1
|
Bandolin L, Borsetto D, Fussey J, Da Mosto MC, Nicolai P, Menegaldo A, Calabrese L, Tommasino M, Boscolo-Rizzo P. Beta human papillomaviruses infection and skin carcinogenesis. Rev Med Virol 2020; 30:e2104. [PMID: 32232924 DOI: 10.1002/rmv.2104] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/17/2022]
Abstract
During the last decade, the worldwide incidence of keratinocyte carcinomas (KC) has increased significantly. They are now the most common malignancy, representing approximately 30% of all cancers. The role of ultraviolet (UV) radiation as a major environmental risk factor for skin cancers is well recognized. The aim of this review is to analyse the current understanding of the nature of beta-human papillomavirus (HPV) and its association with KC and explore the implications for the management and prevention of these cancers. A comprehensive review of the literature on beta-HPV and its association with KC was undertaken, the results reported in the form of a narrative review. A subgroup of HPV that infects the mucosal epithelia of the genital tract has been firmly associated with carcinogenesis. In addition, some HPV types with cutaneous tropism have been proposed to cooperate with UV in the development of KC. The first evidence for this association was reported in 1922 in patients with epidermodysplasia verruciformis (EV). Since then, epidemiological studies have highlighted the higher risk of skin cancer in patients with EV and certain cutaneous HPV types, and in vitro studies have elucidated molecular mechanisms and transforming properties of beta-HPV. Furthermore, in vivo research conducted on transgenic mice models has shown the possible role of beta-HPV in cutaneous carcinogenesis as a co-factor with UV radiation and immunosuppression. There is good evidence supporting the role of beta-HPV in the oncogenesis of KC. The high prevalence of beta-HPV in human skin and the worldwide burden of KC makes the search for an effective vaccine relevant and worthwhile.
Collapse
Affiliation(s)
- Luigia Bandolin
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | | | - Jonathan Fussey
- Department of Otolaryngology, Royal Devon and Exeter Hospital, Exeter, UK
| | | | - Piero Nicolai
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | - Anna Menegaldo
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | - Luca Calabrese
- Head and Neck Department, Ospedale di Bolzano, Bolzano, Italy
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Paolo Boscolo-Rizzo
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Development of a β-HPV vaccine: Updates on an emerging frontier of skin cancer prevention. J Clin Virol 2020; 126:104348. [PMID: 32334327 DOI: 10.1016/j.jcv.2020.104348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/22/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
Human papillomaviruses (HPVs) are small, non-enveloped, doublestranded DNA viruses. Over 200 subtypes of HPV have been identified, organized into five major genera. β-HPVs are a group of approximately 50 HPV subtypes that preferentially infect cutaneous sites. While α-HPVs are primarily responsible for genital lesions and mucosal cancers, growing evidence has established an association between β-HPVs and the development of cutaneous squamous cell carcinomas. Given this association, the development of a vaccine against β-HPVs has become an important topic of research; however, currently licensed vaccines only provide coverage for genital HPVs, leaving β-HPV infections and their associated skin cancers unaddressed. In this review, we summarize the current advances in β-HPV vaccine development, including progress made in preclinical testing and limited clinical data. We also discuss novel findings in the viral pathomechanisms involved in β-HPV cutaneous tumorigenesis that may play a large role in future vaccine development. We hope that synthesizing the available data and advances surrounding β- HPV vaccine development will not only lead to increased dedication to vaccine development, but also heightened awareness of a future vaccine among clinicians and the public.
