1
|
Golubovic A, Tsai S, Li B. Bioinspired Lipid Nanocarriers for RNA Delivery. ACS BIO & MED CHEM AU 2023; 3:114-136. [PMID: 37101812 PMCID: PMC10125326 DOI: 10.1021/acsbiomedchemau.2c00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 04/28/2023]
Abstract
RNA therapy is a disruptive technology comprising a rapidly expanding category of drugs. Further translation of RNA therapies to the clinic will improve the treatment of many diseases and help enable personalized medicine. However, in vivo delivery of RNA remains challenging due to the lack of appropriate delivery tools. Current state-of-the-art carriers such as ionizable lipid nanoparticles still face significant challenges, including frequent localization to clearance-associated organs and limited (1-2%) endosomal escape. Thus, delivery vehicles must be improved to further unlock the full potential of RNA therapeutics. An emerging strategy is to modify existing or new lipid nanocarriers by incorporating bioinspired design principles. This method generally aims to improve tissue targeting, cellular uptake, and endosomal escape, addressing some of the critical issues facing the field. In this review, we introduce the different strategies for creating bioinspired lipid-based RNA carriers and discuss the potential implications of each strategy based on reported findings. These strategies include incorporating naturally derived lipids into existing nanocarriers and mimicking bioderived molecules, viruses, and exosomes. We evaluate each strategy based on the critical factors required for delivery vehicles to succeed. Finally, we point to areas of research that should be furthered to enable the more successful rational design of lipid nanocarriers for RNA delivery.
Collapse
Affiliation(s)
- Alex Golubovic
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Shannon Tsai
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Bowen Li
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
2
|
Mukherjee MB, Mullick R, Reddy BU, Das S, Raichur AM. Galactose Functionalized Mesoporous Silica Nanoparticles As Delivery Vehicle in the Treatment of Hepatitis C Infection. ACS APPLIED BIO MATERIALS 2020; 3:7598-7610. [PMID: 35019500 DOI: 10.1021/acsabm.0c00814] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA and RNA based antiviral strategies using nonviral vectors have shown better potential over the viral pathway due to the fewer chances of gene recombination and immunogenicity. In this work a mesoporous silica nanoparticle (MSN) based carrier system has been used for targeted delivery of shDNA molecule against the conserved 5'-untranslated region (UTR) in the RNA of a hepatitis C virus to inhibit its replication. The MSNs coated with amine and galactose could specifically target liver cells. Significant reduction (about 94%) of viral RNA level was achieved in HCV-JFH1 infectious cell culture compared to the control RNA levels directed the successful delivery and action of the shDNA. This study showed that Gal-AMSN can be used as a synthetic delivery vector to deliver the shDNA effectively for the treatment of HCV infection.
Collapse
Affiliation(s)
- Mousumi Beto Mukherjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ranajoy Mullick
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - B Uma Reddy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Oshchepkova A, Neumestova A, Matveeva V, Artemyeva L, Morozova K, Kiseleva E, Zenkova M, Vlassov V. Cytochalasin-B-Inducible Nanovesicle Mimics of Natural Extracellular Vesicles That Are Capable of Nucleic Acid Transfer. MICROMACHINES 2019; 10:E750. [PMID: 31683842 PMCID: PMC6915531 DOI: 10.3390/mi10110750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles provide cell-to-cell communication and have great potential for use as therapeutic carriers. This study was aimed at the development of an extracellular vesicle-based system for nucleic acid delivery. Three types of nanovesicles were assayed as oligonucleotide carriers: mesenchymal stem cell-derived extracellular vesicles and mimics prepared either by cell treatment with cytochalasin B or by vesicle generation from plasma membrane. Nanovesicles were loaded with a DNA oligonucleotide by freezing/thawing, sonication, or permeabilization with saponin. Oligonucleotide delivery was assayed using HEK293 cells. Extracellular vesicles and mimics were characterized by a similar oligonucleotide loading level but different efficiency of oligonucleotide delivery. Cytochalasin-B-inducible nanovesicles exhibited the highest level of oligonucleotide accumulation in HEK293 cells and a loading capacity of 0.44 ± 0.05 pmol/µg. The loaded oligonucleotide was mostly protected from nuclease action.
