1
|
Hawko S, Burrai GP, Polinas M, Angioi PP, Dei Giudici S, Oggiano A, Alberti A, Hosri C, Antuofermo E. A Review on Pathological and Diagnostic Aspects of Emerging Viruses—Senecavirus A, Torque teno sus virus and Linda Virus—In Swine. Vet Sci 2022; 9:vetsci9090495. [PMID: 36136710 PMCID: PMC9502770 DOI: 10.3390/vetsci9090495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Worldwide demand for food is expected to increase due to population growth and swine accounts for more than one-third of meat produced worldwide. Several factors affect the success of livestock production systems, including animal disease control. Despite the importance of infectious diseases to animal health and the productivity of the global swine industry, pathogens of swine, in particular emerging viruses, such as Senecavirus A, Torque teno sus virus, and Linda virus, have gained limited interest. We performed a systematic analysis of the literature, with a focus on the main macroscopical and histological findings related to those viruses to fill the gap and highpoint these potentially hazardous pathogens. Abstract Swine production represents a significant component in agricultural economies as it occupies over 30% of global meat demand. Infectious diseases could constrain the swine health and productivity of the global swine industry. In particular, emerging swine viral diseases are omnipresent in swine populations, but the limited knowledge of the pathogenesis and the scarce information related to associated lesions restrict the development of data-based control strategies aimed to reduce the potentially great impact on the swine industry. In this paper, we reviewed and summarized the main pathological findings related to emerging viruses, such as Senecavirus A, Torque teno sus virus, and Linda virus, suggesting a call for further multidisciplinary studies aimed to fill this lack of knowledge and better clarify the potential role of those viral diseases in swine pathology.
Collapse
Affiliation(s)
- Salwa Hawko
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Giovanni P. Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079-229440
| | - Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Chadi Hosri
- Department of Veterinary Medicine, Faculty of Agronomy and Veterinary Sciences, Lebanese University, Beirut 14/6573, Lebanon
| | | |
Collapse
|
2
|
First Report of TTSuV1 in Domestic Swiss Pigs. Viruses 2022; 14:v14050870. [PMID: 35632612 PMCID: PMC9146045 DOI: 10.3390/v14050870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
Serum prevalence of Torque teno sus viruses (TTSuV1 and k2; family Anelloviridae) is known to be high in the porcine population worldwide but pathogenesis and associated pathomorphological lesions remain to be elucidated. In this study, quantitative real-time PCR for detection of TTSuV1 was performed in 101 porcine samples of brain tissue, with animals showing inflammatory lesions or no histological changes. Additionally, a pathomorphological and immunohistochemical characterization of possible lesions was carried out. Selected cases were screened by TTSuV1 in situ hybridization. Furthermore, TTSuV1 quantitative real-time PCR in splenic and pulmonary tissue and in situ hybridization (ISH) in spleen, lungs, mesenteric lymph node, heart, kidney, and liver were performed in 22 animals. TTSuV1 was detected by PCR not only in spleen and lung but also in brain tissue (71.3%); however, in general, spleen and lung tissue displayed lower Ct values than the brain. Positive TTSuV1 results were frequently associated with the morphological diagnosis of non-suppurative encephalitis. Single TTSuV1-positive lymphocytes were detected by ISH in the brain but also in lungs, spleen, mesenteric lymph node and in two cases of non-suppurative myocarditis. A pathogenetic role of a TTSuV1 infection as a co-factor for non-suppurative encephalitides cannot be ruled out.
Collapse
|
3
|
Abstract
Anelloviruses are small negative-sense single-stranded DNA viruses with genomes ranging in size from 1.6 to 3.9 kb. The family Anelloviridae comprised 14 genera before the present changes. However, in the last five years, a large number of diverse anelloviruses have been identified in various organisms. Here, we undertake a global analysis of mammalian anelloviruses whose full genome sequences have been determined and have an intact open reading frame 1 (ORF1). We established new criteria for the classification of anelloviruses, and, based on our analyses, we establish new genera and species to accommodate the unclassified anelloviruses. We also note that based on the updated species demarcation criteria, some previously assigned species (n = 10) merge with other species. Given the rate at which virus sequence data are accumulating, and with the identification of diverse anelloviruses, we acknowledge that the taxonomy will have to be dynamic and continuously evolve to accommodate new members.
