1
|
Zhang X, Chen T, Chen S, Nie Y, Xie Z, Feng K, Zhang H, Xie Q. The Efficacy of a Live Attenuated TW I-Type Infectious Bronchitis Virus Vaccine Candidate. Virol Sin 2021; 36:1431-1442. [PMID: 34251605 PMCID: PMC8273854 DOI: 10.1007/s12250-021-00419-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bronchitis (IB) is a highly contagious avian disease caused by infection with infectious bronchitis virus (IBV), which seriously affects the development of the global poultry industry. The distribution of TW I-type IBV in China has increased in recent years, becoming a widespread genotype. We previously isolated a TW I-type IBV strain termed CK/CH/GD/GZ14 in 2014, but its pathogenicity and possibility for vaccine development were not explored. Therefore, this research aimed to develop a live-attenuated virus vaccine based on the CK/CH/GD/GZ14 strain. The wild type IBV CK/CH/GD/GZ14 strain was serially passaged in SPF embryos for 145 generations. The morbidity and mortality rate of wild-type strain in 14 day-old chickens is 100% and 80% respectively, while the morbidity rate in the attenuated strain was 20% in the 95th and 105th generations and there was no death. Histopathological observations showed that the pathogenicity of the 95th and 105th generations in chickens was significantly weakened. Further challenge experiments confirmed that the attenuated CK/CH/GD/GZ14 strain in the 95th and 105th generations could resist CK/CH/GD/GZ14 (5th generation) infection and the protection rate was 80%. Tracheal cilia stagnation, virus shedding, and viral load experiments confirmed that the 95th and 105th generations provide good immune protection in chickens, and the immunogenicity of the 105th generation is better than that of the 95th generation. These data suggest that the attenuated CK/CH/GD/GZ14 strain in the 105th generation may be applied as a vaccine candidate against TW I-type IBV.
Collapse
Affiliation(s)
- Xinheng Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China
| | - Tong Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China
| | - Sheng Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Yu Nie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Zi Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Keyu Feng
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Huanmin Zhang
- United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Qingmei Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China. .,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Hu X, Chi Q, Liu Q, Wang D, Zhang Y, Li S. Atmospheric H 2S triggers immune damage by activating the TLR-7/MyD88/NF-κB pathway and NLRP3 inflammasome in broiler thymus. CHEMOSPHERE 2019; 237:124427. [PMID: 31352103 DOI: 10.1016/j.chemosphere.2019.124427] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Atmospheric hydrogen sulfide (H2S) is a highly toxic air pollutant that has a negative effect on human health and animal welfare. The immunotoxicity of H2S has been explored previously, but its mechanism still needs to be clarified, especially in chickens. To further evaluate the immunotoxicity of H2S, 1-day-old broilers were recruited and exposed to atmospheric H2S for 42 days of age. Our results showed that H2S significantly reduced the thymus index and the CD4+ and CD8+ T-lymphocyte numbers and that it also changed the CD4+/CD8+ ratio. The morphological analysis showed that H2S incrassated the medulla and generated inflammatory infiltration. In addition, it caused the mitochondria to swell and the chromatin to condense, and destroyed nuclear structures were observed. We also conducted bioinformation and transcriptomic analyses to delve the mechanism of H2S toxicity in chicken thymus. We measured 172 differently expression genes (DEGs) after H2S exposure and further filtrated the DEGs that are related to inflammation and cell death that play a critical role in immune function. We concluded that H2S significantly increased IL-1β, IL-4 and IL-10 levels, whereas it downregulated IL-12 and IFN-γ. This study confirmed that H2S triggered the thymus inflammatory response and caused a Th1/Th2 imbalance. Moreover, our results demonstrated that H2S triggered the TLR-7/MyD88/NF-κB pathway to promote NLRP3 inflammasome activation. In conclusion, atmospheric H2S actives the TLR-7/MyD88/NF-κB pathway and the NLRP3 inflammasome to promote an inflammatory response, which then causes tissues damage in broiler thymus. These results provide new insights for unveiling the immunotoxic effects of H2S.
