1
|
Emeraghi M, Achigan-Dako EG, Nwaoguala CNC, Oselebe H. Maize streak virus research in Africa: an end or a crossroad. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3785-3803. [PMID: 34309683 DOI: 10.1007/s00122-021-03914-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The economic importance of the maize streak virus disease to the African maize production dynamic is to be appreciated now more than ever due to the preponderant influence of a changing climate. Continued dependence on a single major-effect quantitative trait locus (QTL) called Msv1 on Chromosome 1 of Maize (Zea mays L.) is not guaranteed to ensure durable resistance to the causal pathogen. With over ten decades of research on the disease and its associated host plant resistance mechanisms, it is pertinent to consider future approaches to attaining durability by looking to the synergistic roles of moderate- and minor-effect QTLs located on other chromosomes so as to facilitate a secure farming system for sub-Saharan Africa. For this review, more than 40 publications relating to maize streak disease research were methodically analysed with about 30% making specific reference to conventional, molecular and transgenic approaches employed in introgressing, maintaining and improving streak resistance in maize. A meta-analysis of mapped QTLs conferring streak resistance was conducted in a bid to reveal any inter-dependence or co-localization of resistant loci and to aid decision-making for marker-assisted breeding. With the changing climatic conditions around the globe, man's preparedness in the event of an epidemic following any evolutionary process in the streak viral genome was determined as insufficient. Modern breeding approaches including gene pyramiding that could be considered in maize breeding programmes to ensure durability for streak resistance were proposed while improving maize for other abiotic stress tolerance, particularly drought.
Collapse
Affiliation(s)
- Mary Emeraghi
- Laboratory of Genetics, Biotechnology and Seed Science, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01BP526, Cotonou, Republic of Benin
- Department of Agronomy and Environmental Management, Faculty of Agriculture and Agricultural Technology, Benson Idahosa University, Benin City, Nigeria
| | - Enoch G Achigan-Dako
- Laboratory of Genetics, Biotechnology and Seed Science, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01BP526, Cotonou, Republic of Benin.
| | - Chibuzo N C Nwaoguala
- Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Happiness Oselebe
- Department of Crop Production and Landscape Management, Faculty of Agriculture and Resource Management, Ebonyi State University, Abakaliki, Nigeria
| |
Collapse
|
2
|
Gbashi S, Adebo O, Adebiyi JA, Targuma S, Tebele S, Areo OM, Olopade B, Odukoya JO, Njobeh P. Food safety, food security and genetically modified organisms in Africa: a current perspective. Biotechnol Genet Eng Rev 2021; 37:30-63. [PMID: 34309495 DOI: 10.1080/02648725.2021.1940735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Moving forward from 2020, Africa faces an eminent challenge of food safety and security in the coming years. The World Food Programme (WFP) of the United Nations (UN) estimates that 20% of Africa's population of 1.2 billion people face the highest level of undernourishment in the world, likely to worsen due to COVID-19 pandemic that has brought the entire world to its knees. Factors such as insecurity and conflict, poverty, climate change and population growth have been identified as critical contributors to the food security challenges on the continent. Biotechnological research on Genetically Modified Organisms (GMOs) provides a range of opportunities (such as increased crop yields, resistance to pests and diseases, enhanced nutrient composition and food quality) in addressing the hunger, malnutrition and food security issues on the continent. However, the acceptance and adoption of GMOs on the continent has been remarkably slow, perhaps due to contrasting views about the benefits and safety concerns associated with them. With the reality of food insecurity and the booming population in Africa, there is an eminent need for a more pragmatic position to this debate. The present review presents an overview of the current situation of food safety and security and attempts to reconcile major viewpoints on GMOs research considering the current food safety and security crisis in the African continent.
