1
|
Bendl E, Fuchs J, Kochs G. Bourbon virus, a newly discovered zoonotic thogotovirus. J Gen Virol 2023; 104. [PMID: 37643129 DOI: 10.1099/jgv.0.001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
The recent discovery of Bourbon virus (BRBV) put a new focus on the genus of thogotoviruses as zoonotic, tick-transmitted pathogens within the orthomyxovirus family. Since 2014, BRBV has been linked to several human cases in the Midwest United States with severe acute febrile illness and a history of tick bites. The detection of the virus in the Lone Star tick, Amblyomma americanum, and a high sero-prevalence in wild animals suggest widespread circulation of BRBV. Phylogenetic analysis of the viral RNA genome classified BRBV into the subgroup of Dhori-like thogotoviruses. Strikingly, BRBV is apathogenic in mice, contrasting not only with the fatal disease in affected patients but also with the severe disease in mice caused by other members of the thogotovirus genus. To gain insights into this intriguing discrepancy, we will review the molecular biology and pathology of BRBV and its unique position within the thogotovirus genus. Lastly, we will discuss the zoonotic threat posed by this newly discovered pathogen.
Collapse
Affiliation(s)
- Elias Bendl
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Comparative study of ten thogotovirus isolates and their distinct in vivo characteristics. J Virol 2022; 96:e0155621. [PMID: 35019718 DOI: 10.1128/jvi.01556-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thogotoviruses are tick-borne arboviruses that comprise a unique genus within the Orthomyxoviridae family. Infections with thogotoviruses primarily cause disease in livestock with occasional reports of human infections suggesting a zoonotic potential. In the past, multiple genetically distinct thogotoviruses were isolated mostly from collected ticks. However, many aspects regarding their phylogenetic relationships, morphological characteristics and virulence in mammals remain unclear. For the present comparative study, we used a collection of ten different thogotovirus isolates from different geographic areas. Next generation sequencing and subsequent phylogenetic analyses revealed a distinct separation of these viruses into two major clades - the Thogoto-like and Dhori-like viruses. Electron microscopy demonstrated a heterogeneous morphology with spherical and filamentous particles being present in virus preparations. To study their pathogenicity, we analyzed the viruses in a small animal model system. In intraperitoneally infected C57BL/6 mice, all isolates showed a tropism for liver, lung and spleen. Importantly, we did not observe horizontal transmission to uninfected, highly susceptible contact mice. The isolates enormously differed in their capacity to induce disease, ranging from subclinical to fatal outcomes. In vivo multi-step passaging experiments of two low-pathogenic isolates showed no increased virulence and sequence analyses of the passaged viruses indicated a high stability of the viral genomes after ten mouse passages. In summary, our analysis demonstrates the broad genetic and phenotypic variability within the thogotovirus genus. Moreover, thogotoviruses are well adapted to mammals but their horizontal transmission seems to depend on ticks as their vectors. Importance Since their discovery over sixty years ago, fifteen genetically distinct members of the thogotovirus genus have been isolated. These arboviruses belong to the Orthomyxovirus family and share many features with influenza viruses. However, numerous of these isolates have not been characterized in depth. In the present study, we comparatively analyzed a collection of ten different thogotovirus isolates to answer basic questions about their phylogenetic relationships, morphology and pathogenicity in mice. Our results highlight shared and unique characteristics of this diverse genus. Taken together, these observations provide a framework for the phylogenic classification and phenotypic characterization of newly identified thogotovirus isolates that could potentially cause severe human infections as exemplified by the recently reported, fatal Bourbon virus cases in the United States.