Collapse
Affiliation(s)
- Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingqing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Dongxu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Du J, Gao S, Tian Z, Guo Y, Kang D, Xing S, Zhang G, Liu G, Luo J, Chang H, Yin H. Transcriptome analysis of responses to bluetongue virus infection in Aedes albopictus cells. BMC Microbiol 2019; 19:121. [PMID: 31182015 PMCID: PMC6558886 DOI: 10.1186/s12866-019-1498-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/31/2019] [Indexed: 01/15/2023] Open
Abstract
Background Bluetongue virus (BTV) causes a disease among wild and domesticated ruminants which is not contagious, but which is transmitted by biting midges of the Culicoides species. BTV can induce an intense cytopathic effect (CPE) in mammalian cells after infection, although Culicoides- or mosquito-derived cell cultures cause non-lytic infection with BTV without CPE. However, little is known about the transcriptome changes in Aedes albopictus cells infected with BTV. Methods Transcriptome sequencing was used to identify the expression pattern of mRNA transcripts in A. albopictus cells infected with BTV, given the absence of the Culicoides genome sequence. Bioinformatics analyses were performed to examine the biological functions of the differentially expressed genes. Subsequently, quantitative reverse transcription–polymerase chain reaction was utilized to validate the sequencing data. Results In total, 51,850,205 raw reads were generated from the BTV infection group and 51,852,293 from the control group. A total of 5769 unigenes were common to both groups; only 779 unigenes existed exclusively in the infection group and 607 in the control group. In total, 380 differentially expressed genes were identified, 362 of which were up-regulated and 18 of which were down-regulated. Bioinformatics analyses revealed that the differentially expressed genes mainly participated in endocytosis, FoxO, MAPK, dorso-ventral axis formation, insulin resistance, Hippo, and JAK-STAT signaling pathways. Conclusion This study represents the first attempt to investigate transcriptome-wide dysregulation in A. albopictus cells infected with BTV. The understanding of BTV pathogenesis and virus–vector interaction will be improved by global transcriptome profiling. Electronic supplementary material The online version of this article (10.1186/s12866-019-1498-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Zhancheng Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yanni Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Di Kang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Shanshan Xing
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guorui Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
4
|
Park W, Srikanth K, Lim D, Park M, Hur T, Kemp S, Dessie T, Kim MS, Lee SR, te Pas MFW, Kim JM, Park JE. Comparative transcriptome analysis of Ethiopian indigenous chickens from low and high altitudes under heat stress condition reveals differential immune response. Anim Genet 2018; 50:42-53. [DOI: 10.1111/age.12740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2018] [Indexed: 01/22/2023]
Affiliation(s)
- W. Park
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science, RDA; Wanju 55365 Korea
| | - K. Srikanth
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science, RDA; Wanju 55365 Korea
| | - D. Lim
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science, RDA; Wanju 55365 Korea
| | - M. Park
- Animal Breeding and Genomics Division; National Institute of Animal Science, RDA; Wanju 55365 Korea
| | - T. Hur
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science, RDA; Wanju 55365 Korea
| | - S. Kemp
- Animal Biosciences; International Livestock Research Institute (ILRI); P.O. Box 30709 Nairobi 00100 Kenya
| | - T. Dessie
- Animal Biosciences; International Livestock Research Institute (ILRI); P.O. Box 5689 Addis Ababa Ethiopia
| | - M. S. Kim
- Department of Animal Science; College of Agriculture and Life Sciences; Chonnam National University; Republic of Korea Gwangju 61186 Korea
| | - S.-R. Lee
- Department of Agro-biotechnology Convergence; Jeonju University; Republic of Korea 55069 Jeonju Korea
| | - M. F. W. te Pas
- Animal Breeding and Genomics; Wageningen UR Livestock Research; 6700AH Wageningen The Netherlands
| | - J.-M. Kim
- Department of Animal Science and Technology; Chung-Ang University; Anseong Gyeonggi-do 17546 Korea
