1
|
Ma J, Mudiyanselage SDD, Wang Y. Emerging value of the viroid model in molecular biology and beyond. Virus Res 2022; 313:198730. [PMID: 35263622 PMCID: PMC8976779 DOI: 10.1016/j.virusres.2022.198730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023]
Abstract
Viroids are single-stranded circular noncoding RNAs that infect plants. Research in the past five decades has deciphered the viroid genome structures, viroid replication cycles, numerous host factors for viroid infection, viroid motifs for intracellular and intercellular trafficking, interactions with host defense machinery, etc. In this review, we mainly focus on some significant questions that remain to be tackled, centered around (1) how the RNA polymerase II machinery performs transcription on RNA templates of nuclear-replicating viroids, (2) how viroid RNAs coordinate multiple structural elements for diverse functions, and (3) how viroid RNAs activate plant immunity. Research on viroids has led to seminal discoveries in biology, and we expect the research directions outlined in this review to continue providing key knowledge inspiring other areas of biology.
Collapse
Affiliation(s)
- Junfei Ma
- Department of Biological Sciences, Mississippi State University, MS 39762, USA
| | | | - Ying Wang
- Department of Biological Sciences, Mississippi State University, MS 39762, USA.
| |
Collapse
|
2
|
In Memoriam of Ricardo Flores: The Career, Achievements, and Legacy of an inspirational plant virologist. Virus Res 2022. [DOI: 10.1016/j.virusres.2022.198718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Flores R, Navarro B, Serra P, Di Serio F. A scenario for the emergence of protoviroids in the RNA world and for their further evolution into viroids and viroid-like RNAs by modular recombinations and mutations. Virus Evol 2022; 8:veab107. [PMID: 35223083 PMCID: PMC8865084 DOI: 10.1093/ve/veab107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/10/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Viroids are tiny, circular, and noncoding RNAs that are able to replicate and systemically infect plants. The smallest known pathogens, viroids have been proposed to represent survivors from the RNA world that likely preceded the cellular world currently dominating life on the earth. Although the small, circular, and compact nature of viroid genomes, some of which are also endowed with catalytic activity mediated by hammerhead ribozymes, support this proposal, the lack of feasible evolutionary routes and the identification of hammerhead ribozymes in a large number of DNA genomes of organisms along the tree of life have led some to question such a proposal. Here, we reassess the origin and subsequent evolution of viroids by complementing phylogenetic reconstructions with molecular data, including the primary and higher-order structure of the genomic RNAs, their replication, and recombination mechanisms and selected biological information. Features of some viroid-like RNAs found in plants, animals, and possibly fungi are also considered. The resulting evolutionary scenario supports the emergence of protoviroids in the RNA world, mainly as replicative modules, followed by a further increase in genome complexity based on module/domain shuffling and combination and mutation. Such a modular evolutionary scenario would have facilitated the inclusion in the protoviroid genomes of complex RNA structures (or coding sequences, as in the case of hepatitis delta virus and delta-like agents), likely needed for their adaptation from the RNA world to a life based on cells, thus generating the ancestors of current infectious viroids and viroid-like RNAs. Other noninfectious viroid-like RNAs, such as retroviroid-like RNA elements and retrozymes, could also be derived from protoviroids if their reverse transcription and integration into viral or eukaryotic DNA, respectively, are considered as a possible key step in their evolution. Comparison of evidence supporting a general and modular evolutionary model for viroids and viroid-like RNAs with that favoring alternative scenarios provides reasonable reasons to keep alive the hypothesis that these small RNA pathogens may be relics of a precellular world.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| |
Collapse
|
4
|
Conserved Motifs and Domains in Members of Pospiviroidae. Cells 2022; 11:cells11020230. [PMID: 35053346 PMCID: PMC8774013 DOI: 10.3390/cells11020230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 12/18/2022] Open
Abstract
In 1985, Keese and Symons proposed a hypothesis on the sequence and secondary structure of viroids from the family Pospiviroidae: their secondary structure can be subdivided into five structural and functional domains and “viroids have evolved by rearrangement of domains between different viroids infecting the same cell and subsequent mutations within each domain”; this article is one of the most cited in the field of viroids. Employing the pairwise alignment method used by Keese and Symons and in addition to more recent methods, we tried to reproduce the original results and extent them to further members of Pospiviroidae which were unknown in 1985. Indeed, individual members of Pospiviroidae consist of a patchwork of sequence fragments from the family but the lengths of fragments do not point to consistent points of rearrangement, which is in conflict with the original hypothesis of fixed domain borders.