Collapse
|
3
|
Hasche D, Vinzón SE, Rösl F. Cutaneous Papillomaviruses and Non-melanoma Skin Cancer: Causal Agents or Innocent Bystanders? Front Microbiol 2018; 9:874. [PMID: 29770129 PMCID: PMC5942179 DOI: 10.3389/fmicb.2018.00874] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
There is still controversy in the scientific field about whether certain types of cutaneous human papillomaviruses (HPVs) are causally involved in the development of non-melanoma skin cancer (NMSC). Deciphering the etiological role of cutaneous HPVs requires - besides tissue culture systems - appropriate preclinical models to match the obtained results with clinical data from affected patients. Clear scientific evidence about the etiology and underlying mechanisms involved in NMSC development is fundamental to provide reasonable arguments for public health institutions to classify at least certain cutaneous HPVs as group 1 carcinogens. This in turn would have implications on fundraising institutions and health care decision makers to force - similarly as for anogenital cancer - the implementation of a broad vaccination program against "high-risk" cutaneous HPVs to prevent NMSC as the most frequent cancer worldwide. Precise knowledge of the multi-step progression from normal cells to cancer is a prerequisite to understand the functional and clinical impact of cofactors that affect the individual outcome and the personalized treatment of a disease. This overview summarizes not only recent arguments that favor the acceptance of a viral etiology in NMSC development but also reflects aspects of causality in medicine, the use of empirically meaningful model systems and strategies for prevention.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| | - Sabrina E Vinzón
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
4
|
Huber B, Schellenbacher C, Shafti-Keramat S, Jindra C, Christensen N, Kirnbauer R. Chimeric L2-Based Virus-Like Particle (VLP) Vaccines Targeting Cutaneous Human Papillomaviruses (HPV). PLoS One 2017; 12:e0169533. [PMID: 28056100 PMCID: PMC5215943 DOI: 10.1371/journal.pone.0169533] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022] Open
Abstract
Common cutaneous human papillomavirus (HPV) types induce skin warts, whereas species beta HPV are implicated, together with UV-radiation, in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. Licensed HPV vaccines contain virus-like particles (VLP) self-assembled from L1 major capsid proteins that provide type-restricted protection against mucosal HPV infections causing cervical and other ano-genital and oro-pharyngeal carcinomas and warts (condylomas), but do not target heterologous HPV. Experimental papillomavirus vaccines have been designed based on L2 minor capsid proteins that contain type-common neutralization epitopes, to broaden protection to heterologous mucosal and cutaneous HPV types. Repetitive display of the HPV16 L2 cross-neutralization epitope RG1 (amino acids (aa) 17-36) on the surface of HPV16 L1 VLP has greatly enhanced immunogenicity of the L2 peptide. To more directly target cutaneous HPV, L1 fusion proteins were designed that incorporate the RG1 homolog of beta HPV17, the beta HPV5 L2 peptide aa53-72, or the common cutaneous HPV4 RG1 homolog, inserted into DE surface loops of HPV1, 5, 16 or 18 L1 VLP scaffolds. Baculovirus expressed chimeric proteins self-assembled into VLP and VLP-raised NZW rabbit immune sera were evaluated by ELISA and L1- and L2-based pseudovirion (PsV) neutralizing assays, including 12 novel beta PsV types. Chimeric VLP displaying the HPV17 RG1 epitope, but not the HPV5L2 aa53-72 epitope, induced cross-neutralizing humoral immune responses to beta HPV. In vivo cross-protection was evaluated by passive serum transfer in a murine PsV challenge model. Immune sera to HPV16L1-17RG1 VLP (cross-) protected against beta HPV5/20/24/38/96/16 (but not type 76), while antisera to HPV5L1-17RG1 VLP cross-protected against HPV20/24/96 only, and sera to HPV1L1-4RG1 VLP cross-protected against HPV4 challenge. In conclusion, RG1-based VLP are promising next generation vaccine candidates to target cutaneous HPV infections.
Collapse
Affiliation(s)
- Bettina Huber
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christina Schellenbacher
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Saeed Shafti-Keramat
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christoph Jindra
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Neil Christensen
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
5
|
Abstract
Cutaneous papillomaviruses are associated with specific skin diseases, such as extensive wart formation and the development of non-melanoma skin cancer (NMSC), especially in immunosuppressed patients. Hence, clinical approaches are required that prevent such lesions. Licensed human papillomavirus (HPV) vaccines confer type-restricted protection against HPV types 6, 11, 16 and 18, responsible of 90% of genital warts and 70% of cervical cancers, respectively. However, they do not protect against less prevalent high-risk types or cutaneous HPVs. Over the past few years, several studies explored the potential of developing vaccines targeting cutaneous papillomaviruses. These vaccines showed to be immunogenic and prevent skin tumor formation in certain animal models. Furthermore, under conditions mimicking the ones found in the intended target population (i.e., immunosuppression and in the presence of an already established infection before vaccination), recent preclinical data shows that immunization can still be effective. Strategies are currently focused on finding vaccine formulations that can confer protection against a broad range of papillomavirus-associated diseases. The state-of-the-art of these approaches and the future directions in the field will be presented.