Collapse
|
4
|
Shahhosseini N, Frederick C, Letourneau-Montminy MP, Marie-Odile BB, Kobinger GP, Wong G. Computational genomics of Torque teno sus virus and Porcine circovirus in swine samples from Canada. Res Vet Sci 2020; 134:171-180. [PMID: 33387757 DOI: 10.1016/j.rvsc.2020.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 11/26/2022]
Abstract
Emerging viral diseases include pathogens that can threaten the health of the Canadian swineherd. Anelloviruses and Circoviruses comprise of pathogens with veterinary significance. The aim of this study was to determine the genomic organization and phylogenetic relationships of Torque teno sus virus (TTsusV) and Porcine circovirus (PCV) from Canadian pig samples. Fecal and tissue specimens were collected during the winter, spring and summer of 2018. We utilized either virus- or genus-specific PCR assays to characterize the occurrence and genetic diversity of TTsusV and PCV in Canadian pigs. Pairwise comparison of all partial sequences and identity calculation was performed using MAFFT algorithm implemented in Sequence Demarcation Tool (SDT). The obtained full-length sequences were aligned using ClustalW, and phylogeny was inferred using a Maximum likelihood (ML) method by Geneious software. The PCR detection results revealed that the overall positive rate of TTsusV type-1 and type-2 was 45.6% and 32.6%, respectively. The TTsusV isolate MK990454 from Canada clustered in the subtype TTsusV1b, while the TTsusV isolate MK872392 fell in the subtype TTsusV2c, and all showed similarity to known American and Chinese isolates. In addition, our screening PCR showed that 2.7% of stool samples were positive for PCV1. Phylogenetic analysis using the full-length sequence demonstrated that PCV1 (MK872393) isolated from Quebec clustered with other Chinese PCV1 strains. Despite the far geographical distance between Canada and China, the close similarity between Canadian and Chinese TTsusV1 and 2, and PCV1 sequences may be explained by a considerable amount of pig trade between these two nations.
Collapse
Affiliation(s)
- Nariman Shahhosseini
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec City, Québec, Canada
| | - Christina Frederick
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec City, Québec, Canada
| | | | - Benoit-Biancamano Marie-Odile
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Gary P Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec City, Québec, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Gary Wong
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec City, Québec, Canada; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Epidemiology and evolutionary analysis of Torque teno sus virus. Vet Microbiol 2020; 244:108668. [PMID: 32402339 DOI: 10.1016/j.vetmic.2020.108668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/20/2022]
Abstract
Single stranded (ss) DNA viruses are increasingly being discovered due to the ongoing development of modern technologies in exploring the virosphere. Characterized by high rates of recombination and nucleotide substitutions, it could be comparable to RNA virus ones. Torque teno sus virus (TTSuV) is a standard ssDNA virus with a high population diversity, whose evolution is still obscure, further, it is frequently found in co-infections with other viruses threatening the porcine industry and therefore share the same host and epidemiological context. Here, we implement and describe approach to integrate viral nucleotide sequence analysis, surveillance data, and a structural approach to examine the evolution of TTSuVs, we collected samples from pigs displaying respiratory signs in China and revealed a high prevalence of TTSuV1 and TTSuVk2, frequently as part of co-infections with porcine circoviruses (PCVs), especially in spleen and lung. In addition, thirty six strains sequenced were obtained to investigate their genetic diversity in China. The evolutionary history of TTSuVs were unveiled as following: At the nucleotide sequence level, TTSuVs ORF1 was confirmed to be a robust phylogenetic maker to study evolution comparably to full genomes. Additionally, extensive recombination discovered within TTSuVk2a (also 5 out of the 36 sequenced strains in this study revealed to be recombination). Then, pairwise distance, phylogenetic trees, and amino acid analysis confirmed TTSuVs species, and allowed to define circulating genotypes (TTSuV1a-1, 1a-2, 1b-1, 1b-2, 1b-3, and k2a-1, k2a-2, k2b). Selection analysis uncovered seven and six positive selected sites in TTSuV1 and TTSuVk2, respectively. At the protein structure level, mapping of sites onto the three-dimensional structure revealed that several positive selected sites locate into potential epitopes, which might related to the potential escaping from host immune response. Our result could assist future studies on swine ssDNA virus classification, surveillance and control.