Collapse
|
5
|
Donovan NJ, Chambers GA, Cao M. Detection of Viroids by RT-PCR. Methods Mol Biol 2022; 2316:143-151. [PMID: 34845692 DOI: 10.1007/978-1-0716-1464-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reverse transcription-polymerase chain reaction (RT-PCR) is an effective method for detecting the presence of viroids in plant tissue. Viroid RNA is converted to cDNA and amplified to detectable levels, making it a fast and useful detection tool, even when the viroid is present at low levels. Methods of viroid detection using conventional RT-PCR are described in this chapter.
Collapse
Affiliation(s)
- Nerida J Donovan
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia.
| | - Grant A Chambers
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia
| | - Mengji Cao
- National Citrus Engineering Research Centre, Citrus Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Hammond RW. Cloning and Sequencing of Viroids. Methods Mol Biol 2022; 2316:237-242. [PMID: 34845699 DOI: 10.1007/978-1-0716-1464-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Determining the sequence identity of viroid RNAs present in symptomatic or asymptomatic plant tissues is critical to obtain knowledge of their distribution. It enables the development of tools for diagnostics and for studying the basic biology of viroids. With the advent of cDNA-based methods for cloning RNAs and cloning strategies that do not require prior knowledge of the viroid sequence, characterization of several newly discovered viroids has rapidly expanded our knowledge of these unusual pathogenic RNAs. This chapter describes two methods, using random primers or viroid-specific primers, to generate complementary DNA (cDNA) copies of viroid RNAs for subsequent cloning and sequence analysis.
Collapse
Affiliation(s)
- Rosemarie W Hammond
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Molecular Plant Pathology Laboratory, Beltsville, MD, USA.
| |
Collapse
|
7
|
Tsushima D, Fuji SI. Comparison of two highly sensitive methods to detect potato spindle tuber viroid in Dahlia using quantitative-reverse transcription-polymerase chain reaction assays. J Virol Methods 2021; 300:114401. [PMID: 34883102 DOI: 10.1016/j.jviromet.2021.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/30/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Potato spindle tuber viroid (PSTVd) belongs to the Pospiviroidae family and is the type species for the genus Pospiviroid. In 2011, PSTVd was first detected in dahlias in Japan. Since that time, unregistered PSTVd isolates have been identified in seven field-grown dahlia cultivars. None of the infected dahlias showed disease symptoms during the early stages of infection, however, growth suppression occasionally occurred during later stages. Therefore, in dahlia, diagnosing PSTVd by the external appearance of plants is difficult, and the threat of new PSTVd isolates spreading to other susceptible hosts still remains. In this study, we developed an efficient inspection method using several dahlia plant tissues and organs including dried bulbs. This developed method will be useful for inspecting seedlings to prevent the invasion of PSTVd at the border.
Collapse
Affiliation(s)
- Daiki Tsushima
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Shin-Ichi Fuji
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan.