| | - J.-E. Park
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science, RDA; Wanju 55365 Korea
| |
Collapse
|
5
|
Zhou Z, Cui N, Su S, Sun S, Cui Z. The molecular basis for host responses to Marek's disease viruses integrated with different retro-viral long terminal repeat. Poult Sci 2018; 97:3015-3022. [PMID: 29917138 DOI: 10.3382/ps/pey135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Integration of retro-viral long terminal repeat (LTR) into the Marek's disease virus (MDV) genome can occur both in co-cultivation cell cultures and naturally in dual infected chickens. It is clear that the LTR insert is associated with the pathogenicity of MDV. The objective of this study was to compare the host responses to MDV with a different retro-viral LTR insert. Gene-chip containing chicken genome was employed to investigate the gene transcription profile of chicken embryo fibroblasts cells, and 795 genes were differentially expressed in chicken embryo fibroblasts infected with GX0101 with a reticuloendotheliosis virus LTR insert as compared to GX0101-ALV-LTR significantly. The differentially expressed genes were mostly associated with the regulation of transcription and the development of multiple organs. Based on the bio functions of the differential genes, infection of GX0101 was predicated with a greater development disorder of multiple systems, resulting in higher growth retardation, mortality, tumorigenicity, and immunosuppression in chickens than GX0101-ALV-LTR. Collectively, our results provided valuable insights into elucidation of the possible relationship between retro-viral LTR insert and the observed phenotypes caused by MDV recombinant viruses.
Collapse
Affiliation(s)
- Zhongwen Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ning Cui
- Shandong Key Laboratory of Animal Disease Control & Breeding; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shuai Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shuhong Sun
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
6
|
Li H, Liu X, Chen F, Zuo K, Wu C, Yan Y, Chen W, Lin W, Xie Q. Avian Influenza Virus Subtype H9N2 Affects Intestinal Microbiota, Barrier Structure Injury, and Inflammatory Intestinal Disease in the Chicken Ileum. Viruses 2018; 10:v10050270. [PMID: 29783653 PMCID: PMC5977263 DOI: 10.3390/v10050270] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
Avian influenza virus subtype H9N2 (H9N2 AIV) has caused significant losses to the poultry industry due to the high mortality associated with secondary infections attributable to E. coli. This study tries to address the underlying secondary mechanisms after H9N2 AIV infection. Initially, nine day-old specific pathogen-free chickens were assigned to control (uninfected) and H9N2-infected groups, respectively. Using Illumina sequencing, histological examination, and quantitative real-time PCR, it was found that H9N2 AIV caused intestinal microbiota disorder, injury, and inflammatory damage to the intestinal mucosa. Notably, the genera Escherichia, especially E. coli, significantly increased (p < 0.01) at five days post-infection (dpi), while Lactobacillus, Enterococcus, and other probiotic organisms were significantly reduced (p < 0.01). Simultaneously, the mRNA expression of tight junction proteins (ZO-1, claudin 3, and occludin), TFF2, and Muc2 were significantly reduced (p < 0.01), indicating the destruction of the intestinal epithelial cell tight junctions and the damage of mucin layer construction. Moreover, the mRNA expression of proinflammatory cytokines IFN-γ, IL-22, IFN-α, and IL-17A in intestinal epithelial cells were significantly upregulated, resulting in the inflammatory response and intestinal injury. Our findings may provide a theoretical basis for observed gastroenteritis-like symptoms such as diarrhea and secondary E. coli infection following H9N2 AIV infection.
Collapse
Affiliation(s)
- Hongxin Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
| | - Xiaolin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
| | - Feiyang Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
| | - Kejing Zuo
- Veterinary Laboratory, Guangzhou Zoo, Guangzhou 510642, China.
| | - Che Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China.
| | - Yiming Yan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
| | - Weiguo Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China.
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China.
