1
|
Elena SF. Bridging quasispecies theory and social evolution models for sociovirology insights: a commentary on Leeks et al. 2023. J Evol Biol 2023; 36:1590-1594. [PMID: 37975502 DOI: 10.1111/jeb.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Paterna (Valencia), Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
2
|
Nogueira AM, Barbosa TMC, Quadros AFF, Orílio AF, Bigão MCJ, Xavier CAD, Ferro CG, Zerbini FM. Specific Nucleotides in the Common Region of the Begomovirus Tomato Rugose Mosaic Virus (ToRMV) Are Responsible for the Negative Interference over Tomato Severe Rugose Virus (ToSRV) in Mixed Infection. Viruses 2023; 15:2074. [PMID: 37896851 PMCID: PMC10611410 DOI: 10.3390/v15102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Mixed infection between two or more begomoviruses is commonly found in tomato fields and can affect disease outcomes by increasing symptom severity and viral accumulation compared with single infection. Viruses that affect tomato include tomato severe rugose virus (ToSRV) and tomato rugose mosaic virus (ToRMV). Previous work showed that in mixed infection, ToRMV negatively affects the infectivity and accumulation of ToSRV. ToSRV and ToRMV share a high degree of sequence identity, including cis-elements in the common region (CR) and their specific recognition sites (iteron-related domain, IRD) within the Rep gene. Here, we investigated if divergent sites in the CR and IRD are involved in the interaction between these two begomoviruses. ToSRV clones were constructed containing the same nucleotides as ToRMV in the CR (ToSRV-A(ToR:CR)), IRD (ToSRV-A(ToR:IRD)) and in both regions (ToSRV-A(ToR:CR+IRD)). When plants were co-inoculated with ToRMV and ToSRV-A(ToR:IRD), the infectivity and accumulation of ToSRV were negatively affected. In mixed inoculation of ToRMV with ToSRV-A(ToR:CR), high infectivity of both viruses and high DNA accumulation of ToSRV-A(ToR:CR) were observed. A decrease in viral accumulation was observed in plants inoculated with ToSRV-A(ToR:CR+IRD). These results indicate that differences in the CR, but not the IRD, are responsible for the negative interference of ToRMV on ToSRV.
Collapse
Affiliation(s)
- Angélica M. Nogueira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Botucatu 18610-307, SP, Brazil
| | - Tarsiane M. C. Barbosa
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Departamento de Entomologia e Acarologia, ESALQ, Universidade de São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Ayane F. F. Quadros
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Anelise F. Orílio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Marcela C. J. Bigão
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - César A. D. Xavier
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Camila G. Ferro
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
3
|
Pouresmaeil M, Dall'Ara M, Salvato M, Turri V, Ratti C. Cauliflower mosaic virus: Virus-host interactions and its uses in biotechnology and medicine. Virology 2023; 580:112-119. [PMID: 36812696 DOI: 10.1016/j.virol.2023.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Cauliflower mosaic virus (CaMV) was the first discovered plant virus with genomic DNA that uses reverse transcriptase for replication. The CaMV 35S promoter is a constitutive promoter and thus, an attractive driver of gene expression in plant biotechnology. It is used in most transgenic crops to activate foreign genes which have been artificially inserted into the host plant. In the last century, producing food for the world's population while preserving the environment and human health is the main topic of agriculture. The damage caused by viral diseases has a significant negative economic impact on agriculture, and disease control is based on two strategies: immunization and prevention to contain virus spread, so correct identification of plant viruses is important for disease management. Here, we discuss CaMV from different aspects: taxonomy, structure and genome, host plants and symptoms, transmission and pathogenicity, prevention, control and application in biotechnology as well as in medicine. Also, we calculated the CAI index for three ORFs IV, V, and VI of the CaMV virus in host plants, the results of which can be used in the discussion of gene transfer or antibody production to identify the CaMV.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Department of Biotechnology, Faculty of Agriculture, Azarbijan Shahid Madani University, Tabriz, Iran.
| | - Mattia Dall'Ara
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| | - Maria Salvato
- University of Maryland, Department of Veterinary Medicine, College Park, MD, 20742, USA
| | - Valentina Turri
- Healthcare Direction, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori, IRCCS, 47014, Meldola, FC, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| |
Collapse
|
4
|
McLaughlin AA, Hanley-Bowdoin L, Kennedy GG, Jacobson AL. Vector acquisition and co-inoculation of two plant viruses influences transmission, infection, and replication in new hosts. Sci Rep 2022; 12:20355. [PMID: 36437281 PMCID: PMC9701672 DOI: 10.1038/s41598-022-24880-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022] Open
Abstract
This study investigated the role of vector acquisition and transmission on the propagation of single and co-infections of tomato yellow leaf curl virus (TYLCV,) and tomato mottle virus (ToMoV) (Family: Geminiviridae, Genus: Begomovirus) by the whitefly vector Bemisia tabaci MEAM1 (Gennadius) in tomato. The aim of this research was to determine if the manner in which viruses are co-acquired and co-transmitted changes the probability of acquisition, transmission and new host infections. Whiteflies acquired virus by feeding on singly infected plants, co-infected plants, or by sequential feeding on singly infected plants. Viral titers were also quantified by qPCR in vector cohorts, in artificial diet, and plants after exposure to viruliferous vectors. Differences in transmission, infection status of plants, and titers of TYLCV and ToMoV were observed among treatments. All vector cohorts acquired both viruses, but co-acquisition/co-inoculation generally reduced transmission of both viruses as single and mixed infections. Co-inoculation of viruses by the vector also altered virus accumulation in plants regardless of whether one or both viruses were propagated in new hosts. These findings highlight the complex nature of vector-virus-plant interactions that influence the spread and replication of viruses as single and co-infections.
Collapse
Affiliation(s)
- Autumn A McLaughlin
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
5
|
Tsai WA, Brosnan CA, Mitter N, Dietzgen RG. Perspectives on plant virus diseases in a climate change scenario of elevated temperatures. STRESS BIOLOGY 2022; 2:37. [PMID: 37676437 PMCID: PMC10442010 DOI: 10.1007/s44154-022-00058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 09/08/2023]
Abstract
Global food production is at risk from many abiotic and biotic stresses and can be affected by multiple stresses simultaneously. Virus diseases damage cultivated plants and decrease the marketable quality of produce. Importantly, the progression of virus diseases is strongly affected by changing climate conditions. Among climate-changing variables, temperature increase is viewed as an important factor that affects virus epidemics, which may in turn require more efficient disease management. In this review, we discuss the effect of elevated temperature on virus epidemics at both macro- and micro-climatic levels. This includes the temperature effects on virus spread both within and between host plants. Furthermore, we focus on the involvement of molecular mechanisms associated with temperature effects on plant defence to viruses in both susceptible and resistant plants. Considering various mechanisms proposed in different pathosystems, we also offer a view of the possible opportunities provided by RNA -based technologies for virus control at elevated temperatures. Recently, the potential of these technologies for topical field applications has been strengthened through a combination of genetically modified (GM)-free delivery nanoplatforms. This approach represents a promising and important climate-resilient substitute to conventional strategies for managing plant virus diseases under global warming scenarios. In this context, we discuss the knowledge gaps in the research of temperature effects on plant-virus interactions and limitations of RNA-based emerging technologies, which should be addressed in future studies.
Collapse
Affiliation(s)
- Wei-An Tsai
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Christopher A Brosnan
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Ralf G Dietzgen
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
6
|
Rodamilans B, Oliveros JC, San León D, Martínez-García PJ, Martínez-Gómez P, García JA, Rubio M. sRNA Analysis Evidenced the Involvement of Different Plant Viruses in the Activation of RNA Silencing-Related Genes and the Defensive Response Against Plum pox virus of 'GF305' Peach Grafted with 'Garrigues' Almond. PHYTOPATHOLOGY 2022; 112:2012-2021. [PMID: 35302895 DOI: 10.1094/phyto-01-22-0032-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plum pox virus (PPV) causes sharka disease in Prunus trees. Peach (P. persica) trees are severely affected by PPV, and no definitive source of genetic resistance has been identified. However, previous results showed that PPV-resistant 'Garrigues' almond (P. dulcis) was able to transfer its resistance to 'GF305' peach through grafting, reducing symptoms and viral load in PPV-infected plants. A recent study tried to identify genes responsible for this effect by studying messenger RNA expression through RNA sequencing in peach and almond plants, before and after grafting and before and after PPV infection. In this work, we used the same peach and almond samples but focused the high-throughput analyses on small RNA (sRNA) expression. We studied massive sequencing data and found an interesting pattern of sRNA overexpression linked to antiviral defense genes that suggested activation of these genes followed by downregulation to basal levels. We also discovered that 'Garrigues' almond plants were infected by different plant viruses that were transferred to peach plants. The large amounts of viral sRNA found in grafted peaches indicated a strong RNA silencing antiviral response and led us to postulate that these plant viruses could be collaborating in the observed "Garrigues effect."