Collapse
Affiliation(s)
- Anastasiya Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Alexandra Neumestova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Vera Matveeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Lyudmila Artemyeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Ksenia Morozova
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia.
| | - Elena Kiseleva
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia.
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| |
Collapse
|
4
|
Dave P, George B, Sharma DK, Das S. Polypyrimidine tract-binding protein (PTB) and PTB-associated splicing factor in CVB3 infection: an ITAF for an ITAF. Nucleic Acids Res 2017. [PMID: 28633417 PMCID: PMC5587786 DOI: 10.1093/nar/gkx519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 5′ UTR of Coxsackievirus B3 (CVB3) contains internal ribosome entry site (IRES), which allows cap-independent translation of the viral RNA and a 5′-terminal cloverleaf structure that regulates viral replication, translation and stability. Here, we demonstrate that host protein PSF (PTB associated splicing factor) interacts with the cloverleaf RNA as well as the IRES element. PSF was found to be an important IRES trans acting factor (ITAF) for efficient translation of CVB3 RNA. Interestingly, cytoplasmic abundance of PSF protein increased during CVB3 infection and this is regulated by phosphorylation status at two different amino acid positions. Further, PSF protein was up-regulated in CVB3 infection. The expression of CVB3–2A protease alone could also induce increased PSF protein levels. Furthermore, we observed the presence of an IRES element in the 5′UTR of PSF mRNA, which is activated during CVB3 infection and might contribute to the elevated levels of PSF. It appears that PSF IRES is also positively regulated by PTB, which is known to regulate CVB3 IRES. Taken together, the results suggest for the first time a novel mechanism of regulations of ITAFs during viral infection, where an ITAF undergoes IRES mediated translation, sustaining its protein levels under condition of translation shut-off.
Collapse
Affiliation(s)
- Pratik Dave
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Biju George
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Divya Khandige Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
5
|
Ross MJ, Bradford SS, Cowan JA. Catalytic metallodrugs based on the LaR2C peptide target HCV SLIV IRES RNA. Dalton Trans 2015; 44:20972-82. [PMID: 26583601 PMCID: PMC4691540 DOI: 10.1039/c5dt02837j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Prior work has demonstrated the potential effectiveness of a new class of metallopeptides as catalytic metallodrugs that target HCV IRES SLIIb RNA (Cu-GGHYrFK, 1). Herein new catalytic metallodrugs (GGHKYKETDLLILFKDDYFAKKNEERK, 2; and GGHKYKETDL, 3) are described based on the LaR2C peptide that has been shown to bind to the SLIV HCV IRES domain. In vitro fluorescence assays yielded KD values ∼10 μM for both peptides and reaction of the copper derivatives with SLIV RNA demonstrated initial rates comparable across different assays as well as displaying pseudo-Michaelis-Menten behavior. The sites of reaction and cleavage mechanisms were determined by MALDI-TOF mass spectrometry. The primary site of copper-promoted SLIV cleavage is shown to occur in the vicinity of the 5'-G17C18A19C20-3' sequence that corresponds to a known binding site of the RM2 motif of the human La protein and has previously been reported to be important for viral translation. This domain also flanks the internal start codon (AUG). Both copper complexes also showed efficacy in an HCV replicon assay (IC50 = 0.75 μM for 2-Cu, and 2.17 μM for 3-Cu) and show potential for treatment of hepatitis C, complementing other marketed drugs by acting on a distinct therapeutic target by a novel mechanism of action.
Collapse
Affiliation(s)
- Martin James Ross
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Seth S. Bradford
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - J. A. Cowan
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
- MetalloPharm, 1790 Riverstone Dr., Delaware, OH 43015
| |
Collapse
|
6
|
Lakshminarayanan A, Reddy BU, Raghav N, Ravi VK, Kumar A, Maiti PK, Sood AK, Jayaraman N, Das S. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells. NANOSCALE 2015; 7:16921-16931. [PMID: 26411288 DOI: 10.1039/c5nr02898a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse 'off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting "out" in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the 'proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.