Collapse
Affiliation(s)
- Sabrina E Vinzón
- a Division of Viral Transformation Mechanisms ; German Cancer Research Center (DKFZ) ; Heidelberg , Germany
| | | |
Collapse
|
6
|
Schellenbacher C, Kwak K, Fink D, Shafti-Keramat S, Huber B, Jindra C, Faust H, Dillner J, Roden RBS, Kirnbauer R. Efficacy of RG1-VLP vaccination against infections with genital and cutaneous human papillomaviruses. J Invest Dermatol 2013; 133:2706-2713. [PMID: 23752042 PMCID: PMC3826974 DOI: 10.1038/jid.2013.253] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022]
Abstract
Licensed human papillomavirus (HPV) vaccines, based on virus-like particles (VLPs) self-assembled from major capsid protein L1, afford type-restricted protection against HPV types 16/18/6/11 (or 16/18 for the bivalent vaccine), which cause 70% of cervical cancers (CxCas) and 90% of genital warts. However, they do not protect against less prevalent high-risk (HR) types causing 30% of CxCa, or cutaneous HPV. In contrast, vaccination with the minor capsid protein L2 induces low-level immunity to type-common epitopes. Chimeric RG1-VLP presenting HPV16 L2 amino acids 17–36 (RG1 epitope) within the DE-surface loop of HPV16 L1 induced cross-neutralizing antisera. We hypothesized that RG1-VLP vaccination protects against a large spectrum of mucosal and cutaneous HPV infections in vivo. Immunization with RG1-VLP adjuvanted with human-applicable alum-MPL (aluminum hydroxide plus 3-O-desacyl-4′-monophosphoryl lipid A) induced robust L2 antibodies (ELISA titers 2,500–12,500), which (cross-)neutralized mucosal HR HPV16/18/45/37/33/52/58/35/39/51/59/68/73/26/69/34/70, low-risk HPV6/11/32/40, and cutaneous HPV2/27/3/76 (titers 25–1,000) using native virion- or pseudovirion (PsV)-based assays, and a vigorous cytotoxic T lymphocyte response by enzyme-linked immunospot. In vivo, mice were efficiently protected against experimental vaginal challenge with mucosal HR PsV types HPV16/18/45/31/33/52/58/35/39/51/59/68/56/73/26/53/66/34 and low-risk HPV6/43/44. Enduring protection was demonstrated 1 year after vaccination. RG1-VLP is a promising next-generation vaccine with broad efficacy against all relevant mucosal and also cutaneous HPV types.
Collapse
Affiliation(s)
- Christina Schellenbacher
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University Vienna (MUW), Vienna, Austria
| | - Kihyuck Kwak
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dieter Fink
- Institute of Laboratory Animal Science, Veterinary University Vienna, Vienna, Austria
| | - Saeed Shafti-Keramat
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University Vienna (MUW), Vienna, Austria
| | - Bettina Huber
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University Vienna (MUW), Vienna, Austria
| | - Christoph Jindra
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University Vienna (MUW), Vienna, Austria
| | - Helena Faust
- Department of Laboratory Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Joakim Dillner
- Department of Laboratory Medicine, Medical Epidemiology and Biostatistics, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University Vienna (MUW), Vienna, Austria.
| |
Collapse
|
7
|
Abstract
Human papillomaviruses (HPVs) are small double-stranded DNA viruses that infect the epithelia of skin or mucosa. Cutaneous HPV is ubiquitous and many children have skin warts at some stage during childhood and a high proportion of the adult population have asymptomatic skin HPV infections. While a subset of mucosal HPV types are involved in cervical cancer, the role for cutaneous HPV types in skin cancer is still under debate. There is some evidence that the skin HPV types have mechanisms to induce skin cancer, but the role of HPV infection has never been proved in larger epidemiological studies and is not well understood. Cutaneous HPV serology has been employed more commonly during the last decade to help find a link between cutaneous HPV and skin cancer. This review covers the findings from cutaneous HPV serology studies published during the last decade and discusses differences in seroprevalence and risk factors.