Collapse
Affiliation(s)
| | - Juan C Oliveros
- Department of Plant Molecular Genetics, CNB-CSIC, 28049 Madrid, Spain
| | - David San León
- Department of Plant Molecular Genetics, CNB-CSIC, 28049 Madrid, Spain
| | | | | | - Juan A García
- Department of Plant Molecular Genetics, CNB-CSIC, 28049 Madrid, Spain
| | - Manuel Rubio
- Department of Plant Breeding, CEBAS-CSIC, 30100 Murcia, Spain
| |
Collapse
|
7
|
Segredo-Otero E, Sanjuán R. Cooperative Virus-Virus Interactions: An Evolutionary Perspective. BIODESIGN RESEARCH 2022; 2022:9819272. [PMID: 37850129 PMCID: PMC10521650 DOI: 10.34133/2022/9819272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/21/2022] [Indexed: 10/19/2023] Open
Abstract
Despite extensive evidence of virus-virus interactions, not much is known about their biological significance. Importantly, virus-virus interactions could have evolved as a form of cooperation or simply be a by-product of other processes. Here, we review and discuss different types of virus-virus interactions from the point of view of social evolution, which provides a well-established framework for interpreting the fitness costs and benefits of such traits. We also classify interactions according to their mechanisms of action and speculate on their evolutionary implications. As in any other biological system, the evolutionary stability of viral cooperation critically requires cheaters to be excluded from cooperative interactions. We discuss how cheater viruses exploit cooperative traits and how viral populations are able to counteract this maladaptive process.
Collapse
Affiliation(s)
- Ernesto Segredo-Otero
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| |
Collapse
|
8
|
Sukhorukov G, Khalili M, Gascuel O, Candresse T, Marais-Colombel A, Nikolski M. VirHunter: A Deep Learning-Based Method for Detection of Novel RNA Viruses in Plant Sequencing Data. FRONTIERS IN BIOINFORMATICS 2022; 2:867111. [PMID: 36304258 PMCID: PMC9580956 DOI: 10.3389/fbinf.2022.867111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 10/15/2023] Open
Abstract
High-throughput sequencing has provided the capacity of broad virus detection for both known and unknown viruses in a variety of hosts and habitats. It has been successfully applied for novel virus discovery in many agricultural crops, leading to the current drive to apply this technology routinely for plant health diagnostics. For this, efficient and precise methods for sequencing-based virus detection and discovery are essential. However, both existing alignment-based methods relying on reference databases and even more recent machine learning approaches are not efficient enough in detecting unknown viruses in RNAseq datasets of plant viromes. We present VirHunter, a deep learning convolutional neural network approach, to detect novel and known viruses in assemblies of sequencing datasets. While our method is generally applicable to a variety of viruses, here, we trained and evaluated it specifically for RNA viruses by reinforcing the coding sequences' content in the training dataset. Trained on the NCBI plant viruses data for three different host species (peach, grapevine, and sugar beet), VirHunter outperformed the state-of-the-art method, DeepVirFinder, for the detection of novel viruses, both in the synthetic leave-out setting and on the 12 newly acquired RNAseq datasets. Compared with the traditional tBLASTx approach, VirHunter has consistently exhibited better results in the majority of leave-out experiments. In conclusion, we have shown that VirHunter can be used to streamline the analyses of plant HTS-acquired viromes and is particularly well suited for the detection of novel viral contigs, in RNAseq datasets.
Collapse
Affiliation(s)
- Grigorii Sukhorukov
- CNRS, IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France
- Bordeaux Bioinformatics Center, Université de Bordeaux, Bordeaux, France
| | - Maryam Khalili
- Université de Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, Villenave d’Ornon, France
| | - Olivier Gascuel
- Institut de Systématique, Biodiversité, Evolution (ISYEB - UMR7205, Muséum National d’Histoire Naturelle, CNRS, SU, EPHE, UA), Paris, France
| | - Thierry Candresse
- Université de Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, Villenave d’Ornon, France
| | | | - Macha Nikolski
- CNRS, IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France
- Bordeaux Bioinformatics Center, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Challenges and opportunities for plant viruses under a climate change scenario. Adv Virus Res 2022. [DOI: 10.1016/bs.aivir.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Alcaide C, Sardanyés J, Elena SF, Gómez P. Increasing temperature alters the within-host competition of viral strains and influences virus genetic variability. Virus Evol 2021; 7:veab017. [PMID: 33815829 PMCID: PMC8007957 DOI: 10.1093/ve/veab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Environmental conditions can affect viral accumulation, virulence and adaptation, which have implications in the disease outcomes and efficiency of control measures. Concurrently, mixed viral infections are relevant in plants, being their epidemiology shaped by within-host virus–virus interactions. However, the extent in which the combined effect of variations in abiotic components of the plant ecological niche and the prevalence of mixed infections affect the evolutionary dynamics of viral populations is not well understood. Here, we explore the interplay between ecological and evolutionary factors during viral infections and show that isolates of two strains of Pepino mosaic potexvirus coexisted in tomato plants in a temperature-dependent continuum between neutral and antagonistic interactions. After a long-term infection, the mutational analysis of the evolved viral genomes revealed strain-specific single-nucleotide polymorphisms that were modulated by the interaction between the type of infection and temperature. These results suggest that the temperature is an ecological driver of virus-virus interactions, with an effect on the genetic diversity of individual viruses that are co-infecting an individual host. This research provides insights into the effect that changes in host growth temperatures might have on the evolutionary dynamics of viral populations in mixed infections.
Collapse
Affiliation(s)
- Cristina Alcaide
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
- Dynamical Systems and Computational Virology Associated Unit Instituto de Biología Integrativa de Sistemas (I2SysBio) - CRM, Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Santiago F Elena
- I2SysBio, CSIC-Universitat de València, Paterna, 46980 València, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
- Corresponding author: E-mail:
| |
Collapse
|
11
|
Minicka J, Zarzyńska-Nowak A, Budzyńska D, Borodynko-Filas N, Hasiów-Jaroszewska B. High-Throughput Sequencing Facilitates Discovery of New Plant Viruses in Poland. PLANTS 2020; 9:plants9070820. [PMID: 32610678 PMCID: PMC7411967 DOI: 10.3390/plants9070820] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 11/17/2022]
Abstract
Viruses cause epidemics on all major crops of agronomic importance, and a timely and accurate identification is essential for control. High throughput sequencing (HTS) is a technology that allows the identification of all viruses without prior knowledge on the targeted pathogens. In this paper, we used HTS technique for the detection and identification of different viral species occurring in single and mixed infections in plants in Poland. We analysed various host plants representing different families. Within the 20 tested samples, we identified a total of 13 different virus species, including those whose presence has not been reported in Poland before: clover yellow mosaic virus (ClYMV) and melandrium yellow fleck virus (MYFV). Due to this new finding, the obtained sequences were compared with others retrieved from GenBank. In addition, cucurbit aphid-borne yellows virus (CABYV) was also detected, and due to the recent occurrence of this virus in Poland, a phylogenetic analysis of these new isolates was performed. The analysis revealed that CABYV population is highly diverse and the Polish isolates of CABYV belong to two different phylogenetic groups. Our results showed that HTS-based technology is a valuable diagnostic tool for the identification of different virus species originating from variable hosts, and can provide rapid information about the spectrum of plant viruses previously not detected in a region.
Collapse
Affiliation(s)
- Julia Minicka
- Department of Virology and Bacteriology, Institute of Plant Protection–National Research Institute, Wegorka 20, 60-318 Poznan, Poland; (A.Z.-N.); (D.B.)