Collapse
Affiliation(s)
- Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Oluwafemi Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Sarem Targuma
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Shandry Tebele
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701
| | - Oluwaseun Mary Areo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Bunmi Olopade
- Department of Biological Sciences, Covenant University, Ota, P.M.B. 1023, km 10, Idiroko Road, Ota, Ogun State, Nigeria
| | - Julianah Olayemi Odukoya
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Patrick Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| |
Collapse
|
3
|
Widyaningrum S, Pujiasih DR, Sholeha W, Harmoko R, Sugiharto B. Induction of resistance to sugarcane mosaic virus by RNA interference targeting coat protein gene silencing in transgenic sugarcane. Mol Biol Rep 2021; 48:3047-3054. [PMID: 33837900 DOI: 10.1007/s11033-021-06325-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/31/2021] [Indexed: 11/27/2022]
Abstract
Sugarcane mosaic virus (SCMV) is a serious disease of monocotyledonous plants, including sugarcane, causing deterioration in both growth and productivity. RNA interference (RNAi) inhibits gene expression through RNA-mediated sequence-specific interactions and is considered an effective approach to control viral infection in plants. In this study, the SCMVCp gene encoding the coat protein (CP) was inserted into the pGreen-0179 plasmid in both sense and antisense orientations. Cauliflower mosaic virus (CaMV) and Zea mays ubiquitin (Ubi) promoters were selected to drive the transcription of the intron-hairpin constructs, called HpSCMVCp-CaMV and HpSCMVCp-Ubi, respectively. Transgenic sugarcane expressing these constructs was generated through Agrobacterium-mediated transformation. This transformation method produced a high percentage of transgenic plants for both HpSCMVCp-CaMV and HpSCMVCp-Ubi, as confirmed by PCR analysis. Southern blotting revealed a single stable insertion of the DNA target in the genome of transgenic sugarcane lines. After artificial virus infection, lines that developed mosaic symptoms were classified as susceptible, whereas those that remained green without symptoms were classified as resistant at 42 days post-inoculation. Immunoblotting revealed CP expression at 37 kDa in susceptible and non-transgenic sugarcane, but not in resistant lines. RT-PCR analysis confirmed viral Cp and Nib gene expression in susceptible lines and their absence in resistant lines. Interestingly, upon comparison of effectivity, CaMV and Ubi promoter-driven gene expression resulted in 57.69% and 82.35% resistant sugarcane lines, respectively. Thus, we concluded that RNAi is effective for inducing resistance against SCMV and that the Ubi promoter is an effective promoter for producing transgenic sugarcane.
Collapse
Affiliation(s)
- Suvia Widyaningrum
- Laboratory of Molecular Biology and Biotechnology, Center for Development of Advanced Science and Technology (CDAST), Jember University, Jln. Kalimantan 37, Jember, 68121, Indonesia.,Postgraduate Program in Biotechnology, Jember University, Jln. Kalimantan 37, Jember, 68121, Indonesia
| | - Dwi Ratna Pujiasih
- Laboratory of Molecular Biology and Biotechnology, Center for Development of Advanced Science and Technology (CDAST), Jember University, Jln. Kalimantan 37, Jember, 68121, Indonesia.,Department of Biology, Faculty of Mathematics and Natural Sciences, Jember University, Jln. Kalimantan 37, Jember, 68121, Indonesia
| | - Wardatus Sholeha
- Laboratory of Molecular Biology and Biotechnology, Center for Development of Advanced Science and Technology (CDAST), Jember University, Jln. Kalimantan 37, Jember, 68121, Indonesia.,Department of Biology, Faculty of Mathematics and Natural Sciences, Jember University, Jln. Kalimantan 37, Jember, 68121, Indonesia
| | - Rikno Harmoko
- Indonesian Institute of Sciences, Jl. Raya Jakarta-Bogor, Cibinong, Bogor, 16911, Indonesia
| | - Bambang Sugiharto
- Laboratory of Molecular Biology and Biotechnology, Center for Development of Advanced Science and Technology (CDAST), Jember University, Jln. Kalimantan 37, Jember, 68121, Indonesia. .,Postgraduate Program in Biotechnology, Jember University, Jln. Kalimantan 37, Jember, 68121, Indonesia. .,Department of Biology, Faculty of Mathematics and Natural Sciences, Jember University, Jln. Kalimantan 37, Jember, 68121, Indonesia.
