1
|
Moens U, Passerini S, Falquet M, Sveinbjørnsson B, Pietropaolo V. Phosphorylation of Human Polyomavirus Large and Small T Antigens: An Ignored Research Field. Viruses 2023; 15:2235. [PMID: 38005912 PMCID: PMC10674619 DOI: 10.3390/v15112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Protein phosphorylation and dephosphorylation are the most common post-translational modifications mediated by protein kinases and protein phosphatases, respectively. These reversible processes can modulate the function of the target protein, such as its activity, subcellular localization, stability, and interaction with other proteins. Phosphorylation of viral proteins plays an important role in the life cycle of a virus. In this review, we highlight biological implications of the phosphorylation of the monkey polyomavirus SV40 large T and small t antigens, summarize our current knowledge of the phosphorylation of these proteins of human polyomaviruses, and conclude with gaps in the knowledge and a proposal for future research directions.
Collapse
Affiliation(s)
- Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Mar Falquet
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Baldur Sveinbjørnsson
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| |
Collapse
|
2
|
Hsu YH, Chao CN, Huang HY, Zhao PW, Hsu PH, Shen CH, Chen SY, Fang CY. Histone deacetylase III interactions with BK polyomavirus large tumor antigen may affect protein stability. Virol J 2023; 20:155. [PMID: 37464367 DOI: 10.1186/s12985-023-02128-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Human polyomavirus BK (BKPyV) causes associated nephropathy and contributes to urinary tract cancer development in renal transplant recipients. Large tumor antigen (LT) is an early protein essential in the polyomavirus life cycle. Protein acetylation plays a critical role in regulating protein stability, so this study investigated the acetylation of the BKPyV LT protein. METHODS The BKPyV LT nucleotide was synthesized, and the protein was expressed by transfection into permissive cells. The BKPyV LT protein was immunoprecipitated and subjected to LC-MS/MS analysis to determine the acetylation residues. The relative lysine was then mutated to arginine in the LT nucleotide and BKPyV genome to analyze the role of LT lysine acetylation in the BKPyV life cycle. RESULTS BKPyV LT acetylation sites were identified at Lys3 and Lys230 by mass spectrometry. HDAC3 and HDAC8 and their deacetylation activity are required for BKPyV LT expression. In addition, mutations of Lys3 and Lys230 to arginine increased LT expression, and the interaction of HDAC3 and LT was confirmed by coimmunoprecipitation. CONCLUSIONS HDAC3 is a newly identified protein that interacts with BKPyV LT, and LT acetylation plays a vital role in the BKPyV life cycle.
Collapse
Affiliation(s)
- Yueh-Han Hsu
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Chun-Nun Chao
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Hsin-Yi Huang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Pei-Wen Zhao
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi, Taiwan
| | - San-Yuan Chen
- Department of Chinese Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan.
- Department of Sports Management, Chia Nan University of Pharmacy & Science, Tainan City, Taiwan.
| | - Chiung-Yao Fang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan.
| |
Collapse
|
3
|
Halloran PF, Madill-Thomsen KS, Böhmig GA, Myslak M, Gupta G, Kumar D, Viklicky O, Perkowska-Ptasinska A, Famulski KS. A 2-fold Approach to Polyoma Virus (BK) Nephropathy in Kidney Transplants: Distinguishing Direct Virus Effects From Cognate T Cell-mediated Inflammation. Transplantation 2021; 105:2374-2384. [PMID: 34310102 DOI: 10.1097/tp.0000000000003884] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND BK nephropathy (BKN) in kidney transplants diagnosed by histology is challenging because it involves damage from both virus activity and cognate T cell-mediated inflammation, directed against alloantigens (rejection) or viral antigens. The present study of indication biopsies from the Integrated Diagnostic System in the International Collaborative Microarray Study Extension study measured major capsid viral protein 2 (VP2) mRNA to assess virus activity and a T cell-mediated rejection (TCMR) classifier to assess cognate T cell-mediated inflammation. METHODS Biopsies were assessed by local standard-of-care histology and by genome-wide microarrays and Molecular Microscope Diagnostic System (MMDx) algorithms to detect rejection and injury. In a subset of 102 biopsies (50 BKN and 52 BKN-negative biopsies with various abnormalities), we measured VP2 transcripts by real-time polymerase chain reaction. RESULTS BKN was diagnosed in 55 of 1679 biopsies; 30 had cognate T cell-mediated activity assessed by by MMDx and TCMR lesions, but only 3 of 30 were histologically diagnosed as TCMR. We developed a BKN probability classifier that predicted histologic BKN (area under the curve = 0.82). Virus activity (VP2 expression) was highly selective for BKN (area under the curve = 0.94) and correlated with acute injury, atrophy-fibrosis, macrophage activation, and the BKN classifier, but not with the TCMR classifier. BKN with molecular TCMR had more tubulitis and inflammation than BKN without molecular TCMR. In 5 BKN cases with second biopsies, VP2 mRNA decreased in second biopsies, whereas in 4 of 5 TCMR classifiers, scores increased. Genes and pathways associated with BKN and VP2 mRNA were similar, reflecting injury, inflammation, and macrophage activation but none was selective for BKN. CONCLUSIONS Risk-benefit decisions in BKN may be assisted by quantitative assessment of the 2 major pathologic processes, virus activity and cognate T cell-mediated inflammation.