- Correspondence: (J.M.); (B.H.-J.)
| | - Aleksandra Zarzyńska-Nowak
- Department of Virology and Bacteriology, Institute of Plant Protection–National Research Institute, Wegorka 20, 60-318 Poznan, Poland; (A.Z.-N.); (D.B.)
| | - Daria Budzyńska
- Department of Virology and Bacteriology, Institute of Plant Protection–National Research Institute, Wegorka 20, 60-318 Poznan, Poland; (A.Z.-N.); (D.B.)
| | - Natasza Borodynko-Filas
- Plant Disease Clinic and Bank of Pathogens, Institute of Plant Protection–National Research Institute, Wegorka 20, 60-318 Poznan, Poland;
| | - Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection–National Research Institute, Wegorka 20, 60-318 Poznan, Poland; (A.Z.-N.); (D.B.)
- Correspondence: (J.M.); (B.H.-J.)
| |
Collapse
|
12
|
Gautam S, Gadhave KR, Buck JW, Dutta B, Coolong T, Adkins S, Srinivasan R. Virus-virus interactions in a plant host and in a hemipteran vector: Implications for vector fitness and virus epidemics. Virus Res 2020; 286:198069. [PMID: 32574679 DOI: 10.1016/j.virusres.2020.198069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Mixed virus infection in host plants can differentially alter the plant phenotype, influence vector fitness, and affect virus acquisition and inoculation by vectors than single-virus infection. Vector acquisition of multiple viruses from multiple host plants could also differentially affect vector fitness and virus inoculation than acquisition of one virus. Whitefly-virus pathosystems in the southern United States include both the above-stated facets. For the first facet, this study examined the effects of single and mixed infection of cucurbit leaf crumple virus (CuLCrV, a begomovirus) and cucurbit yellow stunting disorder virus (CYSDV, a crinivirus) infecting squash on whitefly (Bemisia tabaci Gennadius MEAM1) host preference and fitness. Mixed infection of CuLCrV and CYSDV in squash plants severely altered their phenotype than single infection. The CYSDV load was reduced in mixed-infected squash plants than in singly-infected plants. Consequently, whiteflies acquired reduced amounts of CYSDV from mixed-infected plants than singly-infected plants. No differences in CuLCrV load were found between singly- and mixed-infected squash plants, and acquisition of CuLCrV by whiteflies did not vary between singly- and mixed-infected squash plants. Both singly- and mixed-infected plants similarly affected whitefly preference, wherein non-viruliferous and viruliferous (CuLCrV and/or CYSDV) whiteflies preferred non-infected plants over infected plants. The fitness study involving viruliferous and non-viruliferous whiteflies revealed no differences in developmental time and fecundity. For the second facet, this study evaluated the effects of individual or combined acquisition of tomato-infecting tomato yellow leaf curl virus (TYLCV, a begomovirus) and squash-infecting CuLCrV on whitefly host preference and fitness. Whiteflies that acquired both CuLCrV and TYLCV had significantly lower CuLCrV load than whiteflies that acquired CuLCrV alone, whereas TYLCV load remained unaltered when acquired individually or in conjunction with CuLCrV. Whitefly preference was not affected following individual or combined virus acquisition. Viruliferous (CuLCrV and/or TYLCV) whiteflies preferred to settle on non-infected tomato and squash plants. The mere presence of CuLCrV and/or TYLCV in whiteflies did not affect their fitness. Taken together, these results indicate that mixed infection of viruses in host plants and acquisition of multiple viruses by the vector could have implications for virus accumulation, virus acquisition, vector preference, and epidemics that sometimes are different from single-virus infection or acquisition.
Collapse
Affiliation(s)
- Saurabh Gautam
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Kiran R Gadhave
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - James W Buck
- Department of Plant Pathology, University of Georgia, 1109 Experiment St., Griffin, GA, 30223, USA
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, 3250 Rainwater Road, Tifton, GA, 31793, USA
| | - Tim Coolong
- Department of Horticulture, University of Georgia, 3250 Rainwater Road, Tifton, GA, 31793, USA
| | - Scott Adkins
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL, 34945, USA
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA.
| |
Collapse
|
13
|
Abstract
The pathological importance of mixed viral infections in plants might be underestimated except for a few well-characterized synergistic combinations in certain crops. Considering that the host ranges of many viruses often overlap and that most plant species can be infected by several unrelated viruses, it is not surprising to find more than one virus simultaneously in the same plant. Furthermore, dispersal of the majority of plant viruses relies on efficient transmission mechanisms mediated by vector organisms, mainly but not exclusively insects, which can contribute to the occurrence of multiple infections in the same plant. Recent work using different experimental approaches has shown that mixed viral infections can be remarkably frequent, up to the point that they could be considered the rule more than the exception. The purpose of this review is to describe the impact of multiple infections not only on the participating viruses themselves but also on their vectors and on the common host. From this standpoint, mixed infections arise as complex events that involve several cross-interacting players, and they consequently require a more general perspective than the analysis of single-virus/single-host approaches for a full understanding of their relevance.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
14
|
Zhang YJ, Wu ZX, Holme P, Yang KC. Advantage of Being Multicomponent and Spatial: Multipartite Viruses Colonize Structured Populations with Lower Thresholds. PHYSICAL REVIEW LETTERS 2019; 123:138101. [PMID: 31697512 DOI: 10.1103/physrevlett.123.138101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Indexed: 06/10/2023]
Abstract
Multipartite viruses have a genome divided into different disconnected viral particles. A majority of multipartite viruses infect plants; very few target animals. To understand why, we use a simple, network-based susceptible-latent-infectious-recovered model. We show both analytically and numerically that, provided that the average degree of the contact network exceeds a critical value, even in the absence of an explicit microscopic advantage, multipartite viruses have a lower threshold to colonizing network-structured populations compared to a well-mixed population. We further corroborate this finding on two-dimensional lattice networks, which better represent the typical contact structures of plants.
Collapse
Affiliation(s)
- Yi-Jiao Zhang
- Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhi-Xi Wu
- Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Petter Holme
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Kai-Cheng Yang
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| |
Collapse
|
15
|
Sevik MA. Viruses infecting cool season crops in the northern Turkey. AN ACAD BRAS CIENC 2019; 91:e20180224. [PMID: 31365647 DOI: 10.1590/0001-3765201920180224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/15/2018] [Indexed: 11/22/2022] Open
Abstract
Virus diseases of cool season vegetable crops (mainly cabbage, white and red head cabbage, broccoli, kale, radish, rocket salad, garden cress, and turnip) were surveyed in Bafra Plain, Turkey during winter 2017, and 2018. Leaf samples were collected from different species of the Brassicaceae family showing mosaic, mottling, necrotic spots, malformation, and chlorosis symptoms. These samples were tested for the presence of Cauliflower mosaic virus (CaMV), Cucumber mosaic virus (CMV), Beet western yellows virus (BWYV), Radish mosaic virus (RaMV), Turnip mosaic virus (TuMV), Turnip yellow mosaic virus (TYMV), and Turnip yellows virus (TuYV) by biological and serological methods. A total of 455 samples were collected from cole crop fields and tested for the seven viruses by double-antibody sandwich ELISA using specific polyclonal antibodies. According to the results, out of these, 7 % of the samples were infected by at least one of these viruses. TuMV was the most prevalent virus detected in cole crops. TuMV, CaMV, and CMV were detected in 3 %, 2 %, and 2 % of infected samples, respectively, and the infection rate of these three viruses changed significantly among Brassica species.
Collapse
Affiliation(s)
- Mehmet A Sevik
- Department of Plant Protection, Faculty of Agriculture, University of Ondokuz Mayis, 55139, Atakum, Samsun, Turkey
| |
Collapse
|
16
|
Reynolds GJ, Gordon TR, McRoberts N. Using Game Theory to Understand Systemic Acquired Resistance as a Bet-Hedging Option for Increasing Fitness When Disease Is Uncertain. PLANTS (BASEL, SWITZERLAND) 2019; 8:E219. [PMID: 31336852 PMCID: PMC6681293 DOI: 10.3390/plants8070219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 11/18/2022]
Abstract
Systemic acquired resistance (SAR) is a mechanism through which plants may respond to initial challenge by a pathogen through activation of inducible defense responses, thereby increasing resistance to subsequent infection attempts. Fitness costs are assumed to be incurred by plants induced for SAR, and several studies have attempted to quantify these costs. We developed a mathematical model, motivated by game-theoretic concepts, to simulate competition between hypothetical plant populations with and without SAR to examine conditions under which the phenomenon of SAR may have evolved. Data were gathered from various studies on fitness costs of induced resistance on life history traits in different plant hosts and scaled as a proportion of the values in control cohorts in each study (i.e., healthy plants unprimed for SAR). With unprimed healthy control plants set to a fitness value of 1, primed healthy plants incurred a fitness cost of about 10.4% (0.896, n = 157), primed diseased plants incurred a fitness cost of about 15.5% (0.845, n = 54), and unprimed diseased plants incurred a fitness cost of about 28.9% (0.711, n = 69). Starting from a small proportion of the population (0.5%) and competing against a population with constitutive defenses alone in stochastic simulations, the SAR phenotype almost always dominated the population after 1000 generations when the probability of disease was greater than or equal to 0.5 regardless of the probability for priming errors.
