li L, Choudhury A, Bao X. The role of M2-2 PDZ-binding motifs in pulmonary innate immune responses to human metapneumovirus. J Med Virol 2020; 92:2946-2954. [PMID: 32073159 PMCID: PMC8357536 DOI: 10.1002/jmv.25713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/11/2020] [Indexed: 12/14/2022]
Abstract
Human metapneumovirus (HMPV) is a leading cause of lower respiratory tract infection (LRTI) in pediatric and geriatric populations. We recently found that two PDZ-binding motifs of the M2-2 protein, 29-DEMI-32 and 39-KEALSDGI-46, play a significant role in mediating HMPV immune evasion in airway epithelial cells (AECs). However, their role in the overall pulmonary responses to HMPV infection has not been investigated. In this study, we found that two recombinant HMPVs (rHMPV) lacking the individual M2-2 PDZ-binding motif are attenuated in mouse lungs. Mice infected with mutants produce more cytokines/chemokines in bronchoalveolar lavage (BAL) fluid compared to mice infected with wild-type rHMPV. In addition, both mutants are able to enhance the pulmonary recruitment of dendritic cells (DCs) and T cells and induce effective protections against the HMPV challenge. The DC maturation is also significantly improved by the motif mutation. Taken together, our data provide proof-of-principle for two live-attenuated M2-2 mutants to be promising HMPV vaccine candidates that are effective in inducing higher pulmonary innate immunity and generating protection against HMPV infection.
Collapse
Affiliation(s)
- Eun-Jin Choi
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
| | - Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
| | - Yu Chen
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
| | - Weiyu Yan
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
- Honeybee Research Institute, Jiangxi Agriculture University, Nanchang, Jiangxi, China
| | - Liqing Li
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
- Department of Microbiology, The University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Atanu Choudhury
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
- The University of Texas at Austin, Austin, TX78712, USA
| | - Xiaoyong Bao
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
- Sealy Center for Molecular Medicine, UTMB, Galveston, TX 77555, USA
- The Institute of Translational Sciences, UTMB, Galveston, TX 77555, USA
- The Institute for Human Infections and Immunity, UTMB, Galveston, TX 77555, USA
| |
Collapse
|
9
|
Immunomodulation of Avian Dendritic Cells under the Induction of Prebiotics. Animals (Basel) 2020; 10:ani10040698. [PMID: 32316442 PMCID: PMC7222706 DOI: 10.3390/ani10040698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Dendritic cells recognize pathogen-associated molecular patterns in chicken intestines and are part of the initial immune response. The immunoregulatory properties of prebiotics acting in several ways in poultry have been known for many years. According to their function, dendritic cells should play an indispensable role in the proven effects of prebiotics on the intestinal immune system, such as through activation of T and B cells and cytokine production. Currently, there are no studies concerning direct interactions in poultry between non-digestible feed components and dendritic cells. Whereas most in vitro experiments with chicken dendritic cells have studied their interactions with pathogens, in vitro studies are now needed to determine the impacts of prebiotics on the gastrointestinal dendritic cells themselves. The present lack of information in this area limits the development of effective feed additives for poultry production. The main purpose of this review is to explore ideas regarding potential mechanisms by which dendritic cells might harmonize the immune response after prebiotic supplementation and thereby provide a basis for future studies. Abstract Although the immunomodulatory properties of prebiotics were demonstrated many years ago in poultry, not all mechanisms of action are yet clear. Dendritic cells (DCs) are the main antigen-presenting cells orchestrating the immune response in the chicken gastrointestinal tract, and they are the first line of defense in the immune response. Despite the crucial role of DCs in prebiotic immunomodulatory properties, information is lacking about interaction between prebiotics and DCs in an avian model. Mannan-oligosaccharides, β-glucans, fructooligosaccharides, and chitosan-oligosaccharides are the main groups of prebiotics having immunomodulatory properties. Because pathogen-associated molecular patterns on these prebiotics are recognized by many receptors of DCs, prebiotics can mimic activation of DCs by pathogens. Short-chain fatty acids are products of prebiotic fermentation by microbiota, and their anti-inflammatory properties have also been demonstrated in DCs. This review summarizes current knowledge about avian DCs in the gastrointestinal tract, and for the first-time, their role in the immunomodulatory properties of prebiotics within an avian model.