Collapse
Affiliation(s)
- Annika Antonsson
- Queensland Institute of Medical Research, Cancer Control Group, Population Health Department, Herston, Brisbane, Australia.
| |
Collapse
|
8
|
Matić S, Masenga V, Poli A, Rinaldi R, Milne RG, Vecchiati M, Noris E. Comparative analysis of recombinant Human Papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:410-21. [PMID: 22260326 DOI: 10.1111/j.1467-7652.2011.00671.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Human papillomavirus 8 (HPV-8), one of the high-risk cutaneous papillomaviruses (cHPVs), is associated with epidermodysplasia verruciformis and nonmelanoma skin cancer in immuno-compromised individuals. Currently, no vaccines against cHPVs have been reported; however, recent studies on cross-neutralizing properties of their capsid proteins (CP) have fostered an interest in vaccine production against these viruses. We examined the potential of producing HPV-8 major CP L1 in Nicotiana benthamiana by agroinfiltration of different transient expression vectors: (i) the binary vector pBIN19 with or without silencing suppressor constructs, (ii) the nonreplicating Cowpea mosaic virus-derived expression vector pEAQ-HT and (iii) a replicating Tobacco mosaic virus (TMV)-based vector alone or with signal peptides. Although HPV-8 L1 was successfully expressed using pEAQ-HT and TMV, a 15-fold increase was obtained with pEAQ-HT. In contrast, no L1 protein could be immune detected using pBIN19 irrespective of whether silencing suppressors were coexpressed, although such constructs were required for identifying L1-specific transcripts. A fourfold yield increase in L1 expression was obtained when 22 C-terminal amino acids were deleted (L1ΔC22), possibly eliminating a nuclear localization signal. Electron microscopy showed that plant-made HPV-8 L1 proteins assembled in appropriate virus-like particles (VLPs) of T = 1 or T = 7 symmetry. Ultrathin sections of L1ΔC22-expressing cells revealed their accumulation in the cytoplasm in the form of VLPs or paracrystalline arrays. These results show for the first time the production and localization of HPV-8 L1 protein in planta and its assembly into VLPs representing promising candidate for potential vaccine production.
Collapse
Affiliation(s)
- Slavica Matić
- Istituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, Strada delle Cacce, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Noris E, Poli A, Cojoca R, Rittà M, Cavallo F, Vaglio S, Matic S, Landolfo S. A human papillomavirus 8 E7 protein produced in plants is able to trigger the mouse immune system and delay the development of skin lesions. Arch Virol 2011; 156:587-95. [PMID: 21234770 DOI: 10.1007/s00705-010-0893-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/14/2010] [Indexed: 01/13/2023]
Abstract
We investigated the potential of Nicotiana benthamiana to express the E7 protein of human papillomavirus 8 (HPV-8), a paradigm genotype among cutaneous HPVs. The protein, modified in its putative pRb-binding domain (E7(QGD)), was transiently expressed in leaves following infiltration with agrobacteria carrying either a binary vector combined with silencing suppressor constructs or replicating tobacco mosaic virus (TMV)-based vectors with different targeting signals. HPV-8 E7(QGD) yields ranged from 250 ng to 4.6 mg per gram of fresh leaf tissue. The highest yields were obtained with TMV-based vectors targeting the antigen to the apoplast. HPV8-CER (H2(q)) mice transformed with the complete early region of HPV-8 showed a delay in the onset of skin papillomatous lesions and produced E7-specific immunoglobulins G when inoculated subcutaneously with leaf extracts expressing E7(QGD). Furthermore, we demonstrated that the plant-made HPV-8 E7(QGD) induced a specific cytotoxic response in C57BL/6 (H2(b)) mice.