Collapse
|
7
|
Komar AA, Hatzoglou M. Exploring Internal Ribosome Entry Sites as Therapeutic Targets. Front Oncol 2015; 5:233. [PMID: 26539410 PMCID: PMC4611151 DOI: 10.3389/fonc.2015.00233] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
Initiation of eukaryotic mRNA translation may proceed via several different routes, each requiring a different subset of factors and relying on different and specific interactions between the mRNA and the ribosome. Two modes predominate: (i) so-called cap-dependent initiation, which requires all canonical initiation factors and is responsible for about 95–97% of all initiation events in eukaryotic cells; and (ii) cap-independent internal initiation, which requires a reduced subset of initiation factors and accounts for up to 5% of the remaining initiation events. Internal initiation relies on the presence of so-called internal ribosome entry site (IRES) elements in the 5′ UTRs of some viral and cellular mRNAs. These elements (often possessing complex secondary and tertiary structures) promote efficient interaction of the mRNA with the 40S ribosome and allow for internal ribosome entry. Internal initiation of translation of specific mRNAs may contribute to development of severe disease and pathological states, such as hepatitis C and cancer. Therefore, this cellular mechanism represents an attractive target for pharmacological modulation. The purpose of this review is to provide insight into current strategies used to target viral and cellular IRESs and discuss the physiological consequences (and potential therapeutic implications) of abrogation/modulation of IRES-mediated translation.
Collapse
Affiliation(s)
- Anton A Komar
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University , Cleveland, OH , USA
| | - Maria Hatzoglou
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| |
Collapse
|
8
|
Joseph AP, Bhat P, Das S, Srinivasan N. Re-analysis of cryoEM data on HCV IRES bound to 40S subunit of human ribosome integrated with recent structural information suggests new contact regions between ribosomal proteins and HCV RNA. RNA Biol 2015; 11:891-905. [PMID: 25268799 DOI: 10.4161/rna.29545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we combine available high resolution structural information on eukaryotic ribosomes with low resolution cryo-EM data on the Hepatitis C Viral RNA (IRES) human ribosome complex. Aided further by the prediction of RNA-protein interactions and restrained docking studies, we gain insights on their interaction at the residue level. We identified the components involved at the major and minor contact regions, and propose that there are energetically favorable local interactions between 40S ribosomal proteins and IRES domains. Domain II of the IRES interacts with ribosomal proteins S5 and S25 while the pseudoknot and the downstream domain IV region bind to ribosomal proteins S26, S28 and S5. We also provide support using UV cross-linking studies to validate our proposition of interaction between the S5 and IRES domains II and IV. We found that domain IIIe makes contact with the ribosomal protein S3a (S1e). Our model also suggests that the ribosomal protein S27 interacts with domain IIIc while S7 has a weak contact with a single base RNA bulge between junction IIIabc and IIId. The interacting residues are highly conserved among mammalian homologs while IRES RNA bases involved in contact do not show strict conservation. IRES RNA binding sites for S25 and S3a show the best conservation among related viral IRESs. The new contacts identified between ribosomal proteins and RNA are consistent with previous independent studies on RNA-binding properties of ribosomal proteins reported in literature, though information at the residue level is not available in previous studies.
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- Molecular Biophysics Unit. Indian Institute of Science, Bangalore, India; Present address: Science and Technology Facilities Council, RAL, Harwell, Didcot, UK
| | - Prasanna Bhat
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
9
|
Subramanian N, Kanwar JR, Athalya PK, Janakiraman N, Khetan V, Kanwar RK, Eluchuri S, Krishnakumar S. EpCAM aptamer mediated cancer cell specific delivery of EpCAM siRNA using polymeric nanocomplex. J Biomed Sci 2015; 22:4. [PMID: 25576037 PMCID: PMC4307906 DOI: 10.1186/s12929-014-0108-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/19/2014] [Indexed: 11/18/2022] Open
Abstract