Collapse
Affiliation(s)
- Gregory J Reynolds
- Forest Health Protection, U.S. Forest Service, 333 Broadway Blvd. SE, Albuquerque, NM 87102, USA
| | - Thomas R Gordon
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Neil McRoberts
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
17
|
Awata LAO, Ifie BE, Tongoona P, Danquah E, Jumbo MB, Gowda M, Marchelo-D’ragga PW, Sitonik C, Suresh LM. Maize lethal necrosis and the molecular basis of variability in concentrations of the causal viruses in co-infected maize plant. JOURNAL OF GENERAL AND MOLECULAR VIROLOGY 2019; 9:JGMV-09-01-0073. [PMID: 33381355 PMCID: PMC7753892 DOI: 10.5897/jgmv2019.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Abstract
Maize lethal necrosis (MLN) disease is new to Africa. First report was in Kenya in 2012, since then the disease has rapidly spread to most parts of eastern and central Africa region including Tanzania, Burundi, DRC Congo, Rwanda, Uganda, Ethiopia and similar symptoms were observed in South Sudan. Elsewhere, the disease was caused by infection of Maize Chlorotic Mottle Virus (MCMV) in combination with any of the potyviruses namely; maize dwarf mosaic virus (MDMV), sugarcane mosaic virus (SCMV) and tritimovirus wheat streak mosaic virus (WSMV). In Africa, the disease occurs due to combined infections of maize by MCMV and SCMV, leading to severe yield losses. Efforts to address the disease spread have been ongoing. Serological techniques including enzyme-linked immuno-sorbent assay (ELISA), polymerase chain reaction (PCR), genome-wide association (GWAS) mapping and next generation sequencing have been effectively used to detect and characterize MLN causative pathogens. Various management strategies have been adapted to control MLN including use of resistant varieties, phytosanitary measures and better cultural practices. This review looks at the current knowledge on MLN causative viruses, genetic architecture and molecular basis underlying their synergistic interactions. Lastly, some research gaps towards MLN management will be identified. The information gathered may be useful for developing strategies towards future MLN management and maize improvement in Africa.
Collapse
Affiliation(s)
- L. A. O. Awata
- Directorate of Research, Ministry of Agriculture and Food Security, Ministries Complex, Parliament Road, P. O. Box 33, Juba, South Sudan
| | - B. E. Ifie
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, PMB 30, Legon, Ghana
| | - P. Tongoona
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, PMB 30, Legon, Ghana
| | - E. Danquah
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, PMB 30, Legon, Ghana
| | - M. B. Jumbo
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri. P. O. Box 1041-00621, Nairobi, Kenya
| | - M. Gowda
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri. P. O. Box 1041-00621, Nairobi, Kenya
| | - P. W. Marchelo-D’ragga
- Department of Agricultural Sciences, College of Natural Resources and Environmental Studies, University of Juba, P. O. Box 82 Juba, South Sudan
| | - Chelang’at Sitonik
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri. P. O. Box 1041-00621, Nairobi, Kenya
- Department of Plant Breeding and Biotechnology, School of Agriculture and Biotechnology, University of Eldoret, P. O. Box 1125-30100, Eldoret, Kenya
| | - L. M. Suresh
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri. P. O. Box 1041-00621, Nairobi, Kenya
| |
Collapse
|
18
|
The genetic diversity of narcissus viruses related to turnip mosaic virus blur arbitrary boundaries used to discriminate potyvirus species. PLoS One 2018; 13:e0190511. [PMID: 29300751 PMCID: PMC5754079 DOI: 10.1371/journal.pone.0190511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022] Open
Abstract
Narcissus plants (Narcissus tazetta var. chinensis) showing mosaic or striping leaves were collected from around Japan, and tested for virus infections using potyvirus-specific primers. Many were found to be infected with a macluravirus and mixtures of different potyviruses, one third of them narcissus yellow stripe virus (NYSV)-like viruses. Genomes of nine of the NYSV-like viruses were sequenced and, together with four already published, provided data for phylogenetic and pairwise identity analyses of their place in the turnip mosaic virus (TuMV) phylogenetic group. Using existing ICTV criteria for defining potyvirus species, the narcissus viruses in TuMV group were found to be from five species; the previously described NLSYV, and four new species we call narcissus virus 1 (NV-1) and narcissus yellow stripe-1 to -3 (NYSV-1, NYSV-2 and NYSV-3). However, as all are from a single host species, and natural recombinants with NV-1 and NYSV-3 'parents have been found in China and India, we also conclude that they could be considered to be members of a single mega-species, narcissus virus; the criteria for defining such a potyvirus species would then be that their polyprotein sequences have greater than 69% identical nucleotides and greater than 75% identical amino acids.
Collapse
|
19
|
Khazaei B, Sartakhti JS, Manshaei MH, Zhu Q, Sadeghi M, Mousavi SR. HIV-1-infected T-cells dynamics and prognosis: An evolutionary game model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 152:1-14. [PMID: 29054249 DOI: 10.1016/j.cmpb.2017.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 07/01/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Understanding the dynamics of human immunodeficiency virus (HIV) is essential for depicting, developing, and investigating effective treatment strategies. HIV infects several types of immune cells, but its main target is to destroy helper T-cells. In the lymph nodes, the infected T-cells interact with each other and their environment to obtain more resources. According to infectivity and replicative capacity of T-cells in the HIV infection process, they can be divided into four phenotypes. Although genetic mutations in the reverse transcription that beget these phenotypes are random, the framework by which a phenotype become favored is affected by the environment and neighboring phenotypes. Moreover, the HIV disease has all components of an evolutionary process, including replication, mutation, and selection. METHODS We propose a novel structure-based game-theoretic model for the evolution of HIV-1-Infected CD4+T-cells and invasion of the immune system. We discuss the theoretical basis of the stable equilibrium states of the evolutionary dynamics of four T-cells types as well as its significant results to understand and control HIV infection. The results include the importance of genetic variations and the process of establishing evolutionary dynamics of the virus quasispecies. RESULTS Our results show that there is a direct dependency between some parameters such as mutation rates and the stability of equilibrium states in the HIV infection. This is an interesting result because these parameters can be changed by some pharmacotherapies and alternative treatments. Our model indicates that in an appropriate treatment the relative frequency of the wild type of virus quasispecies can be decreased in the population. Consequently, this can cause delaying the emergence of the AIDS phase. To assess the model, we investigate two new treatments for HIV. The results show that our model can predict the treatment results. CONCLUSIONS The paper shows that a structured-based evolutionary game theory can model the evolutionary dynamics of the infected T-cells and virus quasispecies. The model predicts certain aspects of the HIV infection process under several treatments.