| |
Collapse
|
8
|
Chiumenti M, Navarro B, Candresse T, Flores R, Di Serio F. Reassessing species demarcation criteria in viroid taxonomy by pairwise identity matrices. Virus Evol 2021; 7:veab001. [PMID: 33623708 PMCID: PMC7887442 DOI: 10.1093/ve/veab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
With a small, circular and non-protein coding RNA genome, viroids are the smallest infectious agents. They invade plants, which in turn may develop symptoms. Since their discovery about 50 years ago, more than thirty viroids have been reported and classified using as species demarcation less than 90 per cent sequence identity on the overall genome and evidence of biological divergence with respect to the closest related viroids. In the last few years, new viroids have been identified that infect latently their (frequently) woody hosts and have a narrow experimental hosts range, complicating and slowing down studies on their biology. As a consequence, several viroids are still waiting for classification. Moreover, the number of new viroids is expected to increase in the next years due to the use of high-throughput sequencing technologies with diagnostics purposes. Therefore, establishment of reliable species demarcation criteria mainly based on molecular features of viroids is needed. Here, viroid classification is reassessed and a scheme based on pairwise sequence identity matrices is developed. After identifying a threshold pairwise identity score (PWIS) for each viroid genus, to be used as a species demarcation criterion, we show that most of those yet unclassified viroids can be assigned to a known or to a new species, thus limiting the need for additional biological evidence to only a few more complex situations. The advantages of this PWIS-based method are that the proposed identity thresholds for species demarcations are not arbitrarily established and evidence for biological divergence is not mandatory. Importantly, the current classification is not essentially modified. A protocol for a tentative fast classification of new viroids according to the proposed approach is also provided.
Collapse
Affiliation(s)
- Michela Chiumenti
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Thierry Candresse
- Univ. Bordeaux, INRAE, UMR BFP, Villenave d'Ornon Cedex, CS20032 33882, France
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| |
Collapse
|
9
|
Yang Y, Xing F, Li S, Che HY, Wu ZG, Candresse T, Li SF. Dendrobium viroid, a new monocot-infecting apscaviroid. Virus Res 2020; 282:197958. [PMID: 32277953 DOI: 10.1016/j.virusres.2020.197958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Viroids are small circular RNA molecules which have been found to infect many dicot species. Only coconut cadang-cadang viroid and coconut tinangaja viroid have been reported so far to infect a monocot (coconut). Data mining in silico has proven an efficient approach to identify new viruses/viroids, and a systematic screen of public transcriptomic data revealed a 648 nucleotides (nt) sequence potentially representing a novel viroid-like RNA in a transcriptome shotgun assembly from Dendrobium officinale. This sequence contained two central conserved regions (CCRs) characteristic of members of the genus Apscaviroid, indicating that the viroid-like RNA is 324 nt in length. The infectivity of dimeric RNA transcripts generated by in vitro transcription of a synthetic cDNA, was demonstrated by directly injecting into the stems of young Dendrobium officinale plants. The presence of this novel viroid, tentatively designated as Dendrobium viroid (DVd), in the inoculated plants was confirmed by 2D-PAGE together with northern hybridization. DVd is predicted to have a rod-like secondary structure containing a CCR and a terminal conserved region (TCR), and phylogenetic analysis shows that it groups with the known members of the genus Apscaviroid. It is most closely related to citrus viroid V (56% nt identity). A field survey revealed a low DVd incidence (0.96%) in Dendrobium species in China. To our best knowledge, DVd is the only viroid known to infect orchids and the third one from monocotyledonous plants.
Collapse
Affiliation(s)
- Yi Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Fei Xing
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuai Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hai-Yan Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhi-Gang Wu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou China
| | | | - Shi-Fang Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Chiaki Y, Ito T. Characterization of a distinct variant of hop stunt viroid and a new apscaviroid detected in grapevines. Virus Genes 2020; 56:260-265. [PMID: 31916137 DOI: 10.1007/s11262-019-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
Using next-generation sequencing, we detected a novel variant of hop stunt viroid (HSVd) in grapevine 'Chenin blanc' (Vitis vinifera L.) and a new viroid species in 'Nachubearmarie' (Vitis labrusca L. × V. vinifera). The HSVd variant termed HSVd-CB has 296 nucleotides with up to 82% sequence identity with other HSVd variants such as HSVd-AP1 (Genbank accession EF523826). Many nucleotide changes, deletions, and insertions were sporadically found in HSVd-CB relative to HSVd-AP1 in the pathogenic and variable domains. Although several variations were also found in the central domain, few variations were found in the terminal left and right domains, including no variations in the terminal conserved hairpin. The new viroid, tentatively termed Japanese grapevine viroid (JGVd), has 367 nucleotides and has genetic features characteristic of the genus Apscaviroid. JGVd shared the highest nucleotide sequence identity (68%) with a persimmon latent viroid (PLVd) in its overall genome. However, the JGVd sequence shows chimerism with the partial genomes of other apscaviroids from apple, grapevine, and citrus. Phylogenetic analyses showed that only HSVd-CB formed a distinct branch from the cluster of the other HSVd variants and JGVd and PLVd formed a distinct branch from all other grapevine-infecting apscaviroids.
