1
|
Pollari ME, Aspelin WWE, Wang L, Mäkinen KM. The Molecular Maze of Potyviral and Host Protein Interactions. Annu Rev Virol 2024; 11:147-170. [PMID: 38848589 DOI: 10.1146/annurev-virology-100422-034124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The negative effects of potyvirus diseases on the agricultural industry are extensive and global. Understanding how protein-protein interactions contribute to potyviral infections is imperative to developing resistant varieties that help counter the threat potyviruses pose. While many protein-protein interactions have been reported, only a fraction are essential for potyviral infection. Accumulating evidence demonstrates that potyviral infection processes are interconnected. For instance, the interaction between the eukaryotic initiation factor 4E (eIF4E) and viral protein genome-linked (VPg) is crucial for both viral translation and protecting viral RNA (vRNA). Additionally, recent evidence for open reading frames on the reverse-sense vRNA and for nonequimolar expression of viral proteins has challenged the previous polyprotein expression model. These discoveries will surely reveal more about the potyviral protein interactome. In this review, we present a synthesis of the potyviral infection cycle and discuss influential past discoveries and recent work on protein-protein interactions in various infection processes.
Collapse
Affiliation(s)
- Maija E Pollari
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - William W E Aspelin
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - Linping Wang
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - Kristiina M Mäkinen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| |
Collapse
|
2
|
Qin L, Liu H, Liu P, Jiang L, Cheng X, Li F, Shen W, Qiu W, Dai Z, Cui H. Rubisco small subunit (RbCS) is co-opted by potyvirids as the scaffold protein in assembling a complex for viral intercellular movement. PLoS Pathog 2024; 20:e1012064. [PMID: 38437247 PMCID: PMC10939294 DOI: 10.1371/journal.ppat.1012064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.
Collapse
Affiliation(s)
- Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongjun Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peilan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lu Jiang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenping Qiu
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, United States of America
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
3
|
Eruera AR, McSweeney AM, McKenzie-Goldsmith GM, Ward VK. Protein Nucleotidylylation in +ssRNA Viruses. Viruses 2021; 13:1549. [PMID: 34452414 PMCID: PMC8402628 DOI: 10.3390/v13081549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
Nucleotidylylation is a post-transcriptional modification important for replication in the picornavirus supergroup of RNA viruses, including members of the Caliciviridae, Coronaviridae, Picornaviridae and Potyviridae virus families. This modification occurs when the RNA-dependent RNA polymerase (RdRp) attaches one or more nucleotides to a target protein through a nucleotidyl-transferase reaction. The most characterized nucleotidylylation target is VPg (viral protein genome-linked), a protein linked to the 5' end of the genome in Caliciviridae, Picornaviridae and Potyviridae. The nucleotidylylation of VPg by RdRp is a critical step for the VPg protein to act as a primer for genome replication and, in Caliciviridae and Potyviridae, for the initiation of translation. In contrast, Coronaviridae do not express a VPg protein, but the nucleotidylylation of proteins involved in replication initiation is critical for genome replication. Furthermore, the RdRp proteins of the viruses that perform nucleotidylylation are themselves nucleotidylylated, and in the case of coronavirus, this has been shown to be essential for viral replication. This review focuses on nucleotidylylation within the picornavirus supergroup of viruses, including the proteins that are modified, what is known about the nucleotidylylation process and the roles that these modifications have in the viral life cycle.
Collapse
Affiliation(s)
| | | | | | - Vernon K. Ward
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand; (A.-R.E.); (A.M.M.); (G.M.M.-G.)
| |
Collapse
|
4
|
Klenov A, Hudak KA. Facile method of curing toxicity in large viral genomes by high-throughput identification and removal of cryptic promoters. J Virol Methods 2020; 287:113993. [PMID: 33068704 DOI: 10.1016/j.jviromet.2020.113993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023]
Abstract
Infectious plant virus clones are challenging to construct and manipulate due to the presence of cryptic promoter sequences that induce toxicity in bacteria. Common methods to overcome toxicity include intron insertion to interrupt toxic open reading frames and the use of Rhizobium or yeast species that do not recognize the same cryptic promoters. Unfortunately, intron insertion must be attempted on a trial and error basis within full-length clones and may change the infection characteristics of the virus. We have developed a facile method that can detect multiple cryptic bacterial promoters within large virus genomes. These promoters can then be silenced to obtain infectious clones that can be manipulated in E. coli. Our strategy relies on the generation of a viral library which is cloned upstream of either an eGFP open reading frame for low-throughput analysis or chloramphenicol for next generation sequencing. Pokeweed mosaic virus (PkMV), a 9.5 Kb ssRNA potyvirus, was used as a proof of concept. We found 16 putative promoter regions within 150-250 bp library fragments throughout the PkMV genome. 5'RACE allowed identification of the promoter sequence within each fragment, and subsequent silencing produced infectious clones. Our results indicate that cryptic promoters are ubiquitous within large viral genomes and that promoter screening is a desirable first step when constructing a viral clone. Our method can be applied to large plant and animal viruses as well as any DNA sequence for which low level of background transcriptional activity is required.
Collapse
|
5
|
López‐González S, Navarro JA, Pacios LF, Sardaru P, Pallás V, Sánchez F, Ponz F. Association between flower stalk elongation, an Arabidopsis developmental trait, and the subcellular location and movement dynamics of the nonstructural protein P3 of Turnip mosaic virus. MOLECULAR PLANT PATHOLOGY 2020; 21:1271-1286. [PMID: 32737952 PMCID: PMC7488469 DOI: 10.1111/mpp.12976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/05/2023]
Abstract
Virus infections affect plant developmental traits but this aspect of the interaction has not been extensively studied so far. Two strains of Turnip mosaic virus differentially affect Arabidopsis development, especially flower stalk elongation, which allowed phenotypical, cellular, and molecular characterization of the viral determinant, the P3 protein. Transiently expressed wild-type green fluorescent protein-tagged P3 proteins of both strains and selected mutants of them revealed important differences in their behaviour as endoplasmic reticulum (ER)-associated peripheral proteins flowing along the reticulum, forming punctate accumulations. Three-dimensional (3D) model structures of all expressed P3 proteins were computationally constructed through I-TASSER protein structure predictions, which were used to compute protein surfaces and map electrostatic potentials to characterize the effect of amino acid changes on features related to protein interactions and to phenotypical and subcellular results. The amino acid at position 279 was the main determinant affecting stalk development. It also determined the speed of ER-flow of the expressed proteins and their final location. A marked change in the protein surface electrostatic potential correlated with changes in subcellular location. One single amino acid in the P3 viral protein determines all the analysed differential characteristics between strains differentially affecting flower stalk development. A model proposing a role of the protein in the intracellular movement of the viral replication complex, in association with the viral 6K2 protein, is proposed. The type of association between both viral proteins could differ between the strains.