Collapse
Affiliation(s)
- Bahareh Khazaei
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Mohammad Hossein Manshaei
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Quanyan Zhu
- Department of Electrical and Computer Engineering, Polytechnic School of Engineering, New York University, NY, USA
| | - Mehdi Sadeghi
- National Institute of Genetic Engineering and Biotechnology and the School of Biological Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Seyed Rasoul Mousavi
- Computer Engineering Department, Amirkabir University of Technology and the Institute for Research in Fundamental Sciences, Tehran, Iran
| |
Collapse
|
20
|
Abstract
Background: A mechanism of innate antiviral immunity operating against viruses infecting mammalian cells has been described during the last decade. Host cytidine deaminases (
e.g., APOBEC3 proteins) edit viral genomes, giving rise to hypermutated nonfunctional viruses; consequently, viral fitness is reduced through lethal mutagenesis. By contrast, sub-lethal hypermutagenesis may contribute to virus evolvability by increasing population diversity. To prevent genome editing, some viruses have evolved proteins that mediate APOBEC3 degradation. The model plant
Arabidopsis thaliana genome encodes nine cytidine deaminases (
AtCDAs), raising the question of whether deamination is an antiviral mechanism in plants as well. Methods: Here we tested the effects of expression of
AtCDAs on the pararetrovirus Cauliflower mosaic virus (CaMV). Two different experiments were carried out. First, we transiently overexpressed each one of the nine
A. thalianaAtCDA genes in
Nicotianabigelovii plants infected with CaMV, and characterized the resulting mutational spectra, comparing them with those generated under normal conditions. Secondly, we created
A. thaliana transgenic plants expressing an artificial microRNA designed to knock-out the expression of up to six
AtCDA genes. This and control plants were then infected with CaMV. Virus accumulation and mutational spectra where characterized in both types of plants. Results: We have shown that the
A. thalianaAtCDA1 gene product exerts a mutagenic activity, significantly increasing the number of G to A mutations
in vivo, with a concomitant reduction in the amount of CaMV genomes accumulated. Furthermore, the magnitude of this mutagenic effect on CaMV accumulation is positively correlated with the level of
AtCDA1 mRNA expression in the plant. Conclusions: Our results suggest that deamination of viral genomes may also work as an antiviral mechanism in plants.
Collapse
Affiliation(s)
- Susana Martín
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de València, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | - José M Cuevas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de València, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain.,Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", CSIC-Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain.,Área de Genética, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de València, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain.,Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain.,The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| |
Collapse
|
21
|
Massart S, Candresse T, Gil J, Lacomme C, Predajna L, Ravnikar M, Reynard JS, Rumbou A, Saldarelli P, Škorić D, Vainio EJ, Valkonen JPT, Vanderschuren H, Varveri C, Wetzel T. A Framework for the Evaluation of Biosecurity, Commercial, Regulatory, and Scientific Impacts of Plant Viruses and Viroids Identified by NGS Technologies. Front Microbiol 2017; 8:45. [PMID: 28174561 PMCID: PMC5258733 DOI: 10.3389/fmicb.2017.00045] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/06/2017] [Indexed: 01/14/2023] Open
Abstract
Recent advances in high-throughput sequencing technologies and bioinformatics have generated huge new opportunities for discovering and diagnosing plant viruses and viroids. Plant virology has undoubtedly benefited from these new methodologies, but at the same time, faces now substantial bottlenecks, namely the biological characterization of the newly discovered viruses and the analysis of their impact at the biosecurity, commercial, regulatory, and scientific levels. This paper proposes a scaled and progressive scientific framework for efficient biological characterization and risk assessment when a previously known or a new plant virus is detected by next generation sequencing (NGS) technologies. Four case studies are also presented to illustrate the need for such a framework, and to discuss the scenarios.
Collapse
Affiliation(s)
- Sebastien Massart
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
| | - Thierry Candresse
- Institut National de la Recherche Agronomique (INRA), University of Bordeaux, CS20032 UMR 1332 BFP Villenave d'Ornon, France
| | - José Gil
- Plant Biology, Linnean Centre for Plant Biology, Uppsala BioCentre, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Christophe Lacomme
- Virology and Zoology, Science and Advice for Scottish Agriculture Edinbourgh, UK
| | - Lukas Predajna
- Department of Plant Virology, Institute of Virology, Biomedical Research Center, Slovak Academy of Science (SAS) Bratislava, Slovakia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology Ljubljana, Slovenia
| | | | - Artemis Rumbou
- Division Phytomedicine Lentzeallee, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin Berlin, Germany
| | - Pasquale Saldarelli
- National Research Council Institute for Sustainable Plant Protection Bari, Italy
| | - Dijana Škorić
- Department of Biology, Faculty of Science, University of Zagreb Zagreb, Croatia
| | - Eeva J Vainio
- Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke) Helsinki, Finland
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki Helsinki, Finland
| | - Hervé Vanderschuren
- Plant Genetics, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
| | - Christina Varveri
- Department of Phytopathology, Benaki Phytopathological Institute Athens, Greece
| | - Thierry Wetzel
- DLR Rheinpfalz, Institute of Plant Protection, Neustadt an der Weinstrasse Germany
| |
Collapse
|
22
|
Mascia T, Gallitelli D. Synergies and antagonisms in virus interactions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:176-192. [PMID: 27717453 DOI: 10.1016/j.plantsci.2016.07.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 05/25/2023]
Abstract
Metagenomic surveys and data from next generation sequencing revealed that mixed infections among plant viruses are probably a rule rather than an exception in natural pathosystems. The documented cases may range from synergism to antagonism, which may depend from the spatiotemporal order of arrival of the viruses on the host and upon the host itself. In synergistic interactions, the measurable differences in replication, phenotypic and cytopathological changes, cellular tropism, within host movement, and transmission rate of one of the two viruses or both are increased. Conversely, a decrease in replication, or inhibition of one or more of the above functions by one virus against the other, leads to an antagonistic interaction. Viruses may interact directly and by transcomplementation of defective functions or indirectly, through responses mediated by the host like the defense mechanism based on RNA silencing. Outcomes of these interactions can be applied to the risk assessment of transgenic crops expressing viral proteins, or cross-protected crops for the identification of potential hazards. Prior to experimental evidence, mathematical models may help in forecasting challenges deriving from the great variety of pathways of synergistic and antagonistic interactions. Actually, it seems that such predictions do not receive sufficient credit in the framework of agriculture.
Collapse
Affiliation(s)
- Tiziana Mascia
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; Istituto del CNR per la Protezione sostenibile delle Piante, Unità Operativa di Supporto di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Donato Gallitelli
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; Istituto del CNR per la Protezione sostenibile delle Piante, Unità Operativa di Supporto di Bari, Via Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|
23
|
Ohshima K, Nomiyama R, Mitoma S, Honda Y, Yasaka R, Tomimura K. Evolutionary rates and genetic diversities of mixed potyviruses in Narcissus. INFECTION GENETICS AND EVOLUTION 2016; 45:213-223. [PMID: 27590715 DOI: 10.1016/j.meegid.2016.08.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/12/2016] [Accepted: 08/29/2016] [Indexed: 01/09/2023]
Abstract
There is no attempt to evaluate evolutionary rates, timescales and diversities of viruses collected from mixedly infected hosts in nature. Plants of the genus Narcissus are a monocotyledon and are susceptible to several viruses. In this study, narcissus plants (Narcissus tazetta var. chinensis) showing mosaic or striping leaves were collected in Japan, and these were investigated for potyvirus infections using potyvirus-specific primers. Individual narcissus plants were found frequently to be mixedly infected with different potyviruses, different isolates and quasispecies of same virus. The viruses were potyviruses and a macluravirus in the family Potyviridae, namely Narcissus late season yellows virus (NLSYV), Narcissus yellow stripe virus (NYSV), Narcissus degeneration virus (NDV), Cyrtanthus elatus virus A (CyEVA) and Narcissus latent virus (NLV). Genetic diversities of coat protein coding region of different virus species were different; NYSV and CyEVA were most diverse whereas NDV was least. Evolutionary rates of all five narcissus viruses were 1.33-7.15×10-3nt/site/year and were similar. The most recent common ancestors (TMRCAs) varied between virus species; NYSV and CyEVA were the oldest whereas NDV was the youngest. Thus, the oldness of TMRCAs of the viruses correlated well with the greatness of nucleotide diversities.