Collapse
Affiliation(s)
- Yuya Chiaki
- Grape and Persimmon Research Station, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Akitsu, Higashihiroshima, Hiroshima, 739-2494, Japan
| | - Takao Ito
- Grape and Persimmon Research Station, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Akitsu, Higashihiroshima, Hiroshima, 739-2494, Japan.
| |
Collapse
|
11
|
Batuman O, Çiftçi ÖC, Osei MK, Miller SA, Rojas MR, Gilbertson RL. Rasta Disease of Tomato in Ghana is Caused by the Pospiviroids Potato spindle tuber viroid and Tomato apical stunt viroid. PLANT DISEASE 2019; 103:1525-1535. [PMID: 31012822 DOI: 10.1094/pdis-10-18-1751-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rasta is a virus-like disease of unknown etiology affecting tomato (Solanum lycopersicum) plants in Ghana. Symptoms include stunting; epinasty, crumpling, and chlorosis of leaves; and necrosis of leaf veins, petioles, and stems. Leaf samples with rasta symptoms were collected from commercial tomato fields in Ghana in October 2012 and applied to FTA cards, and RNA extracts were prepared. Reverse-transcription polymerase chain reaction (RT-PCR) tests with primers for Columnea latent viroid, which causes rasta-like symptoms in tomato plants in Mali, were negative, whereas tests with degenerate viroid primer pairs were inconclusive. However, tomato seedlings (Early Pak 7) mechanically inoculated with RNA extracts of 10 of 13 samples developed rasta-like symptoms. In RT-PCR tests with RNA from leaves of the 10 symptomatic seedlings and primers for Potato spindle tuber viroid (PSTVd) or Tomato apical stunt viroid (TASVd), the expected size (approximately 360 bp) of DNA fragment was amplified from eight and two seedlings, respectively. Sequence analyses confirmed that these fragments were from PSTVd and TASVd isolates, and revealed a single PSTVd haplotype and two TASVd haplotypes. The PSTVd and TASVd isolates from Ghana had high nucleotide identities (>94%) with isolates from other geographic regions. In a host range study, PSTVd and TASVd isolates from Ghana induced rasta symptoms in the highly susceptible tomato cultivar Early Pak 7 and mild or no symptoms in Glamour, and symptomless infections in a number of other solanaceous species. PSTVd and TASVd isolates were seed associated and possibly seed transmitted.
Collapse
Affiliation(s)
- Ozgur Batuman
- 1 Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida-IFAS, Immokalee, FL 34142, U.S.A
| | - Ö Cem Çiftçi
- 2 Molecular Biology, Genetics and Bioengineering, Sabancı University, Istanbul, Turkey
| | - Michael K Osei
- 3 CSIR-Crops Research Institute, P.O. BOX 3785, Kumasi, Ghana
| | - Sally A Miller
- 4 Department of Plant Pathology, The Ohio State University, Wooster, OH 44691, U.S.A.; and
| | - Maria R Rojas
- 5 Department of Plant Pathology, University of California-Davis, Davis, CA 95616, U.S.A
| | - Robert L Gilbertson
- 5 Department of Plant Pathology, University of California-Davis, Davis, CA 95616, U.S.A
| |
Collapse
|
12
|
Giguère T, Perreault JP. Classification of the Pospiviroidae based on their structural hallmarks. PLoS One 2017; 12:e0182536. [PMID: 28783761 PMCID: PMC5544226 DOI: 10.1371/journal.pone.0182536] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/19/2017] [Indexed: 02/04/2023] Open
Abstract
The simplest known plant pathogens are the viroids. Because of their non-coding single-stranded circular RNA genome, they depend on both their sequence and their structure for both a successful infection and their replication. In the recent years, important progress in the elucidation of their structures was achieved using an adaptation of the selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE) protocol in order to probe viroid structures in solution. Previously, SHAPE has been adapted to elucidate the structures of all of the members of the family Avsunviroidae, as well as those of a few members of the family Pospiviroidae. In this study, with the goal of providing an entire compendium of the secondary structures of the various viroid species, a total of thirteen new Pospiviroidae members were probed in solution using the SHAPE protocol. More specifically, the secondary structures of eleven species for which the genus was previously known were initially elucidated. At this point, considering all of the SHAPE elucidated secondary structures, a classification system for viroids in their respective genera was proposed. On the basis of the structural classification reported here, the probings of both the Grapevine latent viroid and the Dahlia latent viroid provide sound arguments for the determination of their respective genera, which appear to be Apscaviroid and Hostuviroid, respectively. More importantly, this study provides the complete repertoire of the secondary structures, mapped in solution, of all of the accepted viroid species reported thus far. In addition, a classification scheme based on structural hallmarks, an important tool for many biological studies, is proposed.