Collapse
Affiliation(s)
| | - José Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC), IBMCPValenciaSpain
| | - Luis F. Pacios
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| | - Papaiah Sardaru
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC), IBMCPValenciaSpain
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| |
Collapse
|
6
|
Dai Z, He R, Bernards MA, Wang A. The cis-expression of the coat protein of turnip mosaic virus is essential for viral intercellular movement in plants. MOLECULAR PLANT PATHOLOGY 2020; 21:1194-1211. [PMID: 32686275 PMCID: PMC7411659 DOI: 10.1111/mpp.12973] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 05/04/2023]
Abstract
To establish infection, plant viruses are evolutionarily empowered with the ability to spread intercellularly. Potyviruses represent the largest group of known plant-infecting RNA viruses, including many agriculturally important viruses. To better understand intercellular movement of potyviruses, we used turnip mosaic virus (TuMV) as a model and constructed a double-fluorescent (green and mCherry) protein-tagged TuMV infectious clone, which allows distinct observation of primary and secondary infected cells. We conducted a series of deletion and mutation analyses to characterize the role of TuMV coat protein (CP) in viral intercellular movement. TuMV CP has 288 amino acids and is composed of three domains: the N-terminus (amino acids 1-97), the core (amino acids 98-245), and the C-terminus (amino acids 246-288). We found that deletion of CP or its segments amino acids 51-199, amino acids 200-283, or amino acids 265-274 abolished the ability of TuMV to spread intercellularly but did not affect virus replication. Interestingly, deletion of amino acids 6-50 in the N-terminus domain resulted in the formation of aberrant virions but did not significantly compromise TuMV cell-to-cell and systemic movement. We identified the charged residues R178 and D222 within the core domain that are essential for virion formation and TuMV local and systemic transport in plants. Moreover, we found that trans-expression of the wild-type CP either by TuMV or through genetic transformation-based stable expression could not rescue the movement defect of CP mutants. Taken together these results suggest that TuMV CP is not essential for viral genome replication but is indispensable for viral intercellular transport where only the cis-expressed CP is functional.
Collapse
Affiliation(s)
- Zhaoji Dai
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Rongrong He
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Mark A. Bernards
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
| |
Collapse
|
7
|
Chai M, Wu X, Liu J, Fang Y, Luan Y, Cui X, Zhou X, Wang A, Cheng X. P3N-PIPO Interacts with P3 via the Shared N-Terminal Domain To Recruit Viral Replication Vesicles for Cell-to-Cell Movement. J Virol 2020; 94:e01898-19. [PMID: 31969439 PMCID: PMC7108826 DOI: 10.1128/jvi.01898-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
P3N-PIPO, the only dedicated movement protein (MP) of potyviruses, directs cylindrical inclusion (CI) protein from the cytoplasm to the plasmodesma (PD), where CI forms conical structures for intercellular movement. To better understand potyviral cell-to-cell movement, we further characterized P3N-PIPO using Turnip mosaic virus (TuMV) as a model virus. We found that P3N-PIPO interacts with P3 via the shared P3N domain and that TuMV mutants lacking the P3N domain of either P3N-PIPO or P3 are defective in cell-to-cell movement. Moreover, we found that the PIPO domain of P3N-PIPO is sufficient to direct CI to the PD, whereas the P3N domain is necessary for localization of P3N-PIPO to 6K2-labeled vesicles or aggregates. Finally, we discovered that the interaction between P3 and P3N-PIPO is essential for the recruitment of CI to cytoplasmic 6K2-containing structures and the association of 6K2-containing structures with PD-located CI inclusions. These data suggest that both P3N and PIPO domains are indispensable for potyviral cell-to-cell movement and that the 6K2 vesicles in proximity to PDs resulting from multipartite interactions among 6K2, P3, P3N-PIPO, and CI may also play an essential role in this process.IMPORTANCE Potyviruses include numerous economically important viruses that represent approximately 30% of known plant viruses. However, there is still limited information about the mechanism of potyviral cell-to-cell movement. Here, we show that P3N-PIPO interacts with and recruits CI to the PD via the PIPO domain and interacts with P3 via the shared P3N domain. We further report that the interaction of P3N-PIPO and P3 is associated with 6K2 vesicles and brings the 6K2 vesicles into proximity with PD-located CI structures. These results support the notion that the replication and cell-to-cell movement of potyviruses are processes coupled by anchoring viral replication complexes at the entrance of PDs, which greatly increase our knowledge of the intercellular movement of potyviruses.
Collapse
Affiliation(s)
- Mengzhu Chai
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Harbin, Heilongjiang, China
| | - Xiaoyun Wu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Harbin, Heilongjiang, China
| | - Jiahui Liu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Harbin, Heilongjiang, China
| | - Yue Fang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Harbin, Heilongjiang, China
| | - Yameng Luan
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Harbin, Heilongjiang, China
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Xiaofei Cheng
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Rodamilans B, Valli A, García JA. Molecular Plant-Plum Pox Virus Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:6-17. [PMID: 31454296 DOI: 10.1094/mpmi-07-19-0189-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plum pox virus, the agent that causes sharka disease, is among the most important plant viral pathogens, affecting Prunus trees across the globe. The fabric of interactions that the virus is able to establish with the plant regulates its life cycle, including RNA uncoating, translation, replication, virion assembly, and movement. In addition, plant-virus interactions are strongly conditioned by host specificities, which determine infection outcomes, including resistance. This review attempts to summarize the latest knowledge regarding Plum pox virus-host interactions, giving a comprehensive overview of their relevance for viral infection and plant survival, including the latest advances in genetic engineering of resistant species.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adrián Valli
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
9
|
Interaction of the intrinsically disordered C-terminal domain of the sesbania mosaic virus RNA-dependent RNA polymerase with the viral protein P10 in vitro: modulation of the oligomeric state and polymerase activity. Arch Virol 2019; 164:971-982. [PMID: 30721364 DOI: 10.1007/s00705-019-04163-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
The RNA-dependent RNA polymerase (RdRp) of sesbania mosaic virus (SeMV) was previously shown to interact with the viral protein P10, which led to enhanced polymerase activity. In the present investigation, the equilibrium dissociation constant for the interaction between the two proteins was determined to be 0.09 µM using surface plasmon resonance, and the disordered C-terminal domain of RdRp was shown to be essential for binding to P10. The association with P10 brought about a change in the oligomeric state of RdRp, resulting in reduced aggregation and increased polymerase activity. Interestingly, unlike the wild-type RdRp, C-terminal deletion mutants (C del 43 and C del 72) were found to exist predominantly as monomers and were as active as the RdRp-P10 complex. Thus, either the deletion of the C-terminal disordered domain or its masking by binding to P10 results in the activation of polymerase activity. Further, deletion of the C-terminal 85 residues of RdRp resulted in complete loss of activity. Mutation of a conserved tyrosine (RdRp Y480) within motif E, located between 72 and 85 residues from the C-terminus of RdRp, rendered the protein inactive, demonstrating the importance of motif E in RNA synthesis in vitro.