Collapse
|
6
|
Li G, Zhang W, Wang R, Xing G, Wang S, Ji X, Wang N, Su S, Zhou J. Genetic Analysis and Evolutionary Changes of the Torque teno sus Virus. Int J Mol Sci 2019; 20:E2881. [PMID: 31200479 PMCID: PMC6628323 DOI: 10.3390/ijms20122881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 01/03/2023] Open
Abstract
The torque teno sus virus (TTSuV) is an emerging virus threating the Suidae species of unclear pathogenicity, although it was previously reported as a worsening factor of other porcine diseases, in particular, porcine circovirus associated disease (PCVAD). Here, a comprehensive codon usage analysis of the open reading frame 1 (ORF1), which encodes the viral capsid protein, was undertaken for the first time to reveal its evolutionary history. We revealed independent phylogenetic processes for the two genera during TTSuV evolution, which was confirmed by principal component analysis (PCA). A low codon usage bias was observed in different genera and different species, with Kappatorquevirus a (TTSuVk2a) displaying the highest, which was mainly driven by mutation pressure and natural selection, especially natural selection. Overall, ATs were more abundant than GCs, along with more A-ended synonymous codons in relative synonymous codon usage (RSCU) analysis. To further confirm the role of natural selection and TTSuV adaptation to the Suidae species, codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses were performed, which showed different adaptations for different TTSuVs. Importantly, we identified a more dominant role of Sus scrofa in the evolution of Iotatorquevirus (TTSuV1), with the highest CAI values and lowest RCDI values compared to Sus scrofa domestica. However, in TTSuVk2, the roles of Sus scrofa and Sus scrofa domestica were the same, regarding codon usage, with similar CAI and RCDI values. Our study provides a new perspective of the evolution of TTSuV and valuable information to develop control measures against TTSuV.
Collapse
Affiliation(s)
- Gairu Li
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Wenyan Zhang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Ruyi Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Gang Xing
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310027, China.
| | - Shilei Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Xiang Ji
- Department of Biomathematics, University of California, Los Angeles, CA 90095, USA.
| | - Ningning Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
7
|
Ramos N, Mirazo S, Botto G, Teixeira TF, Cibulski SP, Castro G, Cabrera K, Roehe PM, Arbiza J. High frequency and extensive genetic heterogeneity of TTSuV1 and TTSuVk2a in PCV2- infected and non-infected domestic pigs and wild boars from Uruguay. Vet Microbiol 2018; 224:78-87. [DOI: 10.1016/j.vetmic.2018.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/16/2023]
|
8
|
Nishizawa T, Sugimoto Y, Takeda T, Kodera Y, Hatano Y, Takahashi M, Okamoto H. Identification and whole genome characterization of novel anelloviruses in masked palm civets (Paguma larvata): Segregation into four distinct clades. Virus Res 2018; 256:183-191. [PMID: 30149046 DOI: 10.1016/j.virusres.2018.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
The members of the family Anelloviridae are small and single-stranded DNA viruses with marked diversity in sequence and length, which ubiquitously infect many vertebrates, including mammals, birds and reptiles. The anelloviruses isolated from mammals are currently classified into 11 assigned and four proposed genera; some anelloviruses remain unassigned. The present study was conducted to identify anelloviruses in wild-caught masked palm civets (Paguma larvata) in Japan using a rolling-circle amplification method. Thirteen novel anellovirus strains were identified from 8 of 10 masked palm civets and their entire genomic sequences (2039-2535 nucleotides) were determined; they were classifiable into four distinct clades. Comparative analyses of all reported anelloviruses for which the entire or near-entire genomic sequences have been determined, including the 13 strains obtained in the present study, revealed that anelloviruses can provisionally be classified into 20 clades, which may correspond to 20 genera (including 11 assigned and four proposed genera) by a >70% amino acid sequence difference in open reading frame 1 (ORF1). This study suggested that novel anelloviruses of marked diversity are circulating in animals worldwide, and that the rolling-circle amplification method would be useful for identifying novel anelloviruses and other viruses with a circular DNA genome.