Collapse
Affiliation(s)
- Tamara Giguère
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
13
|
Abstract
Mature viroids consist of a noncoding, covalently closed circular RNA that is able to autonomously infect respective host plants. Thus, they must utilize proteins of the host for most biological functions such as replication, processing, transport, and pathogenesis. Therefore, viroids can be regarded as minimal parasites of the host machinery. They have to present to the host machinery the appropriate signals based on either their sequence or their structure. Here, we summarize such sequence and structural features critical for the biological functions of viroids.
Collapse
Affiliation(s)
- Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | - Jean-Pierre Perreault
- Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliqueé sur le cancer, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
14
|
Gago-Zachert S. Viroids, infectious long non-coding RNAs with autonomous replication. Virus Res 2015; 212:12-24. [PMID: 26319312 DOI: 10.1016/j.virusres.2015.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
Transcriptome deep-sequencing studies performed during the last years confirmed that the vast majority of the RNAs transcribed in higher organisms correspond to several types of non-coding RNAs including long non-coding RNAs (lncRNAs). The study of lncRNAs and the identification of their functions, is still an emerging field in plants but the characterization of some of them indicate that they play an important role in crucial regulatory processes like flowering regulation, and responses to abiotic stress and plant hormones. A second group of lncRNAs present in plants is formed by viroids, exogenous infectious subviral plant pathogens well known since many years. Viroids are composed of circular RNA genomes without protein-coding capacity and subvert enzymatic activities of their hosts to complete its own biological cycle. Different aspects of viroid biology and viroid-host interactions have been elucidated in the last years and some of them are the main topic of this review together with the analysis of the state-of-the-art about the growing field of endogenous lncRNAs in plants.
Collapse
Affiliation(s)
- Selma Gago-Zachert
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| |
Collapse
|
15
|
Verhoeven J, Roenhorst J, Hooftman M, Meekes E, Flores R, Serra P. A pospiviroid from symptomless portulaca plants closely related to iresine viroid 1. Virus Res 2015; 205:22-6. [DOI: 10.1016/j.virusres.2015.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/30/2022]
|
16
|
Asano S, Matsushita Y, Hirayama Y, Naka T. Simultaneous detection of Tomato spotted wilt virus
,Dahlia mosaic virus
and Chrysanthemum stunt viroid
by multiplex RT-PCR in dahlias and their distribution in Japanese dahlias. Lett Appl Microbiol 2015; 61:113-20. [DOI: 10.1111/lam.12442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 11/28/2022]
Affiliation(s)
- S. Asano
- Nara Prefectural Agricultural Research and Development Center; Kashihara Nara Japan
| | - Y. Matsushita
- NARO Institute of Floricultural Science; Tsukuba Ibaraki Japan
| | - Y. Hirayama
- Nara Prefectural Agricultural Research and Development Center; Kashihara Nara Japan
| | - T. Naka
- Nara Prefectural Agricultural Research and Development Center; Kashihara Nara Japan
| |
Collapse
|
17
|
Katsarou K, Rao ALN, Tsagris M, Kalantidis K. Infectious long non-coding RNAs. Biochimie 2015; 117:37-47. [PMID: 25986218 DOI: 10.1016/j.biochi.2015.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023]
Abstract
Long non protein coding RNAs (lncRNAs) constitute a large category of the RNA world, able to regulate different biological processes. In this review we are focusing on infectious lncRNAs, their classification, pathogenesis and impact on the infected organisms. Here they are presented in two separate groups: 'dependent lncRNAs' (comprising satellites RNA, Hepatitis D virus and lncRNAs of viral origin) which need a helper virus and 'independent lncRNAs' (viroids) that can self-replicate. Even though these lncRNA do not encode any protein, their structure and/or sequence comprise all the necessary information to drive specific interactions with host factors and regulate several cellular functions. These new data that have emerged during the last few years concerning lncRNAs modify the way we understand molecular biology's 'central dogma' and give new perspectives for applications and potential therapeutic strategies.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - A L N Rao