| |
Collapse
|
4
|
Kumar S, Tanti B, Patil BL, Mukherjee SK, Sahoo L. RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea. PLoS One 2017; 12:e0186786. [PMID: 29077738 PMCID: PMC5659608 DOI: 10.1371/journal.pone.0186786] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/06/2017] [Indexed: 11/21/2022] Open
Abstract
Cowpea is an important grain legume crop of Africa, Latin America, and Southeast Asia. Leaf curl and golden mosaic diseases caused by Mungbean yellow mosaic India virus (MYMIV) have emerged as most devastating viral diseases of cowpea in Southeast Asia. In this study, we employed RNA interference (RNAi) strategy to control cowpea-infecting MYMIV. For this, we generated transgenic cowpea plants harbouring three different intron hairpin RNAi constructs, containing the AC2, AC4 and fusion of AC2 and AC4 (AC2+AC4) of seven cowpea-infecting begomoviruses. The T0 and T1 transgenic cowpea lines of all the three constructs accumulated transgene-specific siRNAs. Transgenic plants were further assayed up to T1 generations, for resistance to MYMIV using agro-infectious clones. Nearly 100% resistance against MYMIV infection was observed in transgenic lines, expressing AC2-hp and AC2+AC4-hp RNA, when compared with untransformed controls and plants transformed with empty vectors, which developed severe viral disease symptoms within 3 weeks. The AC4-hp RNA expressing lines displayed appearance of milder symptoms after 5 weeks of MYMIV-inoculation. Northern blots revealed a positive correlation between the level of transgene-specific siRNAs accumulation and virus resistance. The MYMIV-resistant transgenic lines accumulated nearly zero or very low titres of viral DNA. The transgenic cowpea plants had normal phenotype with no yield penalty in greenhouse conditions. This is the first demonstration of RNAi-derived resistance to MYMIV in cowpea.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
- Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Bhaben Tanti
- Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Basavaprabhu L. Patil
- ICAR-National Research Centre on Plant Biotechnology, LBS Centre, IARI, Pusa Campus, New Delhi, India
| | - Sunil Kumar Mukherjee
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Lingaraj Sahoo
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
- * E-mail:
| |
Collapse
|
5
|
Shanmugapriya G, Das SS, Veluthambi K. Transgenic tobacco plants expressing siRNA targeted against the Mungbean yellow mosaic virus transcriptional activator protein gene efficiently block the viral DNA accumulation. Virusdisease 2015; 26:55-61. [PMID: 26436122 PMCID: PMC4585057 DOI: 10.1007/s13337-015-0251-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 03/18/2015] [Indexed: 10/23/2022] Open
Abstract
Mungbean yellow mosaic virus (MYMV) is a bipartite begomovirus that infects many pulse crops such as blackgram, mungbean, mothbean, Frenchbean, and soybean. We tested the efficacy of the transgenically expressed intron-spliced hairpin RNA gene of the transcriptional activator protein (hpTrAP) in reducing MYMV DNA accumulation. Tobacco plants transformed with the MYMV hpTrAP gene accumulated 21-22 nt siRNA. Leaf discs of the transgenic plants, agroinoculated with the partial dimers of MYMV, displayed pronounced reduction in MYMV DNA accumulation. Thus, silencing of the TrAP gene, a suppressor of gene silencing, emerged as an effective strategy to control MYMV.