Collapse
|
3
|
Hao S, Ning K, Küz ÇA, McFarlin S, Cheng F, Qiu J. Eight years' advances on Bourbon virus, a tick-born Thogotovirus of the Orthomyxovirus family. ZOONOSES (BURLINGTON, MASS.) 2022; 2:18. [PMID: 35727718 PMCID: PMC9206863 DOI: 10.15212/zoonoses-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bourbon virus (BRBV) was first isolated from a blood sample collected from a male patient living in Bourbon county, Kansas, during the spring of 2014. The patient later died due to complications associated with multiorgan failure. Currently, several BRBV infection-caused deaths have been reported in the United States, and misdiagnosed cases are often undercounted. BRBV is a member of the genus Thogotovirus of the Orthomyxoviridae family, and is transmitted through the Lone Star tick, Amblyomma Americanum, in North America. Currently, there are no specific antivirals or vaccinations available to treat or prevent BRBV infection. Several small molecular compounds have been identified to effectively inhibit BRBV infection of in vitro cell cultures at a single- or sub-micromolar level. Favipiravir, an RNA-dependent RNA polymerase inhibitor, prevented the death of Type I interferon receptor knockout mice infected with BRBV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianming Qiu
- Corresponding author: Jianming Qiu, Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Blvd. Kansas City, KS 66160, Phone: (913) 588-4329, Fax: (913) 588-7295,
| |
Collapse
|
4
|
Fuchs J, Oschwald A, Graf L, Kochs G. Tick-transmitted thogotovirus gains high virulence by a single MxA escape mutation in the viral nucleoprotein. PLoS Pathog 2020; 16:e1009038. [PMID: 33196685 PMCID: PMC7704052 DOI: 10.1371/journal.ppat.1009038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
Infections with emerging and re-emerging arboviruses are of increasing concern for global health. Tick-transmitted RNA viruses of the genus Thogotovirus in the Orthomyxoviridae family have considerable zoonotic potential, as indicated by the recent emergence of Bourbon virus in the USA. To successfully infect humans, arboviruses have to escape the restrictive power of the interferon defense system. This is exemplified by the high sensitivity of thogotoviruses to the antiviral action of the interferon-induced myxovirus resistance protein A (MxA) that inhibits the polymerase activity of incoming viral ribonucleoprotein complexes. Acquiring resistance to human MxA would be expected to enhance the zoonotic potential of these pathogens. Therefore, we screened a panel of 10 different thogotovirus isolates obtained from various parts of the world for their sensitivity to MxA. A single isolate from Nigeria, Jos virus, showed resistance to the antiviral action of MxA in cell culture and in MxA-transgenic mice, whereas the prototypic Sicilian isolate SiAr126 was fully MxA-sensitive. Further analysis identified two amino acid substitutions (G327R and R328V) in the viral nucleoprotein as determinants for MxA resistance. Importantly, when introduced into SiAr126, the R328V mutation resulted in complete MxA escape of the recombinant virus, without causing any viral fitness loss. The escape mutation abolished viral nucleoprotein recognition by MxA and allowed unhindered viral growth in MxA-expressing cells and in MxA-transgenic mice. These findings demonstrate that thogotoviruses can overcome the species barrier by escaping MxA restriction and reveal that these tick-transmitted viruses may have a greater zoonotic potential than previously suspected. Thogotovirus infections are known to cause isolated human fatalities, yet the zoonotic potential of these tick-transmitted pathogens is still largely unexplored. In the present study, we examined if these viruses are able to escape the interferon-induced human MxA, thereby overcoming the human innate antiviral defense. Mx proteins constitute a class of interferon-induced antiviral effector molecules that efficiently block the intracellular replication of many viruses. Here, we studied the MxA sensitivity of various thogotovirus isolates and identified two amino acid residues in the viral nucleoprotein that caused resistance to MxA. One of these exchanges was sufficient to enable an otherwise MxA-sensitive thogotovirus to fully escape MxA restriction without causing any fitness loss. Our study explores the interplay of thogotoviruses with the innate antiviral host defense and sheds light on their zoonotic potential.