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521-01222, USA
| | - Mina Tsagris
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece; Department of Biology, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
18
|
Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res 2015; 209:136-45. [PMID: 25738582 DOI: 10.1016/j.virusres.2015.02.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
The discovery of viroids about 45 years ago heralded a revolution in Biology: small RNAs comprising around 350 nt were found to be able to replicate autonomously-and to incite diseases in certain plants-without encoding proteins, fundamental properties discriminating these infectious agents from viruses. The initial focus on the pathological effects usually accompanying infection by viroids soon shifted to their molecular features-they are circular molecules that fold upon themselves adopting compact secondary conformations-and then to how they manipulate their hosts to be propagated. Replication of viroids-in the nucleus or chloroplasts through a rolling-circle mechanism involving polymerization, cleavage and circularization of RNA strands-dealt three surprises: (i) certain RNA polymerases are redirected to accept RNA instead of their DNA templates, (ii) cleavage in chloroplastic viroids is not mediated by host enzymes but by hammerhead ribozymes, and (iii) circularization in nuclear viroids is catalyzed by a DNA ligase redirected to act upon RNA substrates. These enzymes (and ribozymes) are most probably assisted by host proteins, including transcription factors and RNA chaperones. Movement of viroids, first intracellularly and then to adjacent cells and distal plant parts, has turned out to be a tightly regulated process in which specific RNA structural motifs play a crucial role. More recently, the advent of RNA silencing has brought new views on how viroids may cause disease and on how their hosts react to contain the infection; additionally, viroid infection may be restricted by other mechanisms. Representing the lowest step on the biological size scale, viroids have also attracted considerable interest to get a tentative picture of the essential characteristics of the primitive replicons that populated the postulated RNA world.
Collapse
|
19
|
Discovery of replicating circular RNAs by RNA-seq and computational algorithms. PLoS Pathog 2014; 10:e1004553. [PMID: 25503469 PMCID: PMC4263765 DOI: 10.1371/journal.ppat.1004553] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022] Open
Abstract
Replicating circular RNAs are independent plant pathogens known as viroids, or act to modulate the pathogenesis of plant and animal viruses as their satellite RNAs. The rate of discovery of these subviral pathogens was low over the past 40 years because the classical approaches are technical demanding and time-consuming. We previously described an approach for homology-independent discovery of replicating circular RNAs by analysing the total small RNA populations from samples of diseased tissues with a computational program known as progressive filtering of overlapping small RNAs (PFOR). However, PFOR written in PERL language is extremely slow and is unable to discover those subviral pathogens that do not trigger in vivo accumulation of extensively overlapping small RNAs. Moreover, PFOR is yet to identify a new viroid capable of initiating independent infection. Here we report the development of PFOR2 that adopted parallel programming in the C++ language and was 3 to 8 times faster than PFOR. A new computational program was further developed and incorporated into PFOR2 to allow the identification of circular RNAs by deep sequencing of long RNAs instead of small RNAs. PFOR2 analysis of the small RNA libraries from grapevine and apple plants led to the discovery of Grapevine latent viroid (GLVd) and Apple hammerhead viroid-like RNA (AHVd-like RNA), respectively. GLVd was proposed as a new species in the genus Apscaviroid, because it contained the typical structural elements found in this group of viroids and initiated independent infection in grapevine seedlings. AHVd-like RNA encoded a biologically active hammerhead ribozyme in both polarities, and was not specifically associated with any of the viruses found in apple plants. We propose that these computational algorithms have the potential to discover novel circular RNAs in plants, invertebrates and vertebrates regardless of whether they replicate and/or induce the in vivo accumulation of small RNAs.