Collapse
Affiliation(s)
- Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuji Sugimoto
- Nikko Branch, Tochigi Hunter Association, Nikko, Tochigi, 321-2522, Japan
| | - Tsutomu Takeda
- Center for Weeds and Wildlife Management, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Yuuji Kodera
- Center for Weeds and Wildlife Management, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Yumi Hatano
- Sakakibara Heart Institute Clinic, Shinjuku-ku, Tokyo, 163-0804, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
9
|
Ghosh S, Soto E, Illanes O, Navarro R, Aung MS, Malik YS, Kobayashi N, Fuentealba C. High detection rates of Torque teno sus virus in co-infection with important viral pathogens in porcine kidneys on St. Kitts Island, Lesser Antilles. Transbound Emerg Dis 2018; 65:1175-1181. [PMID: 30015412 DOI: 10.1111/tbed.12960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 02/02/2023]
Abstract
We report here high rates of detection (50.8%, 31/61 pigs) of Torque teno sus virus (TTSuV) in kidneys of slaughter-age, apparently healthy pigs on St. Kitts island, Lesser Antilles. TTSuV1 and TTSuVk2a were detected in 23 (37.7%) and 13 (21.3%) pigs, respectively, including mixed infection in five animals. By nucleotide sequence identities and phylogenetic analysis, significant genetic diversity was observed among both TTSuV1 and TTSuVk2a on St. Kitts, with TTSuVk2a showing higher genetic diversity than TTSuV1. Fourteen (45.2%) and 10 (32.2%) of the TTSuV infected pigs tested positive for porcine circovirus type 2 (PCV2) and porcine parvovirus (PPV), respectively, revealing high rates of co-infection of TTSuV with PCV2 and PPV. This is the first report on detection and genetic diversity of TTSuV from the Lesser Antilles. Also, PCV2 and PPV were detected for the first time in the Lesser Antilles. Considering the impact of pig farming on the regional livestock economy, the increasing demand for local pork and lack of information on emerging and re-emerging porcine viruses in the Lesser Antilles, the present findings have important implications on swine health.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Esteban Soto
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Oscar Illanes
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Ryan Navarro
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University, Sapporo, Japan
| | - Yashpal Singh Malik
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, India
| | | | - Carmen Fuentealba
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| |
Collapse
|
10
|
Monini M, Vignolo E, Ianiro G, Ostanello F, Ruggeri FM, Di Bartolo I. Detection of Torque Teno Sus Virus in Pork Bile and Liver Sausages. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:283-288. [PMID: 27294982 DOI: 10.1007/s12560-016-9249-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Torque teno viruses (TTV) are small DNA viruses widespread among humans and pigs. The clinical significance of TTV infections in either humans or pigs is uncertain. In fact, TTV viremia is highly prevalent in patients with different pathologies, but it can also be frequently observed in healthy subjects. Virus infection in pigs is considered a putative cofactor in several diseases; despite being detected frequently in healthy animals, its role still remains unknown. The present study aimed to investigate the presence of Torque teno sus virus (TTSuV) in 62 bile samples collected from pigs at slaughterhouse and in 36 fresh pork liver sausages bought at point of sale. Quantitative Real-Time PCR, confirmed that 19.4 and 58.3 % of bile and sausage samples tested positive for TTSuV, respectively. The mean viral load was established as 5.6 × 104 GE/µl for bile and 7.16 × 103 GE/g for sausages. TTSuV nucleotide sequence analysis confirmed a wide heterogeneity among the circulating TTSuV strains, which included both TTSuV1 and TTSuV2.