Collapse
Affiliation(s)
- Gnanasekaran Shanmugapriya
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 Tamil Nadu India
| | - Sudhanshu Sekhar Das
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 Tamil Nadu India
| | - Karuppannan Veluthambi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 Tamil Nadu India
| |
Collapse
|
6
|
Shepherd DN, Dugdale B, Martin DP, Varsani A, Lakay FM, Bezuidenhout ME, Monjane AL, Thomson JA, Dale J, Rybicki EP. Inducible resistance to maize streak virus. PLoS One 2014; 9:e105932. [PMID: 25166274 PMCID: PMC4148390 DOI: 10.1371/journal.pone.0105932] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
Maize streak virus (MSV), which causes maize streak disease (MSD), is the major viral pathogenic constraint on maize production in Africa. Type member of the Mastrevirus genus in the family Geminiviridae, MSV has a 2.7 kb, single-stranded circular DNA genome encoding a coat protein, movement protein, and the two replication-associated proteins Rep and RepA. While we have previously developed MSV-resistant transgenic maize lines constitutively expressing "dominant negative mutant" versions of the MSV Rep, the only transgenes we could use were those that caused no developmental defects during the regeneration of plants in tissue culture. A better transgene expression system would be an inducible one, where resistance-conferring transgenes are expressed only in MSV-infected cells. However, most known inducible transgene expression systems are hampered by background or "leaky" expression in the absence of the inducer. Here we describe an adaptation of the recently developed INPACT system to express MSV-derived resistance genes in cell culture. Split gene cassette constructs (SGCs) were developed containing three different transgenes in combination with three different promoter sequences. In each SGC, the transgene was split such that it would be translatable only in the presence of an infecting MSV's replication associated protein. We used a quantitative real-time PCR assay to show that one of these SGCs (pSPLITrepIII-Rb-Ubi) inducibly inhibits MSV replication as efficiently as does a constitutively expressed transgene that has previously proven effective in protecting transgenic maize from MSV. In addition, in our cell-culture based assay pSPLITrepIII-Rb-Ubi inhibited replication of diverse MSV strains, and even, albeit to a lesser extent, of a different mastrevirus species. The application of this new technology to MSV resistance in maize could allow a better, more acceptable product.
Collapse
Affiliation(s)
- Dionne N. Shepherd
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, South Africa
- * E-mail:
| | - Benjamin Dugdale
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Darren P. Martin
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
- Centre for High-Performance Computing, Rosebank, Cape Town, South Africa
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Francisco M. Lakay
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Marion E. Bezuidenhout
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Adérito L. Monjane
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
| | - Jennifer A. Thomson
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - James Dale
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Edward P. Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
| |
Collapse
|
7
|
Monjane AL, Martin DP, Lakay F, Muhire BM, Pande D, Varsani A, Harkins G, Shepherd DN, Rybicki EP. Extensive recombination-induced disruption of genetic interactions is highly deleterious but can be partially reversed by small numbers of secondary recombination events. J Virol 2014; 88:7843-51. [PMID: 24789787 PMCID: PMC4097777 DOI: 10.1128/jvi.00709-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/22/2014] [Indexed: 01/12/2023] Open
Abstract
Although homologous recombination can potentially provide viruses with vastly more evolutionary options than are available through mutation alone, there are considerable limits on the adaptive potential of this important evolutionary process. Primary among these is the disruption of favorable coevolved genetic interactions that can occur following the transfer of foreign genetic material into a genome. Although the fitness costs of such disruptions can be severe, in some cases they can be rapidly recouped by either compensatory mutations or secondary recombination events. Here, we used a maize streak virus (MSV) experimental model to explore both the extremes of recombination-induced genetic disruption and the capacity of secondary recombination to adaptively reverse almost lethal recombination events. Starting with two naturally occurring parental viruses, we synthesized two of the most extreme conceivable MSV chimeras, each effectively carrying 182 recombination breakpoints and containing thorough reciprocal mixtures of parental polymorphisms. Although both chimeras were severely defective and apparently noninfectious, neither had individual movement-, encapsidation-, or replication-associated genome regions that were on their own "lethally recombinant." Surprisingly, mixed inoculations of the chimeras yielded symptomatic infections with viruses with secondary recombination events. These recombinants had only 2 to 6 breakpoints, had predominantly inherited the least defective of the chimeric parental genome fragments, and were obviously far more fit than their synthetic parents. It is clearly evident, therefore, that even when recombinationally disrupted virus genomes have extremely low fitness and there are no easily accessible routes to full recovery, small numbers of secondary recombination events can still yield tremendous fitness gains. Importance: Recombination between viruses can generate strains with enhanced pathological properties but also runs the risk of producing hybrid genomes with decreased fitness due to the disruption of favorable genetic interactions. Using two synthetic maize streak virus genome chimeras containing alternating genome segments derived from two natural viral strains, we examined both the fitness costs of extreme degrees of recombination (both chimeras had 182 recombination breakpoints) and the capacity of secondary recombination events to recoup these costs. After the severely defective chimeras were introduced together into a suitable host, viruses with between 1 and 3 secondary recombination events arose, which had greatly increased replication and infective capacities. This indicates that even in extreme cases where recombination-induced genetic disruptions are almost lethal, and 91 consecutive secondary recombination events would be required to reconstitute either one of the parental viruses, moderate degrees of fitness recovery can be achieved through relatively small numbers of secondary recombination events.