Collapse
|
10
|
Gallo A, Valli A, Calvo M, García JA. A Functional Link between RNA Replication and Virion Assembly in the Potyvirus Plum Pox Virus. J Virol 2018; 92:e02179-17. [PMID: 29444942 PMCID: PMC5899180 DOI: 10.1128/jvi.02179-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/07/2018] [Indexed: 01/26/2023] Open
Abstract
Accurate assembly of viral particles in the potyvirus Plum pox virus (PPV) has been shown to depend on the contribution of the multifunctional viral protein HCPro. In this study, we show that other viral factors, in addition to the capsid protein (CP) and HCPro, are necessary for the formation of stable PPV virions. The CP produced in Nicotiana benthamiana leaves from a subviral RNA termed LONG, which expresses a truncated polyprotein that lacks P1 and HCPro, together with HCPro supplied in trans, was assembled into virus-like particles and remained stable after in vitro incubation. In contrast, deletions in multiple regions of the LONG coding sequence prevented the CP stabilization mediated by HCPro. In particular, we demonstrated that the first 178 amino acids of P3, but not a specific nucleotide sequence coding for them, are required for CP stability and proper assembly of PPV particles. Using a sequential coagroinfiltration assay, we observed that the subviral LONG RNA replicates and locally spreads in N. benthamiana leaves expressing an RNA silencing suppressor. The analysis of the effect of both point and deletion mutations affecting RNA replication in LONG and full-length PPV demonstrated that this process is essential for the assembly of stable viral particles. Interestingly, in spite of this requirement, the CP produced by a nonreplicating viral RNA can be stably assembled into virions as long as it is coexpressed with a replication-proficient RNA. Altogether, these results highlight the importance of coupling encapsidation to other viral processes to secure a successful infection.IMPORTANCE Viruses of the family Potyviridae are among the most dangerous threats for basically every important crop, and such socioeconomical relevance has made them a subject of many research studies. In spite of this, very little is currently known about proteins and processes controlling viral genome encapsidation by the coat protein. In the case of Plum pox virus (genus Potyvirus), for instance, we have previously shown that the multitasking viral factor HCPro plays a role in the production of stable virions. Here, by using this potyvirus as a model, we move further to show that additional factors are also necessary for the efficient production of potyviral particles. More importantly, a comprehensive screening for such factors led us to the identification of a functional link between virus replication and packaging, unraveling a previously unknown connection of these two key events of the potyviral infection cycle.
Collapse
Affiliation(s)
- Araiz Gallo
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrian Valli
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - María Calvo
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
12
|
Cui X, Yaghmaiean H, Wu G, Wu X, Chen X, Thorn G, Wang A. The C-terminal region of the Turnip mosaic virus P3 protein is essential for viral infection via targeting P3 to the viral replication complex. Virology 2017; 510:147-155. [PMID: 28735115 DOI: 10.1016/j.virol.2017.07.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Like other positive-strand RNA viruses, plant potyviruses assemble viral replication complexes (VRCs) on modified cellular membranes. Potyviruses encode two membrane proteins, 6K2 and P3. The former is known to play pivotal roles in the formation of membrane-associated VRCs. However, P3 remains to be one of the least characterized potyviral proteins. The P3 cistron codes for P3 as well as P3N-PIPO which results from RNA polymerase slippage. In this study, we show that the P3N-PIPO of Turnip mosaic virus (TuMV) is required for viral cell-to-cell movement but not for viral replication. We demonstrate that the C-terminal region of P3 (P3C) is indispensable for P3 to form cytoplasmic punctate inclusions and target VRCs. We reveal that TuMV mutants that lack P3C are replication-defective. Taken together, these data suggest that the P3 cistron has two distinct functions: P3N-PIPO as a dedicated movement protein and P3 as an essential component of the VRC.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada; Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Hoda Yaghmaiean
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada; Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Guanwei Wu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada; Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Xiaoyun Wu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada; College of Agriculture and Food Science, Zhejiang A&F University, Linan, Zhejiang 311300, China
| | - Xin Chen
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Greg Thorn
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada; Department of Biology, Western University, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
13
|
Qiao W, Medina V, Falk BW. Inspirations on Virus Replication and Cell-to-Cell Movement from Studies Examining the Cytopathology Induced by Lettuce infectious yellows virus in Plant Cells. FRONTIERS IN PLANT SCIENCE 2017; 8:1672. [PMID: 29021801 PMCID: PMC5623981 DOI: 10.3389/fpls.2017.01672] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/12/2017] [Indexed: 05/06/2023]
Abstract
Lettuce infectious yellows virus (LIYV) is the type member of the genus Crinivirus in the family Closteroviridae. Like many other positive-strand RNA viruses, LIYV infections induce a number of cytopathic changes in plant cells, of which the two most characteristic are: Beet yellows virus-type inclusion bodies composed of vesicles derived from cytoplasmic membranes; and conical plasmalemma deposits (PLDs) located at the plasmalemma over plasmodesmata pit fields. The former are not only found in various closterovirus infections, but similar structures are known as 'viral factories' or viroplasms in cells infected with diverse types of animal and plant viruses. These are generally sites of virus replication, virion assembly and in some cases are involved in cell-to-cell transport. By contrast, PLDs induced by the LIYV-encoded P26 non-virion protein are not involved in replication but are speculated to have roles in virus intercellular movement. These deposits often harbor LIYV virions arranged to be perpendicular to the plasma membrane over plasmodesmata, and our recent studies show that P26 is required for LIYV systemic plant infection. The functional mechanism of how LIYV P26 facilitates intercellular movement remains unclear, however, research on other plant viruses provides some insights on the possible ways of viral intercellular movement through targeting and modifying plasmodesmata via interactions between plant cellular components and viral-encoded factors. In summary, beginning with LIYV, we review the studies that have uncovered the biological determinants giving rise to these cytopathological effects and their importance in viral replication, virion assembly and intercellular movement during the plant infection by closteroviruses, and compare these findings with those for other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Vicente Medina
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - Bryce W. Falk
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Folch-Fortuny A, Bosque G, Picó J, Ferrer A, Elena SF. Fusion of genomic, proteomic and phenotypic data: the case of potyviruses. MOLECULAR BIOSYSTEMS 2016; 12:253-61. [PMID: 26593691 DOI: 10.1039/c5mb00507h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Data fusion has been widely applied to analyse different sources of information, combining all of them in a single multivariate model. This methodology is mandatory when different omic data sets must be integrated to fully understand an organism using a systems biology approach. Here, a data fusion procedure is presented to combine genomic, proteomic and phenotypic data sets gathered for Tobacco etch virus (TEV). The genomic data correspond to random mutations inserted in most viral genes. The proteomic data represent both the effect of these mutations on the encoded proteins and the perturbation induced by the mutated proteins to their neighbours in the protein-protein interaction network (PPIN). Finally, the phenotypic trait evaluated for each mutant virus is replicative fitness. To analyse these three sources of information a Partial Least Squares (PLS) regression model is fitted in order to extract the latent variables from data that explain (and relate) the significant variables to the fitness of TEV. The final output of this methodology is a set of functional modules of the PPIN relating topology and mutations with fitness. Throughout the re-analysis of these diverse TEV data, we generated valuable information on the mechanism of action of certain mutations and how they translate into organismal fitness. Results show that the effect of some mutations goes beyond the protein they directly affect and spreads on the PPIN to neighbour proteins, thus defining functional modules.