Collapse
Affiliation(s)
- Marina Monini
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Edoardo Vignolo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Giovanni Ianiro
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - Franco Maria Ruggeri
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ilaria Di Bartolo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
11
|
Rogers AJ, Huang YW, Heffron CL, Opriessnig T, Patterson AR, Meng XJ. Prevalence of the NovelTorque Teno Sus VirusSpecies k2b from Pigs in the United States and Lack of Association with Post-Weaning Multisystemic Wasting Syndrome or Mulberry Heart Disease. Transbound Emerg Dis 2016; 64:1877-1883. [DOI: 10.1111/tbed.12586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- A. J. Rogers
- Department of Biomedical Sciences and Pathobiology; Virginia-Maryland College of Veterinary Medicine; Virginia Polytechnic Institute and State University; Blacksburg VA USA
| | - Y.-W. Huang
- College of Animal Sciences; Zhejiang University; Hangzhou China
| | - C. L. Heffron
- Department of Biomedical Sciences and Pathobiology; Virginia-Maryland College of Veterinary Medicine; Virginia Polytechnic Institute and State University; Blacksburg VA USA
| | - T. Opriessnig
- The Roslin Institute; University of Edinburgh; Midlothian Edinburgh UK
| | | | - X.-J. Meng
- Department of Biomedical Sciences and Pathobiology; Virginia-Maryland College of Veterinary Medicine; Virginia Polytechnic Institute and State University; Blacksburg VA USA
| |
Collapse
|
12
|
Full genome sequences of torque teno sus virus strains that coinfected a pig with postweaning multisystemic wasting syndrome in Japan: implications for genetic diversity. Arch Virol 2015; 160:3067-74. [DOI: 10.1007/s00705-015-2593-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/27/2015] [Indexed: 12/28/2022]
|
13
|
Nieto D, Martínez-Guinó L, Jiménez-Melsió A, Segalés J, Kekarainen T. Development of an indirect ELISA assay for the detection of IgG antibodies against the ORF1 of Torque teno sus viruses 1 and 2 in conventional pigs. Vet Microbiol 2015; 180:22-7. [PMID: 26358897 DOI: 10.1016/j.vetmic.2015.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/15/2015] [Accepted: 08/27/2015] [Indexed: 11/26/2022]
Abstract
Torque teno sus viruses (TTSuV, family Anelloviridae) cause long lasting and persistent infection in pigs under subclinical scenarios, and are potentially linked to several economically important swine diseases. Currently, little is known about swine immune response against TTSuV infections. In this study, an ELISA assay was developed based on the ORF1-A recombinant protein of two known TTSuVs, namely TTSuV1 (genus Iotatorquevirus) and TTSuV2 (genus Kappatorquevirus). The assay was used to study the development of the humoral immune response against TTSuV1 and TTSuV2 in longitudinally sampled clinically healthy pigs and their dams. Anti ORF1-A IgG was found in serum of pigs and sows for both TTSuVs. From 15 sows, 15 (100%) and 13 (83%) had anti ORF1-A IgG against TTSuV1 and TTSuV2, respectively. Pig sero-prevalences at the first sampling (4 weeks of age) were 65% (24/37) and 5% (2/37) for TTSuV1 and TTSuV2, respectively. For TTSuV1, the highest anti ORF1-A IgG prevalence was observed at weeks 21 and 25, with 68% (25/37) sero-positive pigs. Quantitative PCR (qPCR) results at week 21 revealed that 26 out of 32 (81%) pigs were positive for TTSuV1. In the case of TTSuV2, the highest anti ORF1-A IgG prevalence was observed at week 21, with 84% (31/37) pigs being sero-positive. At the same week, 92% (34/37) of pigs were qPCR positive. In summary, anti ORF1-A IgGs were detected in both sows and piglets at different ages, indicating that these animals could mount a humoral immune response against both TTSuVs. However, the high percentage of viremic pigs in presence of anti ORF1-A IgG suggests that these antibodies are not able to remove TTSuVs from circulation.