Background Epithelial cell adhesion molecule (EpCAM) is overexpressed in solid tumors and regarded as a putative cancer stem cell marker. Here, we report that employing EpCAM aptamer (EpApt) and EpCAM siRNA (SiEp) dual approach, for the targeted delivery of siRNA to EpCAM positive cancer cells, efficiently inhibits cancer cell proliferation. Results Targeted delivery of siRNA using polyethyleneimine is one of the efficient methods for gene delivery, and thus, we developed a novel aptamer-PEI-siRNA nanocomplex for EpCAM targeting. PEI nanocomplex synthesized with EpCAM aptamer (EpApt) and EpCAM siRNA (SiEp) showed 198 nm diameter sized particles by dynamic light scattering, spherical shaped particles, of 151 ± 11 nm size by TEM. The surface charge of the nanoparticles was −30.0 mV using zeta potential measurements. Gel retardation assay confirmed the PEI-EpApt-SiEp nanoparticles formation. The difference in size observed by DLS and TEM could be due to coating of aptamer and siRNA on PEI nanocore. Flow cytometry analysis revealed that PEI-EpApt-SiEp has superior binding to cancer cells compared to EpApt or scramble aptamer (ScrApt) or PEI-ScrApt-SiEp. PEI-EpApt-SiEp downregulated EpCAM and inhibited selectively the cell proliferation of MCF-7 and WERI-Rb1 cells. Conclusions The PEI nanocomplex fabricated with EpApt and siEp was able to target EpCAM tumor cells, deliver the siRNA and silence the target gene. This nanocomplex exhibited decreased cell proliferation than the scrambled aptamer loaded nanocomplex in the EpCAM expressing cancer cells and may have potential for EpCAM targeting in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0108-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nithya Subramanian
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, 18 College Road, Chennai, 600006, Tamil Nadu, India. .,Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Jagat R Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Prasanna Kumar Athalya
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, 18 College Road, Chennai, 600006, Tamil Nadu, India. .,Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Narayanan Janakiraman
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, 18 College Road, Chennai, 600006, Tamil Nadu, India.
| | - Vikas Khetan
- Departments of Ocular Oncology and Vitreoretina, Medical Research Foundation, Sankara Nethralaya, Chennai, India.
| | - Rupinder K Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Sailaja Eluchuri
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, 18 College Road, Chennai, 600006, Tamil Nadu, India.
| | - Subramanian Krishnakumar
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, 18 College Road, Chennai, 600006, Tamil Nadu, India. .,L & T Ocular Pathology department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India.
| |
Collapse
|
10
|
Abstract
RNA interference (RNAi) therapeutics appear to offer substantial opportunities for future therapy. However, post-administration RNAi effectors are typically unable to reach disease target cells in vivo without the assistance of a delivery system or vector. The main focus of this review is on lipid-based nanoparticle (LNP) delivery systems in current research and development that have at least been shown to act as effective delivery systems for functional delivery of RNAi effectors to disease target cells in vivo. The potential utility of these LNP delivery systems is growing rapidly, and LNPs are emerging as the preferred synthetic delivery systems in preclinical studies and current nonviral RNAi effector clinical trials. Moreover, studies on LNP-mediated delivery in vivo are leading to the emergence of useful biophysical parameters and physical organic chemistry rules that provide a framework for understanding in vivo delivery behaviors and outcomes. These same parameters and rules should also suggest ways and means to develop next generations of LNPs with genuine utility and long-term clinical viability.
Collapse
Affiliation(s)
- Andrew D Miller
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH , UK and GlobalAcorn Limited , London , UK
| |
Collapse
|
11
|
Inhibition of the interaction between NS3 protease and HCV IRES with a small peptide: a novel therapeutic strategy. Mol Ther 2012; 21:57-67. [PMID: 22910295 DOI: 10.1038/mt.2012.151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recently, we have demonstrated that the protease domain of NS3 alone can bind specifically to hepatitis C virus (HCV) internal ribosome entry site (IRES) near the initiator AUG, dislodges human La protein and inhibits translation in favor of viral RNA replication. Here, by using a computational approach, the contact points of the protease on the HCV IRES were putatively mapped. A 30-mer NS3 peptide was designed from the predicted RNA-binding region that retained RNA-binding ability and also inhibited IRES-mediated translation. This peptide was truncated to 15 mer and this also demonstrated ability to inhibit HCV RNA-directed translation as well as replication. More importantly, its activity was tested in an in vivo mouse model by encapsulating the peptide in Sendai virus virosomes followed by intravenous delivery. The study demonstrates for the first time that the HCV NS3-IRES RNA interaction can be selectively inhibited using a small peptide and reports a strategy to deliver the peptide into the liver.