Collapse
Affiliation(s)
- A Folch-Fortuny
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, València, Spain.
| | - G Bosque
- Institut Universitari d'Automàtica i Informàtica Industrial, Universitat Politècnica de València, València, Spain
| | - J Picó
- Institut Universitari d'Automàtica i Informàtica Industrial, Universitat Politècnica de València, València, Spain
| | - A Ferrer
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, València, Spain.
| | - S F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, València, Spain and The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
15
|
Cui H, Wang A. Plum Pox Virus 6K1 Protein Is Required for Viral Replication and Targets the Viral Replication Complex at the Early Stage of Infection. J Virol 2016; 90:5119-5131. [PMID: 26962227 PMCID: PMC4859702 DOI: 10.1128/jvi.00024-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The potyviral RNA genome encodes two polyproteins that are proteolytically processed by three viral protease domains into 11 mature proteins. Extensive molecular studies have identified functions for the majority of the viral proteins. For example, 6K2, one of the two smallest potyviral proteins, is an integral membrane protein and induces the endoplasmic reticulum (ER)-originated replication vesicles that target the chloroplast for robust viral replication. However, the functional role of 6K1, the other smallest protein, remains uncharacterized. In this study, we developed a series of recombinant full-length viral cDNA clones derived from a Canadian Plum pox virus (PPV) isolate. We found that deletion of any of the short motifs of 6K1 (each of which ranged from 5 to 13 amino acids), most of the 6K1 sequence (but with the conserved sequence of the cleavage sites being retained), or all of the 6K1 sequence in the PPV infectious clone abolished viral replication. The trans expression of 6K1 or the cis expression of a dislocated 6K1 failed to rescue the loss-of-replication phenotype, suggesting the temporal and spatial requirement of 6K1 for viral replication. Disruption of the N- or C-terminal cleavage site of 6K1, which prevented the release of 6K1 from the polyprotein, either partially or completely inhibited viral replication, suggesting the functional importance of the mature 6K1. We further found that green fluorescent protein-tagged 6K1 formed punctate inclusions at the viral early infection stage and colocalized with chloroplast-bound viral replicase elements 6K2 and NIb. Taken together, our results suggest that 6K1 is required for viral replication and is an important viral element of the viral replication complex at the early infection stage. IMPORTANCE Potyviruses account for more than 30% of known plant viruses and consist of many agriculturally important viruses. The genomes of potyviruses encode two polyproteins that are proteolytically processed into 11 mature proteins, with the majority of them having been at least partially functionally characterized. However, the functional role of a small protein named 6K1 remains obscure. In this study, we showed that deletion of 6K1 or a short motif/region of 6K1 in the full-length cDNA clones of plum pox virus abolishes viral replication and that mutation of the N- or C-terminal cleavage sites of 6K1 to prevent its release from the polyprotein greatly attenuates or completely inhibits viral replication, suggesting its important role in potyviral infection. We report that 6K1 forms punctate structures and targets the replication vesicles in PPV-infected plant leaf cells at the early infection stage. Our data reveal that 6K1 is an important viral protein of the potyviral replication complex.
Collapse
Affiliation(s)
- Hongguang Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
16
|
Yang Y, Ren Y, Shi Y. Intermolecular disulfide bond in the dimerization of S-periaxin mediated by Cys88 and Cys139. Acta Biochim Biophys Sin (Shanghai) 2016; 48:326-33. [PMID: 26940996 DOI: 10.1093/abbs/gmw008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022] Open
Abstract
Periaxin is expressed in mammalian Schwann cells and lens fiber cells, and has been identified in a screen for cytoskeleton-associated proteins. Charcot-Marie-Tooth 4F is caused by losses or mutations of theperiaxingene. Theperiaxingene encodes two protein isoforms, namely, L-periaxin and S-periaxin.S-periaxin contains 147 amino acid residues and has an N-terminal PDZ domain. In this paper, S-periaxin was reported to be homodimerized through the formation of intermolecular disulfide bonds with its Cys88 and Cys139 residues under mild oxidation conditions. The covalent dimer of S-periaxin was also observed by western blot analysis and bimolecular fluorescence complementation analyses. S-periaxin dimerization formation could be regulated by cellular redox fluctuations. These results offer a possible mechanism to the formation of periaxin complexes, improvement of complex stability, and establishment of a link between the extracellular matrix and the cytoskeleton.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China Chemical and Biological Engineering College, Taiyuan University of Science and Technology, Taiyuan 030006, China
| | - Yemei Ren
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Yawei Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
17
|
Ivanov KI, Eskelin K, Bašić M, De S, Lõhmus A, Varjosalo M, Mäkinen K. Molecular insights into the function of the viral RNA silencing suppressor HCPro. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:30-45. [PMID: 26611351 DOI: 10.1111/tpj.13088] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 05/23/2023]
Abstract
Potyviral helper component proteinase (HCPro) is a well-characterized suppressor of antiviral RNA silencing, but its mechanism of action is not yet fully understood. In this study, we used affinity purification coupled with mass spectrometry to identify binding partners of HCPro in potyvirus-infected plant cells. This approach led to identification of various HCPro interactors, including two key enzymes of the methionine cycle, S-adenosyl-L-methionine synthase and S-adenosyl-L-homocysteine hydrolase. This finding, together with the results of enzymatic activity and gene knockdown experiments, suggests a mechanism in which HCPro complexes containing viral and host proteins act to suppress antiviral RNA silencing through local disruption of the methionine cycle. Another group of HCPro interactors identified in this study comprised ribosomal proteins. Immunoaffinity purification of ribosomes demonstrated that HCPro is associated with ribosomes in virus-infected cells. Furthermore, we show that HCPro and ARGONAUTE1 (AGO1), the core component of the RNA-induced silencing complex (RISC), interact with each other and are both associated with ribosomes in planta. These results, together with the fact that AGO1 association with ribosomes is a hallmark of RISC-mediated translational repression, suggest a second mechanism of HCPro action, whereby ribosome-associated multiprotein complexes containing HCPro relieve viral RNA translational repression through interaction with AGO1.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Katri Eskelin
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Marta Bašić
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Swarnalok De
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Andres Lõhmus
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Kristiina Mäkinen
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
18
|
Sánchez F, Manrique P, Mansilla C, Lunello P, Wang X, Rodrigo G, López-González S, Jenner C, González-Melendi P, Elena SF, Walsh J, Ponz F. Viral Strain-Specific Differential Alterations in Arabidopsis Developmental Patterns. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1304-1315. [PMID: 26646245 DOI: 10.1094/mpmi-05-15-0111-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Turnip mosaic virus (TuMV) infections affect many Arabidopsis developmental traits. This paper analyzes, at different levels, the development-related differential alterations induced by different strains of TuMV, represented by isolates UK 1 and JPN 1. The genomic sequence of JPN 1 TuMV isolate revealed highest divergence in the P1 and P3 viral cistrons, upon comparison with the UK 1 sequence. Infectious viral chimeras covering the whole viral genome uncovered the P3 cistron as a major viral determinant of development alterations, excluding the involvement of the PIPO open reading frame. However, constitutive transgenic expression of P3 in Arabidopsis did not induce developmental alterations nor modulate the strong effects induced by the transgenic RNA silencing suppressor HC-Pro from either strain. This highlights the importance of studying viral determinants within the context of actual viral infections. Transcriptomic and interactomic analyses at different stages of plant development revealed large differences in the number of genes affected by the different infections at medium infection times but no significant differences at very early times. Biological functions affected by UK 1 (the most severe strain) included mainly stress response and transport. Most cellular components affected cell-wall transport or metabolism. Hubs in the interactome were affected upon infection.