Collapse
Affiliation(s)
- Kazusato Ohshima
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Rei Nomiyama
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan
| | - Shinichiro Mitoma
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan
| | - Yuki Honda
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan
| | - Ryosuke Yasaka
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kenta Tomimura
- Division of Citrus Research, Institute of Fruit Tree and Tea Science, NARO (National Agriculture and Food Research Organization), 485-6 Okitsu Nakacho, Shimizu, Shizuoka 424-0292, Japan
| |
Collapse
|
24
|
Syller J, Grupa A. Antagonistic within-host interactions between plant viruses: molecular basis and impact on viral and host fitness. MOLECULAR PLANT PATHOLOGY 2016; 17:769-82. [PMID: 26416204 PMCID: PMC6638324 DOI: 10.1111/mpp.12322] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Double infections of related or unrelated viruses frequently occur in single plants, the viral agents being inoculated into the host plant simultaneously (co-infection) or sequentially (super-infection). Plants attacked by viruses activate sophisticated defence pathways which operate at different levels, often at significant fitness costs, resulting in yield reduction in crop plants. The occurrence and severity of the negative effects depend on the type of within-host interaction between the infecting viruses. Unrelated viruses generally interact with each other in a synergistic manner, whereas interactions between related viruses are mostly antagonistic. These can incur substantial fitness costs to one or both of the competitors. A relatively well-known antagonistic interaction is cross-protection, also referred to as super-infection exclusion. This type of interaction occurs when a previous infection with one virus prevents or interferes with subsequent infection by a homologous second virus. The current knowledge on why and how one virus variant excludes or restricts another is scant. Super-infection exclusion between viruses has predominantly been attributed to the induction of RNA silencing, which is a major antiviral defence mechanism in plants. There are, however, presumptions that various mechanisms are involved in this phenomenon. This review outlines the current state of knowledge concerning the molecular mechanisms behind antagonistic interactions between plant viruses. Harmful or beneficial effects of these interactions on viral and host plant fitness are also characterized. Moreover, the review briefly outlines the past and present attempts to utilize antagonistic interactions among viruses to protect crop plants against destructive diseases.
Collapse
Affiliation(s)
- Jerzy Syller
- Plant Breeding and Acclimatization Institute-National Research Institute, Laboratory of Phytopathology, Centre Młochów, 05-831, Młochów, Poland
| | - Anna Grupa
- Plant Breeding and Acclimatization Institute-National Research Institute, Laboratory of Phytopathology, Centre Młochów, 05-831, Młochów, Poland
| |
Collapse
|
25
|
Hameed A, Iqbal Z, Asad S, Mansoor S. Detection of Multiple Potato Viruses in the Field Suggests Synergistic Interactions among Potato Viruses in Pakistan. THE PLANT PATHOLOGY JOURNAL 2014; 30:407-15. [PMID: 25506305 PMCID: PMC4262293 DOI: 10.5423/ppj.oa.05.2014.0039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/11/2014] [Accepted: 08/17/2014] [Indexed: 05/07/2023]
Abstract
Viral diseases have been a major limiting factor threating sustainable potato (Solanum tuberosum L.) production in Pakistan. Surveys were conducted to serologically quantify the incidence of RNA viruses infecting potato; Potato virus X (PVX), Potato virus Y (PVY), Potato virus S (PVS), Potato virus A (PVA), Potato virus M (PVM) and Potato leaf roll virus (PLRV) in two major potato cultivars (Desiree and Cardinal). The results suggest the prevalence of multiple viruses in all surveyed areas with PVY, PVS and PVX dominantly widespread with infection levels of up to 50% in some regions. Co-infections were detected with the highest incidence (15.5%) for PVX and PVS. Additionally the data showed a positive correlation between co-infecting viruses with significant increase in absorbance value (virus titre) for at least one of the virus in an infected plant and suggested a synergistic interaction. To test this hypothesis, glasshouse grown potato plants were challenged with multiple viruses and analyzed for systemic infections and symptomology studies. The results obtained conclude that multiple viral infections dramatically increase disease epidemics as compared to single infection and an effective resistance strategy in targeting multiple RNA viruses is required to save potato crop.
Collapse
Affiliation(s)
- Amir Hameed
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), PO Nilore, Islamabad, Pakistan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang Road, Faisalabad, Pakistan
| | - Zafar Iqbal
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), PO Nilore, Islamabad, Pakistan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang Road, Faisalabad, Pakistan
| | - Shaheen Asad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
26
|
Elena SF, Bernet GP, Carrasco JL. The games plant viruses play. Curr Opin Virol 2014; 8:62-7. [DOI: 10.1016/j.coviro.2014.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/21/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
|
27
|
Abstract
Viruses are common agents of plant infectious diseases. During last decades, worldwide agriculture production has been compromised by a series of epidemics caused by new viruses that spilled over from reservoir species or by new variants of classic viruses that show new pathogenic and epidemiological properties. Virus emergence has been generally associated with ecological change or with intensive agronomical practices. However, the complete picture is much more complex since the viral populations constantly evolve and adapt to their new hosts and vectors. This chapter puts emergence of plant viruses into the framework of evolutionary ecology, genetics, and epidemiology. We will stress that viral emergence begins with the stochastic transmission of preexisting genetic variants from the reservoir to the new host, whose fate depends on their fitness on each hosts, followed by adaptation to new hosts or vectors, and finalizes with an efficient epidemiological spread.
Collapse
Affiliation(s)
- Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Campus UPV, València, Spain; The Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, and ETSI Agrónomos, UPM, Campus de Montegancedo, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, and ETSI Agrónomos, UPM, Campus de Montegancedo, Madrid, Spain.
| |
Collapse
|
28
|
Péréfarres F, Thébaud G, Lefeuvre P, Chiroleu F, Rimbaud L, Hoareau M, Reynaud B, Lett JM. Frequency-dependent assistance as a way out of competitive exclusion between two strains of an emerging virus. Proc Biol Sci 2014; 281:20133374. [PMID: 24598426 DOI: 10.1098/rspb.2013.3374] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biological invasions are the main causes of emerging viral diseases and they favour the co-occurrence of multiple species or strains in the same environment. Depending on the nature of the interaction, co-occurrence can lead to competitive exclusion or coexistence. The successive fortuitous introductions of two strains of Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL) in Réunion Island provided an ideal opportunity to study the invasion of, and competition between, these worldwide emerging pathogens. During a 7-year field survey, we observed a displacement of the resident TYLCV-Mld by the newcomer TYLCV-IL, with TYLCV-Mld remaining mostly in co-infected plants. To understand the factors associated with this partial displacement, biological traits related to fitness were measured. The better ecological aptitude of TYLCV-IL in single infections was demonstrated, which explains its rapid spread. However, we demonstrate that the relative fitness of virus strains can drastically change between single infections and co-infections. An epidemiological model parametrized with our experimental data predicts that the two strains will coexist in the long run through assistance by the fitter strain. This rare case of unilateral facilitation between two pathogens leads to frequency-dependent selection and maintenance of the less fit strain.
Collapse
Affiliation(s)
- Frédéric Péréfarres
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, , 97410 Saint-Pierre, Ile de la Réunion, France, Université de La Réunion, UMR PVBMT, Pôle de Protection des Plantes, , 97410 Saint-Pierre, Ile de La Réunion, France, INRA, UMR 0385 BGPI, , 34398 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bohl K, Hummert S, Werner S, Basanta D, Deutsch A, Schuster S, Theißen G, Schroeter A. Evolutionary game theory: molecules as players. ACTA ACUST UNITED AC 2014; 10:3066-74. [DOI: 10.1039/c3mb70601j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In many situations macromolecules, such as proteins, DNA and RNA, can be considered as players in the sense of game theory. In this review we discuss the usefulness of game theory in describing macromolecular processes.
Collapse
Affiliation(s)
- Katrin Bohl
- Friedrich-Schiller-University Jena
- Faculty of Biology and Pharmacy
- Department of Bioinformatics
- 07743 Jena, Germany
- Friedrich-Schiller-University Jena
| | - Sabine Hummert
- Fachhochschule Schmalkalden
- Faculty of Electrical Engineering
- 98574 Schmalkalden, Germany
- Friedrich-Schiller-University Jena
- University Medical Centre (Universitätsklinikum) Jena
| | - Sarah Werner
- Friedrich-Schiller-University Jena
- Faculty of Biology and Pharmacy
- Department of Bioinformatics
- 07743 Jena, Germany
| | - David Basanta
- Integrated Mathematical Oncology
- H. Lee Moffitt Cancer Center & Research Institute
- Tampa, USA
| | - Andreas Deutsch
- Centre for Information Services and High Performance Computing (ZIH)
- Dresden University of Technology
- Germany
| | - Stefan Schuster
- Friedrich-Schiller-University Jena
- Faculty of Biology and Pharmacy
- Department of Bioinformatics
- 07743 Jena, Germany
| | - Günter Theißen
- Friedrich-Schiller-University Jena
- Faculty of Biology and Pharmacy
- Department of Genetics
- 07743 Jena, Germany
| | - Anja Schroeter
- Friedrich-Schiller-University Jena
- Faculty of Biology and Pharmacy
- Department of Bioinformatics
- 07743 Jena, Germany
| |
Collapse
|
30
|
Salvaudon L, De Moraes CM, Mescher MC. Outcomes of co-infection by two potyviruses: implications for the evolution of manipulative strategies. Proc Biol Sci 2013; 280:20122959. [PMID: 23407835 PMCID: PMC3574378 DOI: 10.1098/rspb.2012.2959] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/22/2013] [Indexed: 12/12/2022] Open
Abstract
Recent studies have documented effects of plant viruses on host plants that appear to enhance transmission by insect vectors. But, almost no empirical work has explored the implications of such apparent manipulation for interactions among co-infecting pathogens. We examined single and mixed infections of two potyviruses, watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV), that frequently co-occur in cucurbitaceae populations and share the same aphid vectors. We found that ZYMV isolates replicated at similar rates in single and mixed infections, whereas WMV strains accumulated to significantly lower levels in the presence of ZYMV. Furthermore, ZYMV induced changes in leaf colour and volatile emissions that enhanced aphid (Aphis gossypii) recruitment to infected plants. By contrast, WMV did not elicit strong effects on plant-aphid interactions. Nevertheless, WMV was still readily transmitted from mixed infections, despite fairing poorly in in-plant competition. These findings suggest that pathogen effects on host-vector interactions may well influence competition among co-infecting pathogens. For example, if non-manipulative pathogens benefit from the increased vector traffic elicited by manipulative competitors, their costs of competition may be mitigated to some extent. Conversely, the benefits of manipulation may be limited by free-rider effects in systems where there is strong competition among pathogens for host resources and/or access to vectors.