Collapse
Affiliation(s)
- Jonas Fuchs
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
| | - Alexander Oschwald
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
| | - Laura Graf
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
5
|
Pettersson JHO, Ellström P, Ling J, Nilsson I, Bergström S, González-Acuña D, Olsen B, Holmes EC. Circumpolar diversification of the Ixodes uriae tick virome. PLoS Pathog 2020; 16:e1008759. [PMID: 32745135 PMCID: PMC7425989 DOI: 10.1371/journal.ppat.1008759] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/13/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022] Open
Abstract
Ticks (order: Ixodida) are a highly diverse and ecologically important group of ectoparasitic blood-feeding organisms. One such species, the seabird tick (Ixodes uriae), is widely distributed around the circumpolar regions of the northern and southern hemispheres. It has been suggested that Ix. uriae spread from the southern to the northern circumpolar region millions of years ago and has remained isolated in these regions ever since. Such a profound biographic subdivision provides a unique opportunity to determine whether viruses associated with ticks exhibit the same evolutionary patterns as their hosts. To test this, we collected Ix. uriae specimens near a Gentoo penguin (Pygoscelis papua) colony at Neko harbour, Antarctica, and from migratory birds—the Razorbill (Alca torda) and the Common murre (Uria aalge)—on Bonden island, northern Sweden. Through meta-transcriptomic next-generation sequencing we identified 16 RNA viruses, seven of which were novel. Notably, we detected the same species, Ronne virus, and two closely related species, Bonden virus and Piguzov virus, in both hemispheres indicating that there have been at least two cross-circumpolar dispersal events. Similarly, we identified viruses discovered previously in other locations several decades ago, including Gadgets Gully virus, Taggert virus and Okhotskiy virus. By identifying the same or closely related viruses in geographically disjunct sampling locations we provide evidence for virus dispersal within and between the circumpolar regions. In marked contrast, our phylogenetic analysis revealed no movement of the Ix. uriae tick hosts between the same locations. Combined, these data suggest that migratory birds are responsible for the movement of viruses at both local and global scales. As host populations diverge, so may those microorganisms, including viruses, that are dependent on those hosts. To examine this key issue in host-microbe evolution we compared the co-phylogenies of the seabird tick, Ixodes uriae, and their RNA viruses sampled from the far northern and southern hemispheres. Despite the huge geographic distance between them, phylogeographic analysis reveals that the same and closely related viruses were found both within and between the northern and southern circumpolar regions, most likely reflecting transfer by virus-infected migratory birds. In contrast, genomic data suggested that the Ix. uriae populations were phylogenetically distinct between the northern and southern hemispheres. This work emphasises the importance of migratory birds and ticks as vectors and sources of virus dispersal and introduction at both the local and global scales.
Collapse
Affiliation(s)
- John H.-O. Pettersson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (JHOP); (ECH)
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jiaxin Ling
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ingela Nilsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Daniel González-Acuña
- Laboratorio de Parásitos y Enfermedades de Fauna silvestre, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (JHOP); (ECH)
| |
Collapse
|
6
|
Popov VL, Tesh RB, Weaver SC, Vasilakis N. Electron Microscopy in Discovery of Novel and Emerging Viruses from the Collection of the World Reference Center for Emerging Viruses and Arboviruses (WRCEVA). Viruses 2019; 11:v11050477. [PMID: 31130629 PMCID: PMC6563235 DOI: 10.3390/v11050477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/28/2022] Open
Abstract
Since the beginning of modern virology in the 1950s, transmission electron microscopy (TEM) has been an important and widely used technique for discovery, identification and characterization of new viruses. Using TEM, viruses can be differentiated by their ultrastructure: shape, size, intracellular location and for some viruses, by the ultrastructural cytopathic effects and/or specific structures forming in the host cell during their replication. Ultrastructural characteristics are usually sufficient for the identification of a virus to the family level. In this review, we summarize 25 years of experience in identification of novel viruses from the collection of the World Reference Center for Emerging Viruses and Arboviruses (WRCEVA).