Collapse
Affiliation(s)
- Emanuela Noris
- Istituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Handisurya A, Schellenbacher C, Reininger B, Koszik F, Vyhnanek P, Heitger A, Kirnbauer R, Förster-Waldl E. A quadrivalent HPV vaccine induces humoral and cellular immune responses in WHIM immunodeficiency syndrome. Vaccine 2010; 28:4837-41. [PMID: 20472031 DOI: 10.1016/j.vaccine.2010.04.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 04/07/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
WHIM-syndrome is an inherited immunodeficiency disorder with abnormal susceptibility to human papillomavirus (HPV) infection and diseases. We determined safety and immunogenicity to a quadrivalent HPV vaccine in WHIM-syndrome by detection of HPV-specific antibodies and lymphoproliferation. In virus-like-particle (VLP)-ELISA, a WHIM patient showed antibody titers up to 400 for HPV-6/11/16/18, whereas immuno-competent controls developed titers of 6400-25,600. In pseudovirion assays, the patient's neutralization titers ranged from 20 to 400 to the four HPV vaccine types, while titers of 1600-25,600 were detected in healthy vaccinees. Specific proliferation of PBMC of the WHIM patient to the HPV vaccine was demonstrated. This first report on response to HPV vaccination in WHIM-immunodeficiency highlights that patients with WHIM-syndrome, and probably other immunodeficiencies, may benefit from HPV immunoprophylaxis.
Collapse
Affiliation(s)
- Alessandra Handisurya
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kirnbauer R, Schellenbacher C, Shafti-Keramat S, Handisurya A. [HPV infections of the oral and genital mucosa. Possibilities for primary prevention]. Hautarzt 2010; 60:878-80. [PMID: 19862489 DOI: 10.1007/s00105-009-1803-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
It is well accepted today that almost all cases of carcinoma of the cervix are caused by persistent infections with high-risk human papilloma viruses (HPV), especially through types HPV16 and HPV18 (ca. 70%). These same types are also responsible for some carcinomas of the vulva, anus, penis and oropharynx. This knowledge indicates that it should be possible to prevent these carcinomas if a majority of the causstive HPV infections can be prevented.
Collapse
Affiliation(s)
- R Kirnbauer
- Labor für Virale Onkologie (LVO), Abteilung für Immundermatologie und infektiöse Hautkrankheiten, Klinik für Dermatologie, Medizinische Universität Wien, Allgemeines Krankenhaus, 1090 Wien, Osterreich.
| | | | | | | |
Collapse
|
12
|
Senger T, Schädlich L, Textor S, Klein C, Michael KM, Buck CB, Gissmann L. Virus-like particles and capsomeres are potent vaccines against cutaneous alpha HPVs. Vaccine 2009; 28:1583-93. [PMID: 20003923 DOI: 10.1016/j.vaccine.2009.11.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/09/2009] [Accepted: 11/18/2009] [Indexed: 01/10/2023]
Abstract
The potential as prophylactic vaccines of L1-based particles from cutaneous genus alpha human papillomavirus (HPV) types has not been assessed so far. However, there is a high medical need for such vaccines since HPV-induced skin warts represent a major burden for children and for immunocompromised adults, such as organ transplant recipients. In this study, we have examined the immunogenicity of capsomeres and virus-like particles (VLPs) from HPV types 2, 27, and 57, the most frequent causative agents of skin warts. Immunization of mice induced immune responses resembling those observed upon vaccination with HPV 16 L1-based antigens. The antibody responses were cross-reactive but type-restricted in their neutralizing capacities. Application of adjuvant led to an enhanced potential to neutralize the respective immunogen type but did not improve cross-neutralization. Vaccination with capsomeres and VLPs from all four analyzed HPV types induced robust IFNgamma-associated T-cell activation. Immunization with mixed VLPs from HPV types 2, 27, and 57 triggered an antibody response similar to that after single-type immunization and capable of efficiently neutralizing all three types. Our results imply that vaccination with combinations of VLPs from cutaneous HPV types constitutes a promising strategy to prevent HPV-induced skin lesions.
Collapse
Affiliation(s)
- Tilo Senger
- Department of Genome Modifications and Carcinogenesis, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|