Collapse
Affiliation(s)
- Lucie Salvaudon
- Department of Entomology, The Pennsylvania State University, University Park, PA16802, USA
- Laboratoire Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay F-91405, France
| | - Consuelo M. De Moraes
- Department of Entomology, The Pennsylvania State University, University Park, PA16802, USA
| | - Mark C. Mescher
- Department of Entomology, The Pennsylvania State University, University Park, PA16802, USA
| |
Collapse
|
31
|
Tierney L, Kuchler K, Rizzetto L, Cavalieri D. Systems biology of host-fungus interactions: turning complexity into simplicity. Curr Opin Microbiol 2012; 15:440-6. [PMID: 22717554 PMCID: PMC3501689 DOI: 10.1016/j.mib.2012.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/24/2012] [Accepted: 05/01/2012] [Indexed: 12/15/2022]
Abstract
Modeling interactions between fungi and their hosts at the systems level requires a molecular understanding both of how the host orchestrates immune surveillance and tolerance, and how this activation, in turn, affects fungal adaptation and survival. The transition from the commensal to pathogenic state, and the co-evolution of fungal strains within their hosts, necessitates the molecular dissection of fungal traits responsible for these interactions. There has been a dramatic increase in publically available genome-wide resources addressing fungal pathophysiology and host–fungal immunology. The integration of these existing data and emerging large-scale technologies addressing host–pathogen interactions requires novel tools to connect genome-wide data sets and theoretical approaches with experimental validation so as to identify inherent and emerging properties of host–pathogen relationships and to obtain a holistic view of infectious processes. If successful, a better understanding of the immune response in health and microbial diseases will eventually emerge and pave the way for improved therapies.
Collapse
Affiliation(s)
- Lanay Tierney
- Medical University of Vienna, Christian Doppler Laboratory Infection Biology, Max F. Perutz Laboratories, A-1030 Vienna, Austria
| | - Karl Kuchler
- Medical University of Vienna, Christian Doppler Laboratory Infection Biology, Max F. Perutz Laboratories, A-1030 Vienna, Austria
| | - Lisa Rizzetto
- Department of Preclinical and Clinical Pharmacology, University of Florence, 50139 Firenze, Italy
| | - Duccio Cavalieri
- Department of Preclinical and Clinical Pharmacology, University of Florence, 50139 Firenze, Italy
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38010, Trento, Italy
| |
Collapse
|
32
|
Chen Z, Tan JY, Wen Y, Niu S, Wong SM. A game-theoretic model of interactions between Hibiscus latent Singapore virus and tobacco mosaic virus. PLoS One 2012; 7:e37007. [PMID: 22623970 PMCID: PMC3356392 DOI: 10.1371/journal.pone.0037007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/11/2012] [Indexed: 11/28/2022] Open
Abstract
Mixed virus infections in plants are common in nature and their interactions affecting host plants would depend mainly on plant species, virus strains, the order of infection and initial amount of inoculum. Hence, the prediction of outcome of virus competition in plants is not easy. In this study, we applied evolutionary game theory to model the interactions between Hibiscus latent Singapore virus (HLSV) and Tobacco mosaic virus (TMV) in Nicotiana benthamiana under co-infection in a plant host. The accumulation of viral RNA was quantified using qPCR at 1, 2 and 8 days post infection (dpi), and two different methods were employed to predict the dominating virus. TMV was predicted to dominate the game in the long run and this prediction was confirmed by both qRT-PCR at 8 dpi and the death of co-infected plants after 15 dpi. In addition, we validated our model by using data reported in the literature. Ten out of fourteen reported co-infection outcomes agreed with our predictions. Explanations were given for the four interactions that did not agree with our model. Hence, it serves as a valuable tool in making long term predictions using short term data obtained in virus co-infections.
Collapse
Affiliation(s)
- Zibo Chen
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Undergraduate Research Opportunities in Science (UROPS), National University of Singapore, Singapore, Singapore
| | - Jackie Yen Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Undergraduate Research Opportunities in Science (UROPS), National University of Singapore, Singapore, Singapore
- University Scholars Programme (USP), National University of Singapore, Singapore, Singapore
| | - Yi Wen
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shengniao Niu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Biddle JM, Linde C, Godfree RC. Co-infection patterns and geographic distribution of a complex pathosystem targeted by pathogen-resistant plants. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:35-52. [PMID: 22471074 DOI: 10.1890/11-0341.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Increasingly, pathogen-resistant (PR) plants are being developed to reduce the agricultural impacts of disease. However PR plants also have the potential to result in increased invasiveness of nontarget host populations and so pose a potential threat to nontarget ecosystems. In this paper we use a new framework to investigate geographical variation in the potential risk associated with unintended release of genetically modified alfalfa mosaic virus (AMV)-resistant Trifolium repens (white clover) into nontarget host populations containing AMV, clover yellow vein virus (ClYVV), and white clover mosaic virus (WCIMV) in southeastern Australia. Surveys of 213 sites in 37 habitat types over a 300 000-km2 study region showed that T. repens is a significant weed of many high-conservation-value habitats in southeastern Australia and that AMV, ClYVV, and WClMV occur in 15-97% of nontarget host populations. However, T. repens abundance varied with site disturbance, habitat conservation value, and proximity to cropping, and all viral pathogens had distinct geographic distributions and infection patterns. Virus species frequently co-infected host plants and displayed nonindependent distributions within host populations, although co-infection patterns varied across the study region. Our results clearly illustrate the complexity of conducting environmental risk assessments that involve geographically widespread, invasive pasture species and demonstrate the general need for targeted, habitat- and pathosystem-specific studies prior to the process of tiered risk assessment.
Collapse
Affiliation(s)
- J M Biddle
- Black Mountain Laboratories, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | | |
Collapse
|
34
|
Sardo L, Wege C, Kober S, Kocher C, Accotto GP, Noris E. RNA viruses and their silencing suppressors boost Abutilon mosaic virus, but not the Old World Tomato yellow leaf curl Sardinia virus. Virus Res 2011; 161:170-80. [PMID: 21843560 DOI: 10.1016/j.virusres.2011.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 11/19/2022]
Abstract
Mixed viral infections can induce different changes in symptom development, genome accumulation and tissue tropism. These issues were investigated for two phloem-limited begomoviruses, Abutilon mosaic virus (AbMV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) in Nicotiana benthamiana plants doubly infected by either the potyvirus Cowpea aphid-borne mosaic virus (CABMV) or the tombusvirus Artichoke mottled crinkle virus (AMCV). Both RNA viruses induced an increase of the amount of AbMV, led to its occasional egress from the phloem and induced symptom aggravation, while the amount and tissue tropism of TYLCSV were almost unaffected. In transgenic plants expressing the silencing suppressors of CABMV (HC-Pro) or AMCV (P19), AbMV was supported to a much lesser extent than in the mixed infections, with the effect of CABMV HC-Pro being superior to that of AMCV P19. Neither of the silencing suppressors influenced TYLCSV accumulation. These results demonstrate that begomoviruses differentially respond to the invasion of other viruses and to silencing suppression.