Collapse
Affiliation(s)
- Adérito L Monjane
- Molecular and Cell Biology Department, University of Cape Town, Cape Town, South Africa Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Francisco Lakay
- Molecular and Cell Biology Department, University of Cape Town, Cape Town, South Africa
| | - Brejnev M Muhire
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Daniel Pande
- Department of Botany and Horticulture, Maseno University, Maseno, Kenya
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Gordon Harkins
- South African National Bioinformatics Institute, MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, South Africa
| | - Dionne N Shepherd
- Molecular and Cell Biology Department, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Molecular and Cell Biology Department, University of Cape Town, Cape Town, South Africa Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Ruschhaupt M, Martin DP, Lakay F, Bezuidenhout M, Rybicki EP, Jeske H, Shepherd DN. Replication modes of Maize streak virus mutants lacking RepA or the RepA-pRBR interaction motif. Virology 2013; 442:173-9. [PMID: 23679984 DOI: 10.1016/j.virol.2013.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 11/16/2022]
Abstract
The plant-infecting mastreviruses (family Geminiviridae) express two distinct replication-initiator proteins, Rep and RepA. Although RepA is essential for systemic infectivity, little is known about its precise function. We therefore investigated its role in replication using 2D-gel electrophoresis to discriminate the replicative forms of Maize streak virus (MSV) mutants that either fail to express RepA (RepA(-)), or express RepA that is unable to bind the plant retinoblastoma related protein, pRBR. Whereas amounts of viral DNA were reduced in two pRBR-binding deficient RepA mutants, their repertoires of replicative forms changed only slightly. While a complete lack of RepA expression was also associated with reduced viral DNA titres, the only traces of replicative intermediates of RepA(-) viruses were those indicative of recombination-dependent replication. We conclude that in MSV, RepA, but not RepA-pRBR binding, is necessary for single-stranded DNA production and efficient rolling circle replication.
Collapse
Affiliation(s)
- Moritz Ruschhaupt
- Department of Molecular Biology and Plant Virology, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Nahid N, Amin I, Briddon RW, Mansoor S. RNA interference-based resistance against a legume mastrevirus. Virol J 2011; 8:499. [PMID: 22047503 PMCID: PMC3214926 DOI: 10.1186/1743-422x-8-499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 11/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) is a homology-dependant gene silencing mechanism and has been widely used to engineer resistance in plants against RNA viruses. However, its usefulness in delivering resistance against plant DNA viruses belonging to family Geminiviridae is still being debated. Although the RNAi approach has been shown, using a transient assay, to be useful in countering monocotyledonous plant-infecting geminiviruses of the genus Mastrevirus, it has yet to be investigated as a means of delivering resistance to dicot-infecting mastreviruses. Chickpea chlorotic dwarf Pakistan virus (CpCDPKV) is a legume-infecting mastrevirus that affects chickpea and other leguminous crops in Pakistan. RESULTS Here a hairpin (hp)RNAi construct containing sequences encompassing part of replication-associated protein gene, intergenic region and part of the movement protein gene of CpCDPKV under the control of the Cauliflower mosaic virus 35S promoter has been produced and stably transformed into Nicotiana benthamiana. Plants harboring the hairpin construct were challenged with CpCDPKV. All non-transgenic N. benthamiana plants developed symptoms of CpCDPKV infection within two weeks post-inoculation. In contrast, none of the inoculated transgenic plants showed symptoms of infection and no viral DNA could be detected by Southern hybridization. A real-time quantitative PCR analysis identified very low-level accumulation of viral DNA in the inoculated transgenic plants. CONCLUSIONS The results presented show that the RNAi-based resistance strategy is useful in protecting plants from a dicot-infecting mastrevirus. The very low levels of virus detected in plant tissue of transgenic plants distal to the inoculation site suggest that virus movement and/or viral replication was impaired leading to plants that showed no discernible signs of virus infection.
Collapse
Affiliation(s)
- Nazia Nahid
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P O Box 577, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|