Collapse
Affiliation(s)
- Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Robert B Tesh
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Scott C Weaver
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| |
Collapse
|
7
|
Mourya DT, Yadav PD, Nyayanit DA, Majumdar TD, Jain S, Sarkale P, Shete A. Characterization of a strain of quaranfil virus isolated from soft ticks in India. Is quaranfil virus an unrecognized cause of disease in human and animals?". Heliyon 2019; 5:e01368. [PMID: 30957047 PMCID: PMC6431747 DOI: 10.1016/j.heliyon.2019.e01368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/11/2019] [Accepted: 03/14/2019] [Indexed: 12/03/2022] Open
Abstract
The soft ticks collected during a field survey in Karnataka state, India, in 1983, yielded a novel virus isolate, which caused mortality in an infant mouse upon inoculation. Attempts at characterizing the virus using the conventional methods were unsuccessful, which prompted us to study it by Next-Generation Sequencing (NGS). This virus isolate was obtained from the viral repository of National Institute of Virology, and an initial virus stock was prepared as a mouse brain homogenate. The virus stock showed cytopathic effects in different cell-lines and was used in NGS. Based on the complete genome sequence, obtained using de novo and reference mapping approach, the virus isolate was identified as a Quaranfil virus (QRFV) belonging to the family Orthomyxoviridae, genus Quaranjavirus. The genome size of the virus is 11,427 nucleotides which consist of 6 segments encoding six proteins. Homology analysis suggested this isolate as similar to QRFV of Afghanistan. In silico analysis showed the HA protein secondary structure to be a class III penetrance similar to Thogotovirus. QRFV was first isolated in 1953 from ticks [Cairo, Egypt] and subsequently reported from other geographical areas. This is the first report describing the presence of QRFV from India. This discovery emphasizes the need for investigating mild febrile illness cases with influenza-like symptoms, particularly in the area of high risk for tick bites.
Collapse
Affiliation(s)
| | | | | | | | - Shilpi Jain
- ICMR-National Institute of Virology, Pune, India
| | | | - Anita Shete
- ICMR-National Institute of Virology, Pune, India
| |
Collapse
|
8
|
Savage HM, Burkhalter KL, Godsey MS, Panella NA, Ashley DC, Nicholson WL, Lambert AJ. Bourbon Virus in Field-Collected Ticks, Missouri, USA. Emerg Infect Dis 2018; 23:2017-2022. [PMID: 29148395 PMCID: PMC5708220 DOI: 10.3201/eid2312.170532] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bourbon virus (BRBV) was first isolated in 2014 from a resident of Bourbon County, Kansas, USA, who died of the infection. In 2015, an ill Payne County, Oklahoma, resident tested positive for antibodies to BRBV, before fully recovering. We retrospectively tested for BRBV in 39,096 ticks from northwestern Missouri, located 240 km from Bourbon County, Kansas. We detected BRBV in 3 pools of Amblyomma americanum (L.) ticks: 1 pool of male adults and 2 pools of nymphs. Detection of BRBV in A. americanum, a species that is aggressive, feeds on humans, and is abundant in Kansas and Oklahoma, supports the premise that A. americanum is a vector of BRBV to humans. BRBV has not been detected in nonhuman vertebrates, and its natural history remains largely unknown.