Collapse
|
12
|
Bhat P, Gnanasundram SV, Mani P, Ray PS, Sarkar DP, Das S. Targeting ribosome assembly on the HCV RNA using a small RNA molecule. RNA Biol 2012; 9:1110-9. [PMID: 22858675 DOI: 10.4161/rna.21208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Translation initiation of hepatitis C Virus (HCV) RNA is the initial obligatory step of the viral life cycle, mediated through the Internal Ribosome Entry Site (IRES) present in the 5'-untranslated region (UTR). Initiation on the HCV IRES is mediated by multiple structure-specific interactions between IRES RNA and host 40S ribosomal subunit. In the present study we demonstrate that the SLIIIef domain, in isolation from other structural elements of HCV IRES, retain the ability to interact with 40S ribosome subunit. A small RNA SLRef, mimicking the SLIIIef domain was found to interact specifically with human La protein and the ribosomal protein S5 and selectively inhibit HCV RNA translation. More importantly, SLRef RNA showed significant suppression of replication in HCV monocistronic replicon and decrease of negative strand synthesis in HCV cell culture system. Finally, using Sendai virus based virosome, the targeted delivery of SLRef RNA into mice liver succeeded in selectively inhibiting HCV IRES mediated translation in vivo.
Collapse
Affiliation(s)
- Prasanna Bhat
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | |
Collapse
|
13
|
Anantpadma M, Vrati S. siRNA-mediated suppression of Japanese encephalitis virus replication in cultured cells and mice. J Antimicrob Chemother 2011; 67:444-51. [DOI: 10.1093/jac/dkr487] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
14
|
Kitchen SG, Shimizu S, An DS. Stem cell-based anti-HIV gene therapy. Virology 2011; 411:260-72. [PMID: 21247612 DOI: 10.1016/j.virol.2010.12.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 12/19/2010] [Indexed: 12/14/2022]
Abstract
Human stem cell-based therapeutic intervention strategies for treating HIV infection have recently undergone a renaissance as a major focus of investigation. Unlike most conventional antiviral therapies, genetically engineered hematopoietic stem cells possess the capacity for prolonged self-renewal that would continuously produce protected immune cells to fight against HIV. A successful strategy therefore has the potential to stably control and ultimately eradicate HIV from patients by a single or minimal treatment. Recent progress in the development of new technologies and clinical trials sets the stage for the current generation of gene therapy approaches to combat HIV infection. In this review, we will discuss two major approaches that are currently underway in the development of stem cell-based gene therapy to target HIV: one that focuses on the protection of cells from productive infection with HIV, and the other that focuses on targeting immune cells to directly combat HIV infection.
Collapse
Affiliation(s)
- Scott G Kitchen
- The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
15
|
Abstract
Delivering polynucleotides into animals has been a major challenge facing their success as therapeutic agents. Given the matured understanding of antibody‐mediated delivery techniques, it is possible to rationally design delivery vehicles that circulate in the blood stream and are specifically delivered into target organs. If the targeting moiety is designed to contain the cargo of an RNAi mediator without impacting its paratope, directed delivery can be achieved. In this article, we review the state of art in delivery technology for RNA mediators and address how this technique could soon be used to enhance the efficacy of the numerous small RNA therapeutic programs currently under evaluation. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under:
Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action RNA Methods > RNA Analyses in Cells RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Lance P Ford
- Bioo Scientific, 3913 Todd Lane Suite 312, Austin, TX 78744, USA.
| | | |
Collapse
|
16
|
Abstract
Viruses of the Paramyxoviridae family bind to their host cells by using hemagglutinin-neuraminidase (HN), which enhances fusion protein (F)-mediated membrane fusion. Although respiratory syncytial virus and parainfluenza virus 5 of this family are suggested to trigger host cell signaling during infection, the virus-induced intracellular signals dictating virus-cell fusion await elucidation. Using an F- or HN-F-containing reconstituted envelope of Sendai virus, another paramyxovirus, we revealed the role and regulation of AKT1 and Raf/MEK/ERK cascades during viral fusion with liver cells. Our observation that extracellular signal-regulated kinase (ERK) activation promotes viral fusion via ezrin-mediated cytoskeletal rearrangements, whereas AKT1 attenuates fusion by promoting phosphorylation of F protein, indicates a counteractive regulation of viral fusion by reciprocal activation of AKT1 and mitogen-activated protein kinase (MAPK) cascades, establishing a novel conceptual framework for a therapeutic strategy.