Collapse
Affiliation(s)
- Flora Sánchez
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Pilar Manrique
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Carmen Mansilla
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Pablo Lunello
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Xiaowu Wang
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Guillermo Rodrigo
- 2 Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Silvia López-González
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Carol Jenner
- 3 University of Warwick, Wellesbourne, Warwick, U.K.; and
| | - Pablo González-Melendi
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Santiago F Elena
- 2 Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
- 4 The Santa Fe Institute, Santa Fe, New Mexico, U.S.A
| | - John Walsh
- 3 University of Warwick, Wellesbourne, Warwick, U.K.; and
| | - Fernando Ponz
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
19
|
Deng P, Wu Z, Wang A. The multifunctional protein CI of potyviruses plays interlinked and distinct roles in viral genome replication and intercellular movement. Virol J 2015; 12:141. [PMID: 26373859 PMCID: PMC4572616 DOI: 10.1186/s12985-015-0369-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/30/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The multifunctional cylindrical inclusion (CI) protein of potyviruses contains ATP binding and RNA helicase activities. As part of the viral replication complex, it assists viral genome replication, possibly by binding to RNA and unwinding the RNA duplex. It also functions in viral cell-to-cell movement, likely via the formation of conical structures at plasmodesmata (PD) and the interaction with coat protein (CP). METHODS To further understand the role of CI in the viral infection process, we employed the alanine-scanning mutagenesis approach to mutate CI in the infectious full-length cDNA clone of Turnip mosaic virus (TuMV) tagged by green fluorescent protein. A total of 40 double-substitutions were made at the clustered charged residues. The effect of these mutations on viral genome amplification was determined using a protoplast inoculation assay. All the mutants were also introduced into Nicotiana benthamiana plants to assess their cell-to-cell and long-distance movement. Three cell-to-cell movement-abolished mutants were randomly selected to determine if their mutated CI protein targets PD and interacts with CP by confocal microscopy. RESULTS Twenty CI mutants were replication-defective (5 abolished and 15 reduced), one produced an elevated level of viral genome in comparison with the parental virus, and the remaining 19 retained the same replication level as the parental virus. The replication-defective mutations were predominately located in the helicase domains and C-terminal region. All 15 replication-reduced mutants showed delayed or abolished cell-to-cell movement. Nine of 20 replication-competent mutants contained infection within single cells. Five of them distributed mutations within the N-terminal 100 amino acids. Most of replication-defective or cell-to-cell movement-abolished mutants failed to infect plants systemically. Analysis of three randomly selected replication-competent yet cell-to-cell movement-abolished mutants revealed that the mutated CI failed to form regular punctate structures at PD and/or to interact with CP. CONCLUSIONS The helicase domain and C-terminal region of TuMV CI are essential for viral genome replication, and the N-terminal sequence modulates viral cell-to-cell movement. TuMV CI plays both interlinked and distinct roles in replication and intercellular movement. The ability of CI to target PD and interact with CP is associated with its functional role in viral cell-to-cell movement.
Collapse
Affiliation(s)
- Ping Deng
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P.R. China.
- Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON, N5V 4T3, Canada.
| | - Zujian Wu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P.R. China.
| | - Aiming Wang
- Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON, N5V 4T3, Canada.
| |
Collapse
|
20
|
Besong-Ndika J, Ivanov KI, Hafrèn A, Michon T, Mäkinen K. Cotranslational coat protein-mediated inhibition of potyviral RNA translation. J Virol 2015; 89:4237-48. [PMID: 25631087 PMCID: PMC4442359 DOI: 10.1128/jvi.02915-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/22/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Potato virus A (PVA) is a single-stranded positive-sense RNA virus and a member of the family Potyviridae. The PVA coat protein (CP) has an intrinsic capacity to self-assemble into filamentous virus-like particles, but the mechanism responsible for the initiation of viral RNA encapsidation in vivo remains unclear. Apart from virion assembly, PVA CP is also involved in the inhibition of viral RNA translation. In this study, we show that CP inhibits PVA RNA translation in a dose-dependent manner, through a mechanism involving the CP-encoding region. Analysis of this region, however, failed to identify any RNA secondary structure(s) preferentially recognized by CP, suggesting that the inhibition depends on CP-CP rather than CP-RNA interactions. In agreement with this possibility, insertion of an in-frame stop codon upstream of the CP sequence led to a marked decrease in the inhibition of viral RNA translation. Based on these results, we propose a model in which the cotranslational interactions between excess CP accumulating in trans and CP translated from viral RNA in cis are required to initiate the translational repression. This model suggests a mechanism for how viral RNA can be sequestered from translation and specifically selected for encapsidation at the late stages of viral infection. IMPORTANCE The main functions of the CP during potyvirus infection are to protect viral RNA from degradation and to transport it locally, systemically, and from host to host. Although virion assembly is a key step in the potyviral infectious cycle, little is known about how it is initiated and how viral RNA is selected for encapsidation. The results presented here suggest that CP-CP rather than CP-RNA interactions are predominantly involved in the sequestration of viral RNA away from translation. We propose that the cotranslational nature of these interactions may represent a mechanism for the selection of viral RNA for encapsidation. A better understanding of the mechanism of virion assembly may lead to development of crops resistant to potyviruses at the level of viral RNA encapsidation, thereby reducing the detrimental effects of potyvirus infections on food production.
Collapse
Affiliation(s)
- Jane Besong-Ndika
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, Villenave d'Ornon Cedex, France
| | - Konstantin I Ivanov
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anders Hafrèn
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Thierry Michon
- UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, Villenave d'Ornon Cedex, France
| | - Kristiina Mäkinen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
22
|
del Toro F, Fernández FT, Tilsner J, Wright KM, Tenllado F, Chung BN, Praveen S, Canto T. Potato virus Y HCPro localization at distinct, dynamically related and environment-influenced structures in the cell cytoplasm. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1331-43. [PMID: 25387134 DOI: 10.1094/mpmi-05-14-0155-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Potyvirus HCPro is a multifunctional protein that, among other functions, interferes with antiviral defenses in plants and mediates viral transmission by aphid vectors. We have visualized in vivo the subcellular distribution and dynamics of HCPro from Potato virus Y and its homodimers, using green, yellow, and red fluorescent protein tags or their split parts, while assessing their biological activities. Confocal microscopy revealed a pattern of even distribution of fluorescence throughout the cytoplasm, common to all these modified HCPros, when transiently expressed in Nicotiana benthamiana epidermal cells in virus-free systems. However, in some cells, distinct additional patterns, specific to some constructs and influenced by environmental conditions, were observed: i) a small number of large, amorphous cytoplasm inclusions that contained α-tubulin; ii) a pattern of numerous small, similarly sized, dot-like inclusions distributing regularly throughout the cytoplasm and associated or anchored to the cortical endoplasmic reticulum and the microtubule (MT) cytoskeleton; and iii) a pattern that smoothly coated the MT. Furthermore, mixed and intermediate forms from the last two patterns were observed, suggesting dynamic transports between them. HCPro did not colocalize with actin filaments or the Golgi apparatus. Despite its association with MT, this network integrity was required neither for HCPro suppression of silencing in agropatch assays nor for its mediation of virus transmission by aphids.