Collapse
|
9
|
Ejiri H, Lim CK, Isawa H, Fujita R, Murota K, Sato T, Kobayashi D, Kan M, Hattori M, Kimura T, Yamaguchi Y, Takayama-Ito M, Horiya M, Posadas-Herrera G, Minami S, Kuwata R, Shimoda H, Maeda K, Katayama Y, Mizutani T, Saijo M, Kaku K, Shinomiya H, Sawabe K. Characterization of a novel thogotovirus isolated from Amblyomma testudinarium ticks in Ehime, Japan: A significant phylogenetic relationship to Bourbon virus. Virus Res 2018; 249:57-65. [PMID: 29548745 DOI: 10.1016/j.virusres.2018.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
The genus Thogotovirus, as represented by Thogoto virus and Dhori virus, comprises a group of arthropod-borne viruses, most members of which are transmitted by ticks. Here we report the genetic and biological characterization of a new thogotovirus, designated Oz virus (OZV), isolated from the hard tick Amblyomma testudinarium in Ehime, Japan. OZV efficiently replicated and induced a cytopathic effect in Vero cells, from which enveloped pleomorphic virus particles were formed by budding. OZV could also replicate in BHK-21 and DH82 cells and caused high mortality in suckling mice after intracerebral inoculation. Phylogenetic analyses of six viral proteins indicated that OZV is clustered with Dhori and related viruses, and is most closely related in glycoprotein (GP) and matrix protein (M) sequences to Bourbon virus, a human-pathogenic thogotovirus discovered recently in the United States. Our findings emphasize the need for understanding the geographic distribution and ecology of OZV and related viruses and for reevaluation of the medical and public health importance of thogotoviruses.
Collapse
Affiliation(s)
- Hiroko Ejiri
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Division of infectious Diseases Epidemiology and Control, National Defense Medical Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Ryosuke Fujita
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan; Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Katsunori Murota
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Tomomi Sato
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Miki Kan
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama, Ehime 790-0003, Japan
| | - Masashi Hattori
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama, Ehime 790-0003, Japan
| | - Toshiya Kimura
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama, Ehime 790-0003, Japan
| | - Yukie Yamaguchi
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mutsuyo Takayama-Ito
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Madoka Horiya
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Guillermo Posadas-Herrera
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shohei Minami
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Koki Kaku
- Division of infectious Diseases Epidemiology and Control, National Defense Medical Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Hiroto Shinomiya
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama, Ehime 790-0003, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
10
|
Abstract
Ticks are important vectors for the transmission of pathogens including viruses. The viruses carried by ticks also known as tick-borne viruses (TBVs), contain a large group of viruses with diverse genetic properties and are concluded in two orders, nine families, and at least 12 genera. Some members of the TBVs are notorious agents causing severe diseases with high mortality rates in humans and livestock, while some others may pose risks to public health that are still unclear to us. Herein, we review the current knowledge of TBVs with emphases on the history of virus isolation and identification, tick vectors, and potential pathogenicity to humans and animals, including assigned species as well as the recently discovered and unassigned species. All these will promote our understanding of the diversity of TBVs, and will facilitate the further investigation of TBVs in association with both ticks and vertebrate hosts.
Collapse
Affiliation(s)
- Junming Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
11
|
Siegel RD. Classification of Human Viruses. PRINCIPLES AND PRACTICE OF PEDIATRIC INFECTIOUS DISEASES 2018. [PMCID: PMC7151951 DOI: 10.1016/b978-0-323-40181-4.00201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Contreras-Gutiérrez MA, Nunes MRT, Guzman H, Uribe S, Suaza Vasco JD, Cardoso JF, Popov VL, Widen SG, Wood TG, Vasilakis N, Tesh RB. Sinu virus, a novel and divergent orthomyxovirus related to members of the genus Thogotovirus isolated from mosquitoes in Colombia. Virology 2017; 501:166-175. [PMID: 27936462 PMCID: PMC5201441 DOI: 10.1016/j.virol.2016.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022]
Abstract
The genome and structural organization of a novel insect-specific orthomyxovirus, designated Sinu virus, is described. Sinu virus (SINUV) was isolated in cultures of C6/36 cells from a pool of mosquitoes collected in northwestern Colombia. The virus has six negative-sense ssRNA segments. Genetic analysis of each segment demonstrated the presence of six distinct ORFs encoding the following genes: PB2 (Segment 1), PB1, (Segment 2), PA protein (Segment 3), envelope GP gene (Segment 4), the NP (Segment 5), and M-like gene (Segment 6). Phylogenetically, SINUV appears to be most closed related to viruses in the genus Thogotovirus.