Collapse
|
10
|
Newcastle Disease Virus V Protein Degrades Mitochondrial Antiviral Signaling Protein To Inhibit Host Type I Interferon Production via E3 Ubiquitin Ligase RNF5. J Virol 2019; 93:JVI.00322-19. [PMID: 31270229 DOI: 10.1128/jvi.00322-19] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
Paramyxovirus establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell. Of the various pattern recognition receptors in the host, the cytosolic RNA helicases interact with viral RNA to activate the mitochondrial antiviral signaling protein (MAVS) and subsequent cellular interferon (IFN) response. On the other hand, viruses explore multiple strategies to resist host immunity. In this study, we found that Newcastle disease virus (NDV) infection induced MAVS degradation. Further analysis showed that NDV V protein degraded MAVS through the ubiquitin-proteasome pathway to inhibit IFN-β production. Moreover, NDV V protein led to proteasomal degradation of MAVS through Lys362 and Lys461 ubiquitin to prevent IFN production. Further studies showed that NDV V protein recruited E3 ubiquitin ligase RNF5 to polyubiquitinate and degrade MAVS. Compared with levels for wild-type NDV infection, V-deficient NDV induced attenuated MAVS degradation and enhanced IFN-β production at the late stage of infection. Several other paramyxovirus V proteins showed activities of degrading MAVS and blocking IFN production similar to those of NDV V protein. The present study revealed a novel role of NDV V protein in targeting MAVS to inhibit cellular IFN production, which reinforces the fact that the virus orchestrates the cellular antiviral response to its own benefit.IMPORTANCE Host anti-RNA virus innate immunity relies mainly on the recognition by retinoic acid-inducible gene I and melanoma differentiation-associated protein 5 and subsequently initiates downstream signaling through interaction with MAVS. On the other hand, viruses have developed various strategies to counteract MAVS-mediated signaling. The mechanism for paramyxoviruses regulating MAVS to benefit their infection remains unknown. In this article, we demonstrate that the V proteins of NDV and several other paramyxoviruses target MAVS for ubiquitin-mediated degradation through E3 ubiquitin ligase RING-finger protein 5 (RNF5). MAVS degradation leads to the inhibition of the downstream IFN-β pathway and therefore benefits virus proliferation. Our study reveals a novel mechanism of NDV evading host innate immunity and provides insight into the therapeutic strategies for the control of paramyxovirus infection.
Collapse
|
11
|
Sun Y, Mao X, Zheng H, Wu W, Rehman ZU, Liao Y, Meng C, Qiu X, Tan L, Song C, Xu L, Yu S, Ding C. Goose MAVS functions in RIG-I-mediated IFN-β signaling activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:58-65. [PMID: 30557581 DOI: 10.1016/j.dci.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Mitochondrial antiviral-signaling protein (MAVS) is an essential adaptor protein in retinoic acid-inducible gene I (RIG-I)-mediated antiviral innate immunity in mammals. In this study, the goose MAVS gene (goMAVS) was identified. The 2019 bp-long goMAVS exhibits 96.2% amino acid similarity compared to the predicted goMAVS. Quantitative real-time polymerase chain reactions showed that goMAVS mRNA was widely expressed in different tissues. The overexpression of goMAVS in goose embryo fibroblast cells up-regulated the mRNA levels of goose interferon-stimulated genes. We concluded that MAVS mediates the activation of type I interferon (IFN) pathway in a species-specific manner. We further demonstrated that a CARD-like domain, transmembrane domain and two previously unidentified domains of goMAVS were essential for the activation of type I IFN pathway. GoMAVS inhibited Newcastle disease virus replication by activating type I IFN pathways, especially at the early stages of infection. Finally, the interaction between goMAVS and goose RIG-I was confirmed. The CARD domain of goMAVS plays a vital role in the interaction. Together, we identified goMAVS as a goRIG-I interactive protein and concluded that goMAVS is involved in the activation of type I IFN pathways in goose cells.
Collapse
Affiliation(s)
- Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Xuming Mao
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, PR China
| | - Hang Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Wei Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Zaib Ur Rehman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Lei Xu
- China Institute of Veterinary Drug Control, Beijing, 100081, PR China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| |
Collapse
|
12
|
Dong W, Lv H, Li C, Liu Y, Wang C, Lin J, Wang Y, Qian G, Guo K, Zhang Y. MAVS induces a host cell defense to inhibit CSFV infection. Arch Virol 2018; 163:1805-1821. [DOI: 10.1007/s00705-018-3804-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/13/2018] [Indexed: 01/09/2023]
|
13
|
Immune Response to Human Metapneumovirus Infection: What We Have Learned from the Mouse Model. Pathogens 2015; 4:682-96. [PMID: 26393657 PMCID: PMC4584281 DOI: 10.3390/pathogens4030682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 01/17/2023] Open
Abstract
Human Metapneumovirus (hMPV) is a leading respiratory viral pathogen associated with bronchiolitis, pneumonia, and asthma exacerbation in young children, the elderly and immunocompromised individuals. The development of a potential vaccine against hMPV requires detailed understanding of the host immune system, which plays a significant role in hMPV pathogenesis, susceptibility and vaccine efficacy. As a result, animal models have been developed to better understand the mechanisms by which hMPV causes disease. Several animal models have been evaluated and established so far to study the host immune responses and pathophysiology of hMPV infection. However, inbred laboratory mouse strains have been one of the most used animal species for experimental modeling and therefore used for the studies of immunity and immunopathogenesis to hMPV. This review summarizes the contributions of the mouse model to our understanding of the immune response against hMPV infection.
Collapse
|