Collapse
Affiliation(s)
- Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
- Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, AB, Canada
| | | | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marek Myslak
- Department of Nephrology and Kidney Transplantation, SPWSZ Hospital in Szczecin, Pomeranian Medical University, Szczecin, Poland
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Dhiren Kumar
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Ondrej Viklicky
- Department of Nephrology and Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | |
Collapse
|
4
|
Blackard JT, Davies SM, Laskin BL. BK polyomavirus diversity-Why viral variation matters. Rev Med Virol 2020; 30:e2102. [PMID: 32128960 DOI: 10.1002/rmv.2102] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
Abstract
BK polyomavirus (BKPyV or BKV) is a non-enveloped, circular double-stranded DNA virus that may exceed 80% seroprevalence in adults. BKV infection typically occurs during childhood, and the majority of adults are latently infected. While BKV infection is rarely associated with clinical disease in most individuals, in immunosuppressed individuals, reactivation may cause kidney (BK-associated nephropathy) or bladder (hemorrhagic cystitis and ureteral stenosis) injury. No antiviral therapies have been approved for the treatment of BKV infection. Reducing immunosuppression is the most effective therapy, although this is not feasible in many patients. Thus, a robust understanding of viral pathogenesis and viral diversity remains important for the development of future therapeutic strategies. Studies of BKV diversity are quite sparse compared to other common viral infections; thus, much of our understanding of BVK variability and evolution relies heavily analogous studies of other viruses such as HIV or viral hepatitis. We provide a comprehensive review of BKV diversity at the population and individual level with careful consideration of how viral variability may impact viral replication, pathogenesis, tropism, and protein function. We also discuss a number of outstanding questions related to BK virus diversity that should be explored rigorously in future studies.
Collapse
Affiliation(s)
- Jason T Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Benjamin L Laskin
- Division of Nephrology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Helle F, Brochot E, Handala L, Martin E, Castelain S, Francois C, Duverlie G. Biology of the BKPyV: An Update. Viruses 2017; 9:v9110327. [PMID: 29099746 PMCID: PMC5707534 DOI: 10.3390/v9110327] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
The BK virus (BKPyV) is a member of the Polyomaviridae family first isolated in 1971. BKPyV causes frequent infections during childhood and establishes persistent infections with minimal clinical implications within renal tubular cells and the urothelium. However, reactivation of BKPyV in immunocompromised individuals may cause serious complications. In particular, with the implementation of more potent immunosuppressive drugs in the last decade, BKPyV has become an emerging pathogen in kidney and bone marrow transplant recipients where it often causes associated nephropathy and haemorrhagic cystitis, respectively. Unfortunately, no specific antiviral against BKPyV has been approved yet and the only therapeutic option is a modulation of the immunosuppressive drug regimen to improve immune control though it may increase the risk of rejection. A better understanding of the BKPyV life cycle is thus needed to develop efficient treatment against this virus. In this review, we provide an update on recent advances in understanding the biology of BKPyV.
Collapse
Affiliation(s)
- Francois Helle
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Etienne Brochot
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Lynda Handala
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Elodie Martin
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Sandrine Castelain
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Catherine Francois
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Gilles Duverlie
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| |
Collapse
|
6
|
Abstract
UNLABELLED The human fetal glial cell line SVG was generated in 1985 by transfecting primary fetal brain cells with a plasmid containing an origin-defective mutant of simian virus 40 (SV40). The cells, which express SV40 large T-antigen, support the replication of human JC polyomavirus (JCPyV) and have been used for JCPyV studies but also for other studies in which cells of neural origin were desirable. We intended to use the SVG p12 cells from ATCC for antiviral drug studies with JCPyV. However, during initial experiments, immunofluorescence microscopy controls unexpectedly revealed cells expressing the late viral proteins VP1, VP2/VP3, and agno. This was confirmed by Western blotting. Since our agnoprotein antiserum is specific for BKPyV agnoprotein, infection with BKPyV was suspected. Indeed, specific BKPyV PCR of SVG p12 supernatants revealed a viral load of >1 × 10(10) genomic equivalents/ml. Negative-staining electron microscopy showed characteristic polyomavirus virions, and infectious BKPyV was transmitted from SVG p12 supernatant to other cells. Long-range PCR covering the viral genome, followed by DNA sequencing, identified BKPyV strain UT as well as deletion derivatives. This was confirmed by next-generation sequencing. JCPyV (MAD-4) was found to infect apparently uninfected and BKPyV-infected SVG p12 cells. In total, 4 vials from 2 different ATCC lots of SVG p12 cells dating back to 2006 contained BKPyV, whereas the subclone SVG-A was negative. In conclusion, SVG p12 cells from ATCC contain infectious BKPyV. This may have affected results and interpretations of previous studies, and caution should be taken in future experiments. IMPORTANCE This work reveals that one of the most frequently used cell lines for JC polyomavirus (JCPyV) research, the SV40-immortalized human fetal glial cell line SVG p12 obtained directly from ATCC, contains infectious BK polyomavirus (BKPyV) of strain UT and a spectrum of defective mutants. Strain UT has been previously found in urine and in tumors of different patients but is also frequently used for research. It is therefore not clear if BKPyV was present in the brain tissue used to generate the cell line or if this is a contamination. Although productive JCPyV infection of SVG cells was not dependent on prior BKPyV infection, the unnoticed presence of BKPyV may have influenced the results of studies using these cells. The interpretation of past results should therefore be reconsidered and cells tested for BKPyV before new studies are initiated. The frequently used subclone SVG-A did not contain BKPyV and could be a useful substitute.
Collapse
|