Collapse
Affiliation(s)
- María Angélica Contreras-Gutiérrez
- Programa de Estudio y Control de Enfermedades Tropicales - PECET - SIUSde de Investigación Universitaria - Universidad de Antioquia, Medellín, Colombia; Grupo de Investigación en Sistemática Molecular-GSM, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Medellín, Colombia
| | - Marcio R T Nunes
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para, Brazil
| | - Hilda Guzman
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Sandra Uribe
- Grupo de Investigación en Sistemática Molecular-GSM, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Medellín, Colombia
| | - Juan David Suaza Vasco
- Programa de Estudio y Control de Enfermedades Tropicales - PECET - SIUSde de Investigación Universitaria - Universidad de Antioquia, Medellín, Colombia; Grupo de Investigación en Sistemática Molecular-GSM, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Medellín, Colombia
| | - Jedson F Cardoso
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para, Brazil
| | - Vsevolod L Popov
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikos Vasilakis
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| | - Robert B Tesh
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
13
|
Kosoy OI, Lambert AJ, Hawkinson DJ, Pastula DM, Goldsmith CS, Hunt DC, Staples JE. Novel thogotovirus associated with febrile illness and death, United States, 2014. Emerg Infect Dis 2016; 21:760-4. [PMID: 25899080 PMCID: PMC4412252 DOI: 10.3201/eid2105.150150] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bourbon virus is a newly discovered pathogen associated with human illness and death. A previously healthy man from eastern Kansas, USA, sought medical care in late spring because of a history of tick bite, fever, and fatigue. The patient had thrombocytopenia and leukopenia and was given doxycycline for a presumed tickborne illness. His condition did not improve. Multiorgan failure developed, and he died 11 days after illness onset from cardiopulmonary arrest. Molecular and serologic testing results for known tickborne pathogens were negative. However, testing of a specimen for antibodies against Heartland virus by using plaque reduction neutralization indicated the presence of another virus. Next-generation sequencing and phylogenetic analysis identified the virus as a novel member of the genus Thogotovirus.
Collapse
|
14
|
Abstract
In this chapter, we describe 73 zoonotic viruses that were isolated in Northern Eurasia and that belong to the different families of viruses with a single-stranded RNA (ssRNA) genome. The family includes viruses with a segmented negative-sense ssRNA genome (families Bunyaviridae and Orthomyxoviridae) and viruses with a positive-sense ssRNA genome (families Togaviridae and Flaviviridae). Among them are viruses associated with sporadic cases or outbreaks of human disease, such as hemorrhagic fever with renal syndrome (viruses of the genus Hantavirus), Crimean–Congo hemorrhagic fever (CCHFV, Nairovirus), California encephalitis (INKV, TAHV, and KHATV; Orthobunyavirus), sandfly fever (SFCV and SFNV, Phlebovirus), Tick-borne encephalitis (TBEV, Flavivirus), Omsk hemorrhagic fever (OHFV, Flavivirus), West Nile fever (WNV, Flavivirus), Sindbis fever (SINV, Alphavirus) Chikungunya fever (CHIKV, Alphavirus) and others. Other viruses described in the chapter can cause epizootics in wild or domestic animals: Geta virus (GETV, Alphavirus), Influenza A virus (Influenzavirus A), Bhanja virus (BHAV, Phlebovirus) and more. The chapter also discusses both ecological peculiarities that promote the circulation of these viruses in natural foci and factors influencing the occurrence of epidemic and epizootic outbreaks
Collapse
|
15
|
Cyclic avian mass mortality in the northeastern United States is associated with a novel orthomyxovirus. J Virol 2014; 89:1389-403. [PMID: 25392223 DOI: 10.1128/jvi.02019-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Since 1998, cyclic mortality events in common eiders (Somateria mollissima), numbering in the hundreds to thousands of dead birds, have been documented along the coast of Cape Cod, MA, USA. Although longitudinal disease investigations have uncovered potential contributing factors responsible for these outbreaks, detecting a primary etiological agent has proven enigmatic. Here, we identify a novel orthomyxovirus, tentatively named Wellfleet Bay virus (WFBV), as a potential causative agent of these outbreaks. Genomic analysis