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China.
| |
Collapse
|
7
|
Jia YQ, Wang XL, Wang XW, Yan CQ, Lv CJ, Li XQ, Chu ZL, Adam FEA, Xiao S, Zhang SX, Yang ZQ. Common microRNA⁻mRNA Interactions in Different Newcastle Disease Virus-Infected Chicken Embryonic Visceral Tissues. Int J Mol Sci 2018; 19:ijms19051291. [PMID: 29693643 PMCID: PMC5983721 DOI: 10.3390/ijms19051291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
To investigate the roles and explore the altered expression of microRNAs (miRNAs) and mRNAs in chicken embryos in response to Newcastle disease virus (NDV) infection, deep sequencing was performed. Then, a conjoint analysis of small RNA-seq and mRNA-seq was performed to screen interactional miRNA⁻mRNA pairs during NDV infection. In total, 15 and 17 up- and downregulated miRNAs were identified that potentially targeted 4279 and 6080 mRNAs in NDV-infected chicken embryonic tissues, respectively; in addition, 595 upregulated and 480 downregulated mRNAs were identified. The conjoint analysis of the obtained data identified 1069 miRNA⁻mRNA pairs. Among these pairs, 130 pairs were related to immune or inflammatory responses. The relationship between gga-miR-203a and its target transglutaminase 2 (TGM2) was confirmed using a dual-luciferase reporter system and a real time quantitative polymerase chain reaction (RT-qPCR) assay. Overall, the discovery of miRNAs, mRNAs, and their potential pairing relationships, which may be involved in the regulation of NDV infection, will facilitate our understanding of the complex regulatory relationship between the host and the virus.
Collapse
Affiliation(s)
- Yan-Qing Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Xing-Long Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Xiang-Wei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Chuan-Qi Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Chang-Jie Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Xiao-Qin Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Zhi-Li Chu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Fathalrhman Eisa Addoma Adam
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Department of Preventive Medicine and Public Health, Faculty of Veterinary Science, University of Nyala, P.O. Box, 155 Nyala, Sudan.
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Shu-Xia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Zeng-Qi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
8
|
Dynamic Changes in the Splenic Transcriptome of Chickens during the Early Infection and Progress of Marek's Disease. Sci Rep 2017; 7:11648. [PMID: 28912500 PMCID: PMC5599560 DOI: 10.1038/s41598-017-11304-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 08/22/2017] [Indexed: 01/18/2023] Open
Abstract
Gallid alphaherpesvirus 2 (GaHV2) is an oncogenic avian herpesvirus inducing Marek’s disease (MD) and rapid-onset T-cell lymphomas. To reveal molecular events in MD pathogenesis and tumorigenesis, the dynamic splenic transcriptome of GaHV2-infected chickens during early infection and pathogenic phases has been determined utilizing RNA-seq. Based on the significant differentially expressed genes (DEGs), analysis of gene ontology, KEGG pathway and protein-protein interaction network has demonstrated that the molecular events happening during GaHV2 infection are highly relevant to the disease course. In the ‘Cornell Model’ description of MD, innate immune responses and inflammatory responses were established at early cytolytic phase but persisted until lymphoma formation. Humoral immunity in contrast began to play a role firstly in the intestinal system and started at late cytolytic phase. Neurological damage caused by GaHV2 is first seen in early cytolytic phase and is then sustained throughout the following phases over a long time period. During the proliferative phase many pathways associated with transcription and/or translation were significantly enriched, reflecting the cell transformation and lymphoma formation. Our work provides an overall view of host responses to GaHV2 infection and offers a meaningful basis for further studies of MD biology.
Collapse
|
9
|
Dong K, Chang S, Xie Q, Black-Pyrkosz A, Zhang H. Comparative transcriptomics of genetically divergent lines of chickens in response to Marek's disease virus challenge at cytolytic phase. PLoS One 2017; 12:e0178923. [PMID: 28591220 PMCID: PMC5462384 DOI: 10.1371/journal.pone.0178923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 11/30/2022] Open
Abstract
Marek's disease (MD), caused by Marek's disease virus (MDV), remains an economically significant threat to the poultry industry worldwide. Genetic resistance to MD is a promising alternative strategy to augment current control measures (vaccination and management). However, only a few functional genes reportedly conferring MD resistance have been identified. Here, we performed a comparative transcriptomics analysis of two highly inbred yet genetically divergent lines of chickens (line 63 and 72) that are resistant and susceptible to MD, respectively, in response to a very virulent plus strain of MDV (vv+MDV) challenge at cytolytic phase. A total of 203 DEGs in response to MDV challenge were identified in the two lines. Of these, 96 DEGs were in common for both lines, in addition to 36 and 71 DEGs that were specific for line 63 and 72, respectively. Functional enrichment analysis results showed the DEGs were significantly enriched in GO terms and pathways associated with immune response. Especially, the four DEGs, FGA, ALB, FN1, and F13A1 that reportedly facilitate virus invasion or immunosuppression, were found to be significantly up-regulated in the susceptible line 72 but down-regulated in the resistant line 63 birds. These results provide new resources for future studies to further elucidate the genetic mechanism conferring MD resistance.