Collapse
|
20
|
Van Bogaert N, De Jonghe K, Van Damme EJM, Maes M, Smagghe G. Quantitation and localization of pospiviroids in aphids. J Virol Methods 2014; 211:51-4. [PMID: 25455904 DOI: 10.1016/j.jviromet.2014.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 11/28/2022]
Abstract
In this paper, the potential role of aphids in viroid transmission was explored. Apterous aphids were fed on pospiviroid-infected plants and viroid targets in the aphids were consequently quantified through RT-qPCR and localized within the aphid body using fluorescence in situ hybridization (FISH). Based on the analytical sensitivity test, the limit of detection (LOD) was estimated at 1.69×10(6) viroid copies per individual aphid body. To localize the viroids in the aphids, a pospiviroid-generic Cy5-labelled probe was used and the fluorescent signal was determined by confocal microscopy. Viroids were clearly observed in the aphid's stylet and stomach, but not in the embryos. Viroids were detected in 29% of the aphids after a 24h feeding period, which suggests only a partial and low concentration viroid uptake by the aphid population including viroid concentrations under the LOD. However, these results show that viroids can be ingested by aphids while feeding on infected plants, thus potentially increasing the transmission risk. The combination of FISH and RT-qPCR provides reliable and fast localization and quantitation of viroid targets in individual aphids and thus constitutes a valuable tool in future epidemiological research.
Collapse
Affiliation(s)
- N Van Bogaert
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research (ILVO), Burgemeester Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - K De Jonghe
- Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research (ILVO), Burgemeester Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - E J M Van Damme
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - M Maes
- Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research (ILVO), Burgemeester Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - G Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
21
|
Abstract
Viroids are the smallest autonomous infectious nucleic acids known so far. With a small circular RNA genome of about 250-400 nt, which apparently does not code for any protein, viroids replicate and move systemically in host plants. Since the discovery of the first viroid almost forty-five years ago, many different viroids have been isolated, characterized and, frequently, identified as the causal agents of plant diseases. The first viroid classification scheme was proposed in the early 1990s and adopted by the International Committee on Taxonomy of Viruses (ICTV) a few years later. Here, the current viroid taxonomy scheme and the criteria for viroid species demarcation are discussed, highlighting the main taxonomic questions currently under consideration by the ICTV Viroid Study Group. The impact of correct taxonomic annotation of viroid sequence variants is also addressed, taking into consideration the increasing application of next-generation sequencing and bioinformatics for known and previously unrecognized viroids.
Collapse
|
22
|
What has been happening with viroids? Virus Genes 2014; 49:175-84. [DOI: 10.1007/s11262-014-1110-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022]
|
23
|
Abstract
Because RNA can be a carrier of genetic information and a biocatalyst, there is a consensus that it emerged before DNA and proteins, which eventually assumed these roles and relegated RNA to intermediate functions. If such a scenario--the so-called RNA world--existed, we might hope to find its relics in our present world. The properties of viroids that make them candidates for being survivors of the RNA world include those expected for primitive RNA replicons: (a) small size imposed by error-prone replication, (b) high G + C content to increase replication fidelity, (c) circular structure for assuring complete replication without genomic tags, (d) structural periodicity for modular assembly into enlarged genomes, (e) lack of protein-coding ability consistent with a ribosome-free habitat, and (f) replication mediated in some by ribozymes, the fingerprint of the RNA world. With the advent of DNA and proteins, those protoviroids lost some abilities and became the plant parasites we now know.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), 46022 València, Spain;
| | | | | | | | | |
Collapse
|