of WFBV revealed that it is most closely related to members of the Quaranjavirus genus within the family Orthomyxoviridae. Similar to other members of the genus, WFBV contains an alphabaculovirus gp64-like glycoprotein that was demonstrated to have fusion activity; this also tentatively suggests that ticks (and/or insects) may vector the virus in nature. However, in addition to the six RNA segments encoding the prototypical structural proteins identified in other quaranjaviruses, a previously unknown RNA segment (segment 7) encoding a novel protein designated VP7 was discovered in WFBV. Although WFBV shows low to moderate levels of sequence similarity to Quaranfil virus and Johnston Atoll virus, the original members of the Quaranjavirus genus, additional antigenic and genetic analyses demonstrated that it is closely related to the recently identified Cygnet River virus (CyRV) from South Australia, suggesting that WFBV and CyRV may be geographic variants of the same virus. Although the identification of WFBV in part may resolve the enigma of these mass mortality events, the details of the ecology and epidemiology of the virus remain to be determined. IMPORTANCE The emergence or reemergence of viral pathogens resulting in large-scale outbreaks of disease in humans and/or animals is one of the most important challenges facing biomedicine. For example, understanding how orthomyxoviruses such as novel influenza A virus reassortants and/or mutants emerge to cause epidemic or pandemic disease is at the forefront of current global health concerns. Here, we describe the emergence of a novel orthomyxovirus, Wellfleet Bay virus (WFBV), which has been associated with cyclic large-scale bird die-offs in the northeastern United States. This initial characterization study provides a foundation for further research into the evolution, epidemiology, and ecology of newly emerging orthomyxoviruses, such as WFBV, and their potential impacts on animal and/or human health.
Collapse
|
16
|
Briese T, Chowdhary R, Travassos da Rosa A, Hutchison SK, Popov V, Street C, Tesh RB, Lipkin WI. Upolu virus and Aransas Bay virus, two presumptive bunyaviruses, are novel members of the family Orthomyxoviridae. J Virol 2014; 88:5298-309. [PMID: 24574415 PMCID: PMC4019087 DOI: 10.1128/jvi.03391-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/21/2014] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Emerging and zoonotic pathogens pose continuing threats to human health and ongoing challenges to diagnostics. As nucleic acid tests are playing increasingly prominent roles in diagnostics, the genetic characterization of molecularly uncharacterized agents is expected to significantly enhance detection and surveillance capabilities. We report the identification of two previously unrecognized members of the family Orthomyxoviridae, which includes the influenza viruses and the tick-transmitted Thogoto and Dhori viruses. We provide morphological, serologic, and genetic evidence that Upolu virus (UPOV) from Australia and Aransas Bay virus (ABV) from North America, both previously considered potential bunyaviruses based on electron microscopy and physicochemical features, are orthomyxoviruses instead. Their genomes show up to 68% nucleotide sequence identity to Thogoto virus (segment 2; ∼74% at the amino acid level) and a more distant relationship to Dhori virus, the two prototype viruses of the recognized species of the genus Thogotovirus. Despite sequence similarity, the coding potentials of UPOV and ABV differed from that of Thogoto virus, instead being like that of Dhori virus. Our findings suggest that the tick-transmitted viruses UPOV and ABV represent geographically distinct viruses in the genus Thogotovirus of the family Orthomyxoviridae that do not fit in the two currently recognized species of this genus. IMPORTANCE Upolu virus (UPOV) and Aransas Bay virus (ABV) are shown to be orthomyxoviruses instead of bunyaviruses, as previously thought. Genetic characterization and adequate classification of agents are paramount in this molecular age to devise appropriate surveillance and diagnostics. Although more closely related to Thogoto virus by sequence, UPOV and ABV differ in their coding potentials by lacking a proposed pathogenicity factor. In this respect, they are similar to Dhori virus, which, despite the lack of a pathogenicity factor, can cause disease. These findings enable further studies into the evolution and pathogenicity of orthomyxoviruses.