Collapse
Affiliation(s)
- David Nieto
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Laura Martínez-Guinó
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Alexandra Jiménez-Melsió
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Deparment de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
14
|
Jiménez-Melsió A, Rodriguez F, Darji A, Segalés J, Cornelissen-Keijsers V, van den Born E, Kekarainen T. Vaccination of pigs reduces Torque teno sus virus viremia during natural infection. Vaccine 2015; 33:3497-503. [DOI: 10.1016/j.vaccine.2015.05.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
15
|
Jaing CJ, Thissen JB, Gardner SN, McLoughlin KS, Hullinger PJ, Monday NA, Niederwerder MC, Rowland RRR. Application of a pathogen microarray for the analysis of viruses and bacteria in clinical diagnostic samples from pigs. J Vet Diagn Invest 2015; 27:313-25. [PMID: 25855363 DOI: 10.1177/1040638715578484] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many of the disease syndromes challenging the commercial swine industry involve the analysis of complex problems caused by polymicrobial, emerging or reemerging, and transboundary pathogens. This study investigated the utility of the Lawrence Livermore Microbial Detection Array (Lawrence Livermore National Laboratory, Livermore, California), designed to detect 8,101 species of microbes, in the evaluation of known and unknown microbes in serum, oral fluid, and tonsil from pigs experimentally coinfected with Porcine reproductive and respiratory syndrome virus (PRRSV) and Porcine circovirus-2 (PCV-2). The array easily identified PRRSV and PCV-2, but at decreased sensitivities compared to standard polymerase chain reaction detection methods. The oral fluid sample was the most informative, possessing additional signatures for several swine-associated bacteria, including Streptococcus sp., Clostridium sp., and Staphylococcus sp.
Collapse
Affiliation(s)
- Crystal J Jaing
- Physical & Life Sciences Directorate (Jaing, Thissen, Hullinger), Computations Directorate (Gardner, McLoughlin), Lawrence Livermore National Laboratory, Livermore, CADepartment of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS (Monday, Niederwerder, Rowland)
| | - James B Thissen
- Physical & Life Sciences Directorate (Jaing, Thissen, Hullinger), Computations Directorate (Gardner, McLoughlin), Lawrence Livermore National Laboratory, Livermore, CADepartment of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS (Monday, Niederwerder, Rowland)
| | - Shea N Gardner
- Physical & Life Sciences Directorate (Jaing, Thissen, Hullinger), Computations Directorate (Gardner, McLoughlin), Lawrence Livermore National Laboratory, Livermore, CADepartment of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS (Monday, Niederwerder, Rowland)
| | - Kevin S McLoughlin
- Physical & Life Sciences Directorate (Jaing, Thissen, Hullinger), Computations Directorate (Gardner, McLoughlin), Lawrence Livermore National Laboratory, Livermore, CADepartment of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS (Monday, Niederwerder, Rowland)
| | - Pam J Hullinger
- Physical & Life Sciences Directorate (Jaing, Thissen, Hullinger), Computations Directorate (Gardner, McLoughlin), Lawrence Livermore National Laboratory, Livermore, CADepartment of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS (Monday, Niederwerder, Rowland)
| | - Nicholas A Monday
- Physical & Life Sciences Directorate (Jaing, Thissen, Hullinger), Computations Directorate (Gardner, McLoughlin), Lawrence Livermore National Laboratory, Livermore, CADepartment of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS (Monday, Niederwerder, Rowland)
| | - Megan C Niederwerder
- Physical & Life Sciences Directorate (Jaing, Thissen, Hullinger), Computations Directorate (Gardner, McLoughlin), Lawrence Livermore National Laboratory, Livermore, CADepartment of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS (Monday, Niederwerder, Rowland)
| | - Raymond R R Rowland
- Physical & Life Sciences Directorate (Jaing, Thissen, Hullinger), Computations Directorate (Gardner, McLoughlin), Lawrence Livermore National Laboratory, Livermore, CADepartment of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS (Monday, Niederwerder, Rowland)
| |
Collapse
|
16
|
Jarošová V, Hrazdilová K, Filipejová Z, Schánilec P, Celer V. Whole genome sequencing and phylogenetic analysis of feline anelloviruses. INFECTION GENETICS AND EVOLUTION 2015; 32:130-4. [PMID: 25724090 DOI: 10.1016/j.meegid.2015.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Torque teno felis virus (FcTTV) was detected in the cat population in the Czech Republic. A total of 110 serum samples were tested by a nested PCR technique using specific primers, situated in the highly conserved untranslated region of the virus genome. The frequency of feline TT virus in the Czech Republic was found to be 33.63%. Sequencing of PCR product from several virus strains showed that all of them are closely related and belong to the same virus species. Whole genome sequencing of three strains was performed to compare overall genetic heterogeneity of feline TT viruses. One of these three strains showed more that 10% difference at the nucleotide level. Furthermore we didn't find any correlation between FcTTV infection and sex or health status of examined animals.