Collapse
Affiliation(s)
- Kunzhe Dong
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
- ORISE Fellow, USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Alexis Black-Pyrkosz
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Huanmin Zhang
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| |
Collapse
|
10
|
Cui N, Li X, Chen C, Hao H, Su S, Cui Z. Transcriptional and Bioinformatic Analysis Provide a Relationship between Host Response Changes to Marek's Disease Viruses Infection and an Integrated Long Terminal Repeat. Front Cell Infect Microbiol 2016; 6:46. [PMID: 27200301 PMCID: PMC4844599 DOI: 10.3389/fcimb.2016.00046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022] Open
Abstract
GX0101, Marek's disease virus (MDV) strain with a long terminal repeat (LTR) insert of reticuloendotheliosis virus (REV), was isolated from CVI988/Rispens vaccinated birds showing tumors. We have constructed a LTR deleted strain GX0101ΔLTR in our previous study. To compare the host responses to GX0101 and GX0101ΔLTR, chicken embryo fibroblasts (CEF) cells were infected with two MDV strains and a gene-chip containing chicken genome was employed to examine gene transcription changes in host cells in the present study. Of the 42,368 chicken transcripts on the chip, there were 2199 genes that differentially expressed in CEF infected with GX0101 compared to GX0101ΔLTR significantly. Differentially expressed genes were distributed to 25 possible gene networks according to their intermolecular connections and were annotated to 56 pathways. The insertion of REV LTR showed the greatest influence on cancer formation and metastasis, followed with immune changes, atherosclerosis, and nervous system disorders in MDV-infected CEF cells. Based on these bio functions, GX0101 infection was predicated with a greater growth and survival inhibition but lower oncogenicity in chickens than GX0101ΔLTR, at least in the acute phase of infection. In summary, the insertion of REV LTR altered the expression of host genes in response to MDV infection, possibly resulting in novel phenotypic properties in chickens. Our study has provided the evidence of retroviral insertional changes of host responses to herpesvirus infection for the first time, which will promote to elucidation of the possible relationship between the LTR insertion and the observed phenotypes.
Collapse
Affiliation(s)
- Ning Cui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural UniversityTai'an, China
| | - Xianyao Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University Tai'an, China
| | - Cuiying Chen
- Department of Animal Nutrition and Feed Science, College of Animal Science, South China Agricultural University Guangzhou, China
| | - Haiyu Hao
- Qingdao Animal Husbandry and Veterinary Research Institute Qingdao, China
| | - Shuai Su
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural UniversityTai'an, China
| | - Zhizhong Cui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural UniversityTai'an, China
| |
Collapse
|
11
|
Hu X, Qin A, Xu W, Wu G, Li D, Qian K, Shao H, Ye J. Transcriptional analysis of host responses to Marek's disease virus infection in chicken thymus. Intervirology 2015; 58:95-105. [PMID: 25677615 DOI: 10.1159/000370069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
Marek's disease virus (MDV) is a cell-associated alpha-herpesvirus that causes T-cell lymphomas and nervous disorders in chickens. Different from other lymphoid organs, the thymus is the site of T-cell maturation and differentiation. However, the transcriptional response to MDV infection in the chicken thymus is still not known. In this study, we performed genome-wide expression analysis in thymus tissues of RB1B-infected chickens at different time points to investigate the molecular mechanisms of MDV pathogenesis. The number of differentially expressed genes with 2-fold or higher changes (>2) are as follows: 1,250 genes (7 dpi), 834 genes (14 dpi), 1,958 genes (21 dpi), and 2,306 genes (28 dpi). Gene ontology enrichment analysis revealed that the upregulated genes were involved in immune and inflammatory response at 7 dpi; angiogenesis, cytoskeleton organization, cell adhesion, and signal transduction showed different expressions at 21 and 28 dpi. The expression pattern of 18 randomly selected genes was confirmed by real-time RT-PCR. Several differently expressed host genes associated with tumor development are discussed. We identified the global host-gene expression pattern in the thymus of chickens that responded to MDV infection. The present data may provide groundwork for future investigation in the biology and pathogenesis of MDV.