Collapse
|
23
|
Bosque G, Folch-Fortuny A, Picó J, Ferrer A, Elena SF. Topology analysis and visualization of Potyvirus protein-protein interaction network. BMC SYSTEMS BIOLOGY 2014; 8:129. [PMID: 25409737 PMCID: PMC4251984 DOI: 10.1186/s12918-014-0129-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/05/2014] [Indexed: 11/25/2022]
Abstract
Background One of the central interests of Virology is the identification of host factors that contribute to virus infection. Despite tremendous efforts, the list of factors identified remains limited. With omics techniques, the focus has changed from identifying and thoroughly characterizing individual host factors to the simultaneous analysis of thousands of interactions, framing them on the context of protein-protein interaction networks and of transcriptional regulatory networks. This new perspective is allowing the identification of direct and indirect viral targets. Such information is available for several members of the Potyviridae family, one of the largest and more important families of plant viruses. Results After collecting information on virus protein-protein interactions from different potyviruses, we have processed it and used it for inferring a protein-protein interaction network. All proteins are connected into a single network component. Some proteins show a high degree and are highly connected while others are much less connected, with the network showing a significant degree of dissortativeness. We have attempted to integrate this virus protein-protein interaction network into the largest protein-protein interaction network of Arabidopsis thaliana, a susceptible laboratory host. To make the interpretation of data and results easier, we have developed a new approach for visualizing and analyzing the dynamic spread on the host network of the local perturbations induced by viral proteins. We found that local perturbations can reach the entire host protein-protein interaction network, although the efficiency of this spread depends on the particular viral proteins. By comparing the spread dynamics among viral proteins, we found that some proteins spread their effects fast and efficiently by attacking hubs in the host network while other proteins exert more local effects. Conclusions Our findings confirm that potyvirus protein-protein interaction networks are highly connected, with some proteins playing the role of hubs. Several topological parameters depend linearly on the protein degree. Some viral proteins focus their effect in only host hubs while others diversify its effect among several proteins at the first step. Future new data will help to refine our model and to improve our predictions. Electronic supplementary material The online version of this article (doi:10.1186/s12918-014-0129-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriel Bosque
- Institut Universitari d'Automàtica i Informàtica Industrial, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain.
| | - Abel Folch-Fortuny
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Camí de Vera, s/n, Edificio 7A, 46022, València, Spain.
| | - Jesús Picó
- Institut Universitari d'Automàtica i Informàtica Industrial, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain.
| | - Alberto Ferrer
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Camí de Vera, s/n, Edificio 7A, 46022, València, Spain.
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022, València, Spain. .,The Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
24
|
Calvo M, Martínez-Turiño S, García JA. Resistance to Plum pox virus strain C in Arabidopsis thaliana and Chenopodium foetidum involves genome-linked viral protein and other viral determinants and might depend on compatibility with host translation initiation factors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1291-301. [PMID: 25296116 DOI: 10.1094/mpmi-05-14-0130-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Research performed on model herbaceous hosts has been useful to unravel the molecular mechanisms that control viral infections. The most common Plum pox virus (PPV) strains are able to infect Nicotiana species as well as Chenopodium and Arabidopsis species. However, isolates belonging to strain C (PPV-C) that have been adapted to Nicotiana spp. are not infectious either in Chenopodium foetidum or in Arabidopsis thaliana. In order to determine the mechanism underlying this interesting host-specific behavior, we have constructed chimerical clones derived from Nicotiana-adapted PPV isolates from the D and C strains, which differ in their capacity to infect A. thaliana and C. foetidum. With this approach, we have identified the nuclear inclusion a protein (VPg+Pro) as the major pathogenicity determinant that conditions resistance in the presence of additional secondary determinants, different for each host. Genome-linked viral protein (VPg) mutations similar to those involved in the breakdown of eIF4E-mediated resistance to other potyviruses allow some PPV chimeras to infect A. thaliana. These results point to defective interactions between a translation initiation factor and the viral VPg as the most probable cause of host-specific incompatibility, in which other viral factors also participate, and suggest that complex interactions between multiple viral proteins and translation initiation factors not only define resistance to potyviruses in particular varieties of susceptible hosts but also contribute to establish nonhost resistance.
Collapse
|
25
|
Valli A, Gallo A, Calvo M, de Jesús Pérez J, García JA. A novel role of the potyviral helper component proteinase contributes to enhance the yield of viral particles. J Virol 2014; 88:9808-18. [PMID: 24942578 PMCID: PMC4136352 DOI: 10.1128/jvi.01010-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/09/2014] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED The helper component proteinase (HCPro) is an indispensable, multifunctional protein of members of the genus Potyvirus and other viruses of the family Potyviridae. This viral factor is directly involved in diverse steps of viral infection, such as aphid transmission, polyprotein processing, and suppression of host antiviral RNA silencing. In this paper, we show that although a chimeric virus based on the potyvirus Plum pox virus lacking HCPro, which was replaced by a heterologous silencing suppressor, caused an efficient infection in Nicotiana benthamiana plants, its viral progeny had very reduced infectivity. Making use of different approaches, here, we provide direct evidence of a previously unknown function of HCPro in which the viral factor enhances the stability of its cognate capsid protein (CP), positively affecting the yield of virions and consequently improving the infectivity of the viral progeny. Site-directed mutagenesis revealed that the ability of HCPro to stabilize CP and enhance the yield of infectious viral particles is not linked to any of its previously known activities and helped us to delimit the region of HCPro involved in this function in the central region of the protein. Moreover, the function is highly specific and cannot be fulfilled by the HCPro of a heterologous potyvirus. The importance of this novel requirement in regulating the sorting of the viral genome to be subjected to replication, translation, and encapsidation, thus contributing to the synchronization of these viral processes, is discussed. IMPORTANCE Potyviruses form one of the most numerous groups of plant viruses and are a major cause of crop loss worldwide. It is well known that these pathogens make use of virus-derived multitasking proteins, as well as dedicated host factors, to successfully infect their hosts. Here, we describe a novel requirement for the proper yield and infectivity of potyviral progeny. In this case, such a function is performed by the extensively studied viral factor HCPro, which seems to use an unknown mechanism that is not linked to its previously described activities. To our knowledge, this is the first time that a factor different from capsid protein (CP) has been shown to be directly involved in the yield of potyviral particles. Based on the data presented here, we hypothesize that this capacity of HCPro might be involved in the coordination of mutually exclusive activities of the viral genome by controlling correct assembly of CP in stable virions.