Collapse
Affiliation(s)
- Veronika Jarošová
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic; CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Kristýna Hrazdilová
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic; CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Zita Filipejová
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Pavel Schánilec
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Vladimír Celer
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic; CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic.
| |
Collapse
|
17
|
Blois S, Mallus F, Liciardi M, Pilo C, Camboni T, Macera L, Maggi F, Manzin A. High prevalence of co-infection with multiple Torque teno sus virus species in Italian pig herds. PLoS One 2014; 9:e113720. [PMID: 25411972 PMCID: PMC4239083 DOI: 10.1371/journal.pone.0113720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022] Open
Abstract
Torque teno viruses (TTVs) are a large group of vertebrate-infecting small viruses with circular single-stranded DNA, classified in the Anelloviridae family. In swine, two genetically distinct species, Torque teno sus virus 1a (TTSuV1a) and 1b (TTSuV1b) are currently grouped into the genus Iotatorquevirus. More recently, a novel Torque teno sus virus species, named Torque teno sus virus k2b (TTSuVk2b), has been included with Torque teno sus virus k2a (TTSuVk2a) into the genus Kappatorquevirus. In the present study, TTSuV1 (TTSuV1a and TTSuV1b), TTSuVk2a and TTSuVk2b prevalence was evaluated in 721 serum samples of healthy pigs from Sardinian farms, insular Italy. This is the largest study to date on the presence of TTSuV in healthy pigs in Italy. The global prevalence of infection was 83.2% (600/721), being 62.3% (449/721), 60.6% (437/721), and 11.5% (83/721) the prevalence of TTSuV1, TTSuVk2a and TTSuVk2b, respectively. The rate of co-infection with two and/or three species was also calculated, and data show that co-infections were significantly more frequent than infections with single species, and that TTSuV1+TTSuVk2a double infection was the prevalent combination (35.4%). Quantitative results obtained using species-specific real time-qPCR evidenced the highest mean levels of viremia in the TTSuV1 subgroup, and the lowest in the TTSuVk2b subgroup. Interestingly, multiple infections with distinct TTSuV species seemed to significantly affect the DNA load and specifically, data highlighted that double infection with TTSuVk2a increased the viral titers of TTSuV1, likewise the co-infection with TTSuVk2b increased the titers of TTSuVk2a.