Collapse
|
17
|
Inhibition of Hepatitis E virus replication using short hairpin RNA (shRNA). Antiviral Res 2010; 85:541-50. [PMID: 20105445 DOI: 10.1016/j.antiviral.2010.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 01/04/2010] [Accepted: 01/20/2010] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV) is a non-enveloped, single-stranded, positive sense RNA virus, which is a major cause of water-borne hepatitis. RNA interference (RNAi) is a sequence-specific cellular antiviral defence mechanism, induced by double-stranded RNA, which we used to investigate knockdown of several genes and the 3' cis-acting element (CAE) of HEV. In the present report, shRNAs were developed against the putative helicase and replicase domains and the 3'CAE region of HEV. Production of siRNA was confirmed by northern hybridization. The possible innate response induction due to shRNA expressions was verified by transcript analysis for interferon-beta and 2',5'-oligoadenylate synthetase genes and was found to be absent. Initially, the selected shRNAs were tested for their efficiency against the respective genes/3'CAE using inhibition of fused viral subgenomic target domain-renilla luciferase reporter constructs. The effective shRNAs were studied for their inhibitory effects on HEV replication in HepG2 cells using HEV replicon and reporter replicon. RNAi mediated silencing was demonstrated by reduction of luciferase activity in subgenomic target-reporter constructs and reporter replicon. The real time PCR was used to demonstrate inhibition of native replicon replication in transfected cells. Designed shRNAs were found to be effective in inhibiting virus replication to a variable extent (45-93%).
Collapse
|
18
|
Wang X, Sarkar DP, Mani P, Steer CJ, Chen Y, Guha C, Chandrasekhar V, Chaudhuri A, Roy-Chowdhury N, Kren BT, Roy-Chowdhury J. Long-term reduction of jaundice in Gunn rats by nonviral liver-targeted delivery of Sleeping Beauty transposon. Hepatology 2009; 50:815-24. [PMID: 19585550 PMCID: PMC4174336 DOI: 10.1002/hep.23060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Asialoglycoprotein receptor (ASGPR)-mediated endocytosis has been used to target genes to hepatocytes in vivo. However, the level and duration of transgene expression have been low because of lysosomal translocation and degradation of the DNA and lack of its integration into the host genome. In this study we packaged the DNA of interest in proteoliposomes containing the fusogenic galactose-terminated F-glycoprotein of the Sendai virus (FPL) for targeted delivery to hepatocytes. After the FPL binds to ASGPR on the hepatocyte surface, fusogenic activity of the F-protein delivers the DNA into the cytosol, bypassing the endosomal pathway. For transgene integration we designed plasmids containing one transcription unit expressing the Sleeping Beauty transposase (SB) and another expressing human uridinediphosphoglucuronate glucuronosyltransferase-1A1 (pSB-hUGT1A1). The latter was flanked by inverted/direct repeats that are substrates of SB. In cell culture, FPL-mediated delivery of the E. coli beta-galactosidase gene (LacZ) resulted in transduction of ASGPR-positive cells (rat hepatocytes or Hepa1 cell line), but not of ASGPR-negative 293 cells. Intravenous injection of the FPL-entrapped pSB-hUGT1A1 (4-8 microg/day, 1-4 doses) into UGT1A1-deficient hyperbilirubinemic Gunn rats (model of Crigler-Najjar syndrome type 1) resulted in hUGT1A1 expression in 5%-10% of hepatocytes, but not in other cell types. Serum bilirubin levels declined by 30% +/- 4% in 2 weeks and remained at that level throughout the 7-month study duration. With histidine containing FPL, serum bilirubin was reduced by 40% +/- 5%, and bilirubin glucuronides were excreted into bile. No antibodies were detectable in the recipient rats against the F-protein or human UGT1A1. CONCLUSION FPL is an efficient hepatocyte-targeted gene delivery platform in vivo that warrants further exploration toward clinical application.
Collapse
Affiliation(s)
- Xia Wang
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY
| | - Debi P. Sarkar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Prashant Mani
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | | | - Yong Chen
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY
| | - Chandan Guha
- Department of Radiation Oncology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY
| | - Voshavar Chandrasekhar
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad, India
| | - Arabinda Chaudhuri
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad, India
| | - Namita Roy-Chowdhury
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY,Department of Genetics, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY
| | - Betsy T. Kren
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY,Department of Genetics, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|