Collapse
Affiliation(s)
- Luca Sardo
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Zwart MP, Daròs JA, Elena SF. One is enough: in vivo effective population size is dose-dependent for a plant RNA virus. PLoS Pathog 2011; 7:e1002122. [PMID: 21750676 PMCID: PMC3131263 DOI: 10.1371/journal.ppat.1002122] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/02/2011] [Indexed: 11/19/2022] Open
Abstract
Effective population size (N(e)) determines the strength of genetic drift and the frequency of co-infection by multiple genotypes, making it a key factor in viral evolution. Experimental estimates of N(e) for different plant viruses have, however, rendered diverging results. The independent action hypothesis (IAH) states that each virion has a probability of infection, and that virions act independent of one another during the infection process. A corollary of IAH is that N(e) must be dose dependent. A test of IAH for a plant virus has not been reported yet. Here we perform a test of an IAH infection model using a plant RNA virus, Tobacco etch virus (TEV) variants carrying GFP or mCherry fluorescent markers, in Nicotiana tabacum and Capsicum annuum plants. The number of primary infection foci increased linearly with dose, and was similar to a Poisson distribution. At high doses, primary infection foci containing both genotypes were found at a low frequency (<2%). The probability that a genotype that infected the inoculated leaf would systemically infect that plant was near 1, although in a few rare cases genotypes could be trapped in the inoculated leaf by being physically surrounded by the other genotype. The frequency of mixed-genotype infection could be predicted from the mean number of primary infection foci using the independent-action model. Independent action appears to hold for TEV, and N(e) is therefore dose-dependent for this plant RNA virus. The mean number of virions causing systemic infection can be very small, and approaches 1 at low doses. Dose-dependency in TEV suggests that comparison of N(e) estimates for different viruses are not very meaningful unless dose effects are taken into consideration.
Collapse
Affiliation(s)
- Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain.
| | | | | |
Collapse
|
36
|
Lecoq H, Fabre F, Joannon B, Wipf-Scheibel C, Chandeysson C, Schoeny A, Desbiez C. Search for factors involved in the rapid shift in Watermelon mosaic virus (WMV) populations in South-eastern France. Virus Res 2011; 159:115-23. [PMID: 21605606 DOI: 10.1016/j.virusres.2011.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
Watermelon mosaic virus (WMV, genus Potyvirus, family Potyviridae) was reported for the first time in France in 1974, and it is now the most prevalent virus in cucurbit crops. In 2000, new strains referred as 'emerging' (EM) strains were detected in South-eastern France. EM strains are generally more severe and phylogenetically distinct from those previously reported in this country and referred as 'classic' (CL) strains. Since 2000, EM strains have been progressively replacing CL strains in several areas where they co-exist. In order to explain this rapid shift in virus populations, the biological properties of a set of 17 CL and EM WMV isolates were compared. No major differences were observed when comparing a limited host range including 48 different plant species or cultivars. Only two species were differential; Chenopodium quinoa was systemically infected by CL and not by EM isolates whereas Ranunculus sardous was systemically infected by EM and not by CL isolates. A considerable variability was observed in aphid transmission efficiencies but this could not be correlated to the CL or EM types. Two subsets of five isolates of each group were used to compare aphid transmission efficiencies from single and double (CL-EM) infections using six different cucurbit and non-cucurbit hosts. EM isolates were generally better transmitted from mixed CL-EM infections than CL isolates and CL transmission rates were significantly lower from double than from single infections. Cross-protection was only partial between CL and EM strains leading to frequent double infections, and only a slight asymmetry was observed in cross-protection efficiencies. Since double infections occur very commonly in fields, the preferential transmission of EM from mixed CL-EM infections could be one of the factors leading to the displacement of CL isolates by EM isolates.
Collapse
Affiliation(s)
- H Lecoq
- INRA, UR407, Station de Pathologie Végétale, Domaine Saint Maurice, 84140 Montfavet, France.
| | | | | | | | | | | | | |
Collapse
|
37
|
Quantitation of Grapevine leafroll associated virus-1 and -3, Grapevine virus A, Grapevine fanleaf virus and Grapevine fleck virus in field-collected Vitis vinifera L. ‘Nebbiolo’ by real-time reverse transcription-PCR. J Virol Methods 2011; 172:1-7. [DOI: 10.1016/j.jviromet.2010.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/30/2010] [Accepted: 12/08/2010] [Indexed: 11/18/2022]
|
38
|
Mascia T, Cillo F, Fanelli V, Finetti-Sialer MM, De Stradis A, Palukaitis P, Gallitelli D. Characterization of the interactions between Cucumber mosaic virus and Potato virus Y in mixed infections in tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1514-24. [PMID: 20923355 DOI: 10.1094/mpmi-03-10-0064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mixed infection with the SON41 strain of Potato virus Y (PVY-SON41) in tomato increased accumulation of RNAs of strains Fny and LS of Cucumber mosaic virus (CMV-Fny and CMV-LS, respectively) and enhanced disease symptoms. By contrast, replication of PVY-SON41 was downregulated by CMV-Fny and this was due to the CMV-Fny 2b protein. The CMV-FnyΔ2b mutant was unable to systemically invade the tomato plant because its movement was blocked at the bundle sheath of the phloem. The function needed for invading the phloem was complemented by PVY-SON41 in plants grown at 22°C whereas this complementation was not necessary in plants grown at 15°C. Mutations in the 2b protein coding sequence of CMV-Fny as well as inhibition of translation of the 2a/2b overlapping region of the 2a protein lessened both the accumulation of viral RNAs and the severity of symptoms. Both of these functions were complemented by PVY-SON41. Infection of CMV-Fny supporting replication of the Tfn-satellite RNA reduced the accumulation of CMV RNA and suppressed symptom expression also in plants mixed-infected with PVY-SON41. The interaction between CMV and PVY-SON41 in tomato exhibited different features from that documented in other hosts. The results of this work are relevant from an ecological and epidemiological perspective due to the frequency of natural mixed infection of CMV and PVY in tomato.
Collapse
Affiliation(s)
- Tiziana Mascia
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi di Bari, Via Amendola 165/A, 70126 Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Pagán I, Fraile A, Fernandez-Fueyo E, Montes N, Alonso-Blanco C, García-Arenal F. Arabidopsis thaliana as a model for the study of plant-virus co-evolution. Philos Trans R Soc Lond B Biol Sci 2010; 365:1983-95. [PMID: 20478893 PMCID: PMC2880114 DOI: 10.1098/rstb.2010.0062] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding plant-virus coevolution requires wild systems in which there is no human manipulation of either host or virus. To develop such a system, we analysed virus infection in six wild populations of Arabidopsis thaliana in Central Spain. The incidence of five virus species with different life-styles was monitored during four years, and this was analysed in relation to the demography of the host populations. Total virus incidence reached 70 per cent, which suggests a role of virus infection in the population structure and dynamics of the host, under the assumption of a host fitness cost caused by the infection. Maximum incidence occurred at early growth stages, and co-infection with different viruses was frequent, two factors often resulting in increased virulence. Experimental infections under controlled conditions with two isolates of the most prevalent viruses, cauliflower mosaic virus and cucumber mosaic virus, showed that there is genetic variation for virus accumulation, although this depended on the interaction between host and virus genotypes. Comparison of Q(ST)-based genetic differentiations between both host populations with F(ST) genetic differentiation based on putatively neutral markers suggests different selection dynamics for resistance against different virus species or genotypes. Together, these results are compatible with a hypothesis of plant-virus coevolution.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Elena Fernandez-Fueyo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Nuria Montes
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
40
|
Abstract
Cross-protection is a phenomenon in which infection of a plant with a mild virus or viroid strain protects it from disease resulting from a subsequent encounter with a severe strain of the same virus or viroid. In this chapter, we review the history of cross-protection with regard to the development of ideas concerning its likely mechanisms, including RNA silencing and exclusion, and its influence on the early development of genetically engineered virus resistance. We also examine examples of the practical use of cross-protection in averting crop losses due to viruses, as well as the use of satellite RNAs to ameliorate the impact of virus-induced diseases. We also discuss the potential of cross-protection to contribute in future to the maintenance of crop health in the face of emerging virus diseases and related threats to agricultural production.
Collapse
|