Collapse
Affiliation(s)
- Xuming Hu
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Transcription analysis of the response of chicken bursa of Fabricius to avian leukosis virus subgroup J strain JS09GY3. Virus Res 2014; 188:8-14. [DOI: 10.1016/j.virusres.2014.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 01/04/2023]
|
13
|
Chen CY, Xie QM, Xue Y, Ji J, Chang S, Ma JY, Bi YZ. Characterization of cytotoxicity-related gene expression in response to virulent Marek's disease virus infection in the bursa of Fabricius. Res Vet Sci 2012; 94:496-503. [PMID: 23164636 DOI: 10.1016/j.rvsc.2012.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/18/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022]
Abstract
Cell-mediated cytotoxic responses are critical for control of Marek's disease virus (MDV) infection and tumour development. However, the mechanisms of virus clearance mediated by cytotoxic responses in the bursa of Fabricius of chickens during MDV infection are not fully understood. In this study, the host cytotoxic responses during MDV infection in the bursa were investigated by examining the expression of genes in the cell lysis pathways. Partial up-regulation existed in the expression of the important cytolytic molecule granzyme A (GzmA), Fas, NK lysin and DNA repair enzyme Ape1, whereas little or no expression appeared in other cytolytic molecules, including perforin (PFN) and Fas ligand (FasL), and molecules involved in DNA repair and apoptosis in the bursa during MDV infection. These results suggest that less sustained cytotoxic activities are generated in the bursa of MDV-infected chickens. The findings of this study provide a more detailed insight into the host cytotoxic responses to MDV infection.
Collapse
Affiliation(s)
- Cui-Ying Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Marek's disease virus infection induces widespread differential chromatin marks in inbred chicken lines. BMC Genomics 2012; 13:557. [PMID: 23072359 PMCID: PMC3505159 DOI: 10.1186/1471-2164-13-557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background Marek’s disease (MD) is a neoplastic disease in chickens caused by the MD virus (MDV). Successful vaccine development against MD has resulted in increased virulence of MDV and the understanding of genetic resistance to the disease is, therefore, crucial to long-term control strategies. Also, epigenetic factors are believed to be one of the major determinants of disease response. Results Here, we carried out comprehensive analyses of the epigenetic landscape induced by MDV, utilizing genome-wide histone H3 lysine 4 and lysine 27 trimethylation maps from chicken lines with varying resistance to MD. Differential chromatin marks were observed on genes previously implicated in the disease such as MX1 and CTLA-4 and also on genes reported in other cancers including IGF2BP1 and GAL. We detected bivalent domains on immune-related transcriptional regulators BCL6, CITED2 and EGR1, which underwent dynamic changes in both lines as a result of MDV infection. In addition, putative roles for GAL in the mechanism of MD progression were revealed. Conclusion Our results confirm the presence of widespread epigenetic differences induced by MD in chicken lines with different levels of genetic resistance. A majority of observed epigenetic changes were indicative of increased levels of viral infection in the susceptible line symptomatic of lowered immunocompetence in these birds caused by early cytolytic infection. The GAL system that has known anti-proliferative effects in other cancers is also revealed to be potentially involved in MD progression. Our study provides further insight into the mechanisms of MD progression while revealing a complex landscape of epigenetic regulatory mechanisms that varies depending on host factors.
Collapse
|