Collapse
Affiliation(s)
- Sylvain Blois
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
| | - Francesca Mallus
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
| | - Manuele Liciardi
- Istituto Zooprofilattico Sperimentale Sardegna, Department of Cagliari, Cagliari, Italy
| | - Cristian Pilo
- Istituto Zooprofilattico Sperimentale Sardegna, Department of Cagliari, Cagliari, Italy
| | - Tania Camboni
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
| | - Lisa Macera
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Aldo Manzin
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
| |
Collapse
|
18
|
Nishiyama S, Dutia BM, Stewart JP, Meredith AL, Shaw DJ, Simmonds P, Sharp CP. Identification of novel anelloviruses with broad diversity in UK rodents. J Gen Virol 2014; 95:1544-1553. [PMID: 24744300 PMCID: PMC4059270 DOI: 10.1099/vir.0.065219-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Anelloviruses are a family of small circular ssDNA viruses with a vast genetic diversity. Human infections with the prototype anellovirus, torque teno virus (TTV), are ubiquitous and related viruses have been described in a number of other mammalian hosts. Despite over 15 years of investigation, there is still little known about the pathogenesis and possible disease associations of anellovirus infections, arising in part due to the lack of a robust cell culture system for viral replication or tractable small-animal model. We report the identification of diverse anelloviruses in several species of wild rodents. The viruses are highly prevalent in wood mice (Apodemus sylvaticus) and field voles (Microtus agrestis), detectable at a low frequency in bank voles (Myodes glareolus), but absent from house mice (Mus musculus). The viruses identified have a genomic organization consistent with other anelloviruses, but form two clear phylogenetic groups that are as distinct from each other as from defined genera.
Collapse
Affiliation(s)
- Shoko Nishiyama
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Bernadette M Dutia
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - James P Stewart
- Department of Infection Biology, University of Liverpool, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Anna L Meredith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Darren J Shaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Peter Simmonds
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Colin P Sharp
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
19
|
Detection of porcine anelloviruses in pork meat and human faeces. Virus Res 2013; 178:522-4. [PMID: 24091365 DOI: 10.1016/j.virusres.2013.09.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022]
Abstract
Torque teno viruses (TTV) are icosahedral, single-stranded circular DNA viruses infecting several vertebrate species. Currently, these viruses are considered non-pathogenic although they are suggested to be co-factors in several diseases. Recently single-stranded circular DNA viruses have been found in human faeces. Considering the consumption of pork meat products and the ubiquitous nature of swine TTV (Torque tenosus virus, TTSuV), the human population is frequently exposed to these viruses. To determine if TTSuVs could be delivered through food, human faecal samples were analysed for their presence. Indeed, the results of this study show that up to 25% of faecal samples were positive for known TTSuVs by PCR and sequencing. Additionally, all commercially available pork products purchased in Spanish supermarkets contained DNA of TTSuV.
Collapse
|
20
|
Jarosova V, Celer V. Preliminary epitope mapping of Torque teno sus virus 1 and 2 putative capsid protein and serological detection of infection in pigs. J Gen Virol 2013; 94:1351-1356. [DOI: 10.1099/vir.0.050500-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this work is to identify antigenic regions within the ORF1 protein of Torque teno sus virus 1 (TTSuV1) and Torque teno virus sus 2 (TTSuV2) that could be used as antigens to detect virus-specific antibodies following infection in pigs. Protein sequences of TTSuV ORF1 genes were analysed to predict linear antigenic epitopes. Synthesized peptides were analysed for serological reactivity with swine sera. Such an antigenic region was identified at the C terminus of the ORF1 protein of both viruses and showed serological reactivity with 78 % (TTSuV1) and 88 % (TTSuV2) of swine sera. An ELISA with an immunodominant peptide as antigen was used to examine the sera of piglets, aged 4–20 weeks, and adults. Results indicated that TTSuV1- and TTSuV2-specific antibodies were detectable at 4 weeks. Antibody titres increased from week 10 and peaked at week 20. A relatively high antibody titre persisted to adulthood.
Collapse
Affiliation(s)
- Veronika Jarosova
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Vladimír Celer
- CEITEC – Central European Institute of Technology, Veterinary and Pharmaceutical University, Brno, Czech Republic
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| |
Collapse
|
21
|
Zhai SL, Long JX, Wei WK, Chen QL, Luo ML, Lv DH, Wu DC, Gao F, Yuan SS, Tong GZ, Wei ZZ. High prevalence of torque teno sus virus in China and genetic diversity of the 5’ non-coding region. Arch Virol 2013; 158:1567-73. [DOI: 10.1007/s00705-013-1644-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
|