Collapse
Affiliation(s)
- Thomas Briese
- Center for Infection and Immunity, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Rashmi Chowdhary
- Center for Infection and Immunity, Columbia University, New York, New York, USA
| | | | | | - Vsevolod Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Craig Street
- Center for Infection and Immunity, Columbia University, New York, New York, USA
| | - Robert B. Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University, New York, New York, USA
- Department of Pathology and Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
17
|
Guilligay D, Kadlec J, Crépin T, Lunardi T, Bouvier D, Kochs G, Ruigrok RWH, Cusack S. Comparative structural and functional analysis of orthomyxovirus polymerase cap-snatching domains. PLoS One 2014; 9:e84973. [PMID: 24454773 PMCID: PMC3893164 DOI: 10.1371/journal.pone.0084973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/28/2013] [Indexed: 11/19/2022] Open
Abstract
Orthomyxovirus Influenza A virus (IAV) heterotrimeric polymerase performs transcription of viral mRNAs by cap-snatching, which involves generation of capped primers by host pre-mRNA binding via the PB2 subunit cap-binding site and cleavage 10–13 nucleotides from the 5′ cap by the PA subunit endonuclease. Thogotoviruses, tick-borne orthomyxoviruses that includes Thogoto (THOV), Dhori (DHOV) and Jos (JOSV) viruses, are thought to perform cap-snatching by cleaving directly after the cap and thus have no heterogeneous, host-derived sequences at the 5′ extremity of their mRNAs. Based on recent work identifying the cap-binding and endonuclease domains in IAV polymerase, we determined the crystal structures of two THOV PB2 domains, the putative cap-binding and the so-called ‘627-domain’, and the structures of the putative endonuclease domains (PA-Nter) of THOV and DHOV. Despite low sequence similarity, corresponding domains have the same fold confirming the overall architectural similarity of orthomyxovirus polymerases. However the putative Thogotovirus cap-snatching domains in PA and PB2 have non-conservative substitutions of key active site residues. Biochemical analysis confirms that, unlike the IAV domains, the THOV and DHOV PA-Nter domains do not bind divalent cations and have no endonuclease activity and the THOV central PB2 domain does not bind cap analogues. On the other hand, sequence analysis suggests that other, non-influenza, orthomyxoviruses, such as salmon anemia virus (isavirus) and Quaranfil virus likely conserve active cap-snatching domains correlating with the reported occurrence of heterogeneous, host-derived sequences at the 5′ end of the mRNAs of these viruses. These results highlight the unusual nature of transcription initiation by Thogotoviruses.
Collapse
Affiliation(s)
- Delphine Guilligay
- University Grenoble Alpes, Unit of Virus Host-Cell Interactions, Grenoble, France
- Centre National de la Recherche Scientifique, Unit of Virus Host-Cell Interactions, Grenoble, France
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, Grenoble, France
| | - Jan Kadlec
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, Grenoble, France
| | - Thibaut Crépin
- University Grenoble Alpes, Unit of Virus Host-Cell Interactions, Grenoble, France
- Centre National de la Recherche Scientifique, Unit of Virus Host-Cell Interactions, Grenoble, France
| | - Thomas Lunardi
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, Grenoble, France
| | - Denis Bouvier
- University Grenoble Alpes, Unit of Virus Host-Cell Interactions, Grenoble, France
- Centre National de la Recherche Scientifique, Unit of Virus Host-Cell Interactions, Grenoble, France
| | - Georg Kochs
- Institute for Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Rob W. H. Ruigrok
- University Grenoble Alpes, Unit of Virus Host-Cell Interactions, Grenoble, France
- Centre National de la Recherche Scientifique, Unit of Virus Host-Cell Interactions, Grenoble, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, Grenoble, France
- * E-mail:
| |
Collapse
|