Collapse
Affiliation(s)
- Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Araíz Gallo
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - María Calvo
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - José de Jesús Pérez
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
26
|
Ivanov KI, Eskelin K, Lõhmus A, Mäkinen K. Molecular and cellular mechanisms underlying potyvirus infection. J Gen Virol 2014; 95:1415-1429. [DOI: 10.1099/vir.0.064220-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Potyviruses represent one of the most economically important and widely distributed groups of plant viruses. Despite considerable progress towards understanding the cellular and molecular basis of their pathogenicity, many questions remain about the mechanisms by which potyviruses suppress host defences and create an optimal intracellular environment for viral translation, replication, assembly and spread. The review focuses on the multifunctional roles of potyviral proteins and their interplay with various host factors in different compartments of the infected cell. We place special emphasis on the recently discovered and currently putative mechanisms by which potyviruses subvert the normal functions of different cellular organelles in order to establish an efficient and productive infection.
Collapse
Affiliation(s)
- K. I. Ivanov
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - K. Eskelin
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - A. Lõhmus
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - K. Mäkinen
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| |
Collapse
|
27
|
García JA, Glasa M, Cambra M, Candresse T. Plum pox virus and sharka: a model potyvirus and a major disease. MOLECULAR PLANT PATHOLOGY 2014; 15:226-41. [PMID: 24102673 PMCID: PMC6638681 DOI: 10.1111/mpp.12083] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
TAXONOMIC RELATIONSHIPS Plum pox virus (PPV) is a member of the genus Potyvirus in the family Potyviridae. PPV diversity is structured into at least eight monophyletic strains. GEOGRAPHICAL DISTRIBUTION First discovered in Bulgaria, PPV is nowadays present in most of continental Europe (with an endemic status in many central and southern European countries) and has progressively spread to many countries on other continents. GENOMIC STRUCTURE Typical of potyviruses, the PPV genome is a positive-sense single-stranded RNA (ssRNA), with a protein linked to its 5' end and a 3'-terminal poly A tail. It is encapsidated by a single type of capsid protein (CP) in flexuous rod particles and is translated into a large polyprotein which is proteolytically processed in at least 10 final products: P1, HCPro, P3, 6K1, CI, 6K2, VPg, NIapro, NIb and CP. In addition, P3N-PIPO is predicted to be produced by a translational frameshift. PATHOGENICITY FEATURES PPV causes sharka, the most damaging viral disease of stone fruit trees. It also infects wild and ornamental Prunus trees and has a large experimental host range in herbaceous species. PPV spreads over long distances by uncontrolled movement of plant material, and many species of aphid transmit the virus locally in a nonpersistent manner. SOURCES OF RESISTANCE A few natural sources of resistance to PPV have been found so far in Prunus species, which are being used in classical breeding programmes. Different genetic engineering approaches are being used to generate resistance to PPV, and a transgenic plum, 'HoneySweet', transformed with the viral CP gene, has demonstrated high resistance to PPV in field tests in several countries and has obtained regulatory approval in the USA.
Collapse
Affiliation(s)
- Juan Antonio García
- Departmento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Interaction study of rice stripe virus proteins reveals a region of the nucleocapsid protein (NP) required for NP self-interaction and nuclear localization. Virus Res 2014; 183:6-14. [DOI: 10.1016/j.virusres.2014.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/09/2014] [Accepted: 01/14/2014] [Indexed: 01/08/2023]
|
29
|
Sorel M, Garcia JA, German-Retana S. The Potyviridae cylindrical inclusion helicase: a key multipartner and multifunctional protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:215-226. [PMID: 24405034 DOI: 10.1094/mpmi-11-13-0333-cr] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A unique feature shared by all plant viruses of the Potyviridae family is the induction of characteristic pinwheel-shaped inclusion bodies in the cytoplasm of infected cells. These cylindrical inclusions are composed of the viral-encoded cylindrical inclusion helicase (CI protein). Its helicase activity was characterized and its involvement in replication demonstrated through different reverse genetics approaches. In addition to replication, the CI protein is also involved in cell-to-cell and long-distance movements, possibly through interactions with the recently discovered viral P3N-PIPO protein. Studies over the past two decades demonstrate that the CI protein is present in several cellular compartments interacting with viral and plant protein partners likely involved in its various roles in different steps of viral infection. Furthermore, the CI protein acts as an avirulence factor in gene-for-gene interactions with dominant-resistance host genes and as a recessive-resistance overcoming factor. Although a significant amount of data concerning the potential functions and subcellular localization of this protein has been published, no synthetic review is available on this important multifunctional protein. In this review, we compile and integrate all information relevant to the current understanding of this viral protein structure and function and present a mode of action for CI, combining replication and movement.
Collapse
|
30
|
Nucleo-cytoplasmic shuttling of VPg encoded by Wheat yellow mosaic virus requires association with the coat protein. J Gen Virol 2013; 94:2790-2802. [DOI: 10.1099/vir.0.055830-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VPg (virus protein, genome-linked) is a multifunctional protein that plays important roles in viral multiplication in the cytoplasm. However, a number of VPgs encoded by plant viruses target the nucleus and this appears to be biologically significant. These VPgs may therefore be translocated between nuclear and cytoplasmic compartments during virus infection, but such nucleo-cytoplasmic transport has not been demonstrated. We report that VPg encoded by Wheat yellow mosaic virus (WYMV, genus Bymovirus, family Potyviridae) accumulated in both the nucleus and cytoplasm of infected cells, but localized exclusively in the nucleus when expressed alone in plants. Computational analyses predicted the presence of a nuclear localization signal (NLS) and a nuclear export signal (NES) in WYMV VPg. Mutational analyses showed that both the N-terminal and the NLS domains of VPg contribute to the efficiency of nuclear targeting. In vitro and in planta assays indicated that VPg interacts with WYMV coat protein (CP) and proteinase 1 (P1) proteins. Observation of VPg fused to a fluorescent protein and subcellular fractionation experiments showed that VPg was translocated to the cytoplasm when co-expressed with CP, but not with P1. Mutations in the NES domain or treatment with leptomycin B prevented VPg translocation to the cytoplasm when co-expressed with CP. Our results suggest that association with CP facilitates the nuclear export of VPg during WYMV infection.
Collapse
|
31
|
Cevik B. The RNA-dependent RNA polymerase of Citrus tristeza virus forms oligomers. Virology 2013; 447:121-30. [PMID: 24210106 DOI: 10.1016/j.virol.2013.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 06/25/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022]
Abstract
The RNA-dependent RNA polymerases (RdRp) from Citrus tristeza virus (CTV) were tagged with HA and FLAG epitopes. Differentially tagged proteins were expressed either individually or concomitantly in Escherichia coli. Immunoprecipitation of the expressed proteins with anti-FLAG antibody followed by Western blot with anti-HA antibody demonstrated that molecules of RdRp from CTV interact to form oligomers. Yeast two-hybrid assays showed that molecules of RdRp interact in eukaryotic cells. Co-immunoprecipitation with anti-FLAG antibody of truncated HA-tagged RdRps (RdRpΔ1-166-HA, RdRpΔ1-390-HA, RdRp1-169-HA) co-expressed with full-length RdRp-FLAG showed that only RdRp1-169-HA interacted with the full-length FLAG-RdRp. Yeast two-hybrid assays with truncated RdRp constructs confirmed that the oligomerization site resides in the N-terminal region and that the first 169 aa of CTV RdRp are necessary and sufficient for oligomerization both in bacterial and yeast cells. Development of control strategies targeting viral RdRp oligomer formation may inhibit virus replication and prove useful in control of CTV.
Collapse
Affiliation(s)
- Bayram Cevik
- Suleyman Demirel University, Faculty of Agriculture, Department of Plant Protection, Isparta 32260, Turkey.
| |
Collapse
|
32
|
Haikonen T, Rajamäki ML, Tian YP, Valkonen JPT. Mutation of a Short Variable Region in HCpro Protein of Potato virus A Affects Interactions with a Microtubule-Associated Protein and Induces Necrotic Responses in Tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:721-33. [PMID: 23514111 DOI: 10.1094/mpmi-01-13-0024-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Helper component proteinase (HCpro) is a multifunctional protein of potyviruses (genus Potyvirus). HCpro of Potato virus A (PVA) interacts with the microtubule-associated protein HIP2 in host cells, and depletion of HIP2 reduces virus accumulation. This study shows that HCpro of Potato virus Y and Tobacco etch virus also interact with HIP2. The C-proximal portion of PVA HCpro determines the interaction with HIP2 and was found to contain a stretch of six residues comprising a highly variable region (HVR) in potyviruses. Mutations in HVR reduced PVA accumulation in tobacco plants and induced necrotic symptoms novel to PVA. Microarray and quantitative reverse transcription polymerase chain reaction analyses revealed induction of many defense-related genes including ethylene- and jasmonic acid-inducible pathways in systemically infected leaves at necrosis onset. Salicylic acid-mediated signaling was dispensable for the response. Genes related to microtubule functions were down-regulated. Structural modeling of HCpro suggested that all mutations in HVR caused conformational changes in adjacent regions containing functionally important motifs conserved in potyviruses. Those mutations, which also caused conformational changes in HVR, led to the greatest reduction of fitness. Our results implicate HVR in the regulation of HCpro conformation and virus-host interactions and suggest that mutation of HVR induces host defense.
Collapse
Affiliation(s)
- Tuuli Haikonen
- Department of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
33
|
Tena Fernández F, González I, Doblas P, Rodríguez C, Sahana N, Kaur H, Tenllado F, Praveen S, Canto T. The influence of cis-acting P1 protein and translational elements on the expression of Potato virus Y helper-component proteinase (HCPro) in heterologous systems and its suppression of silencing activity. MOLECULAR PLANT PATHOLOGY 2013; 14:530-41. [PMID: 23451733 PMCID: PMC6638740 DOI: 10.1111/mpp.12025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the Potyvirus genus, the P1 protein is the first N-terminal product processed from the viral polyprotein, followed by the helper-component proteinase (HCPro). In silencing suppression patch assays, we found that Potato virus Y (PVY) HCPro expressed from a P1-HCPro sequence increased the accumulation of a reporter gene, whereas protein expressed from an HCPro sequence did not, even with P1 supplied in trans. This enhancing effect of P1 has been noted in other potyviruses, but has remained unexplained. We analysed the accumulation of PVY HCPro in infiltrated tissues and found that it was higher when expressed from P1-HCPro than from HCPro sequences. Co-expression of heterologous suppressors increased the steady-state level of mRNA expressed from the HCPro sequence, but not that of protein. This suggests that, in the absence of P1 upstream, either HCPro acquires a conformation that affects negatively its activity or stability, or that its translation is reduced. To test these options, we purified HCPro expressed in the presence or absence of upstream P1, and found no difference in purification pattern and final soluble state. By contrast, alteration of the Kozak context in the HCPro mRNA sequence to favour translation increased partially suppressor accumulation and activity. Furthermore, protein activity was not lower than in protein expressed from P1-HCPro sequences. Thus, a direct role for P1 on HCPro suppressor activity or stability, by influencing its conformation during translation, can be excluded. However, P1 could still have an indirect effect favouring HCPro accumulation. Our data highlight the relevance of cis-acting translational elements in the heterologous expression of HCPro.
Collapse
Affiliation(s)
- Fátima Tena Fernández
- Environmental Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Towards an integrated molecular model of plant-virus interactions. Curr Opin Virol 2012; 2:719-24. [PMID: 23017245 DOI: 10.1016/j.coviro.2012.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 09/07/2012] [Indexed: 11/22/2022]
Abstract
The application in recent years of network theory methods to the study of host-virus interactions is providing a new perspective to the way viruses manipulate the host to promote their own replication. An integrated molecular model of such pathosystems require three detailed maps describing, firstly, the interactions between viral elements, secondly, the interactions between host elements, and thirdly, the cross-interactions between viral and host elements. Here, we compile available information for Potyvirus infecting Arabidopsis thaliana. With an integrated model, it is possible to analyze the mode of virus action and how the perturbation of the virus targets propagates along the network. These studies suggest that viral pathogenicity results not only from the alteration of individual elements but it is a systemic property.
Collapse
|
35
|
Maliogka VI, Calvo M, Carbonell A, García JA, Valli A. Heterologous RNA-silencing suppressors from both plant- and animal-infecting viruses support plum pox virus infection. J Gen Virol 2012; 93:1601-1611. [PMID: 22513385 DOI: 10.1099/vir.0.042168-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HCPro, the RNA-silencing suppressor (RSS) of viruses belonging to the genus Potyvirus in the family Potyviridae, is a multifunctional protein presumably involved in all essential steps of the viral infection cycle. Recent studies have shown that plum pox potyvirus (PPV) HCPro can be replaced successfully by cucumber vein yellowing ipomovirus P1b, a sequence-unrelated RSS from a virus of the same family. In order to gain insight into the requirement of a particular RSS to establish a successful potyviral infection, we tested the ability of different heterologous RSSs from both plant- and animal-infecting viruses to substitute for HCPro. Making use of engineered PPV chimeras, we show that PPV HCPro can be replaced functionally by some, but not all, unrelated RSSs, including the NS1 protein of the mammal-infecting influenza A virus. Interestingly, the capacity of a particular RSS to replace HCPro does not correlate strictly with its RNA silencing-suppression strength. Altogether, our results suggest that not all suppression strategies are equally suitable for efficient escape of PPV from the RNA-silencing machinery. The approach followed here, based on using PPV chimeras in which an under-consideration RSS substitutes for HCPro, could further help to study the function of diverse RSSs in a 'highly sensitive' RNA-silencing context, such as that taking place in plant cells during the process of a viral infection.
Collapse
Affiliation(s)
- Varvara I Maliogka
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Calvo
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto Carbonell
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|