1
|
Wang S, Wang X, Li S, Sun X, Xue M, Di D, Zhang A, Zhang Y, Xia Y, Zhou T, Fan Z. Maize lipid droplet-associated protein 2 is recruited by a virus to enhance viral multiplication and infection through regulating cellular fatty acid metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2484-2499. [PMID: 39007841 DOI: 10.1111/tpj.16934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
Pathogen infection induces massive reprogramming of host primary metabolism. Lipid and fatty acid (FA) metabolism is generally disrupted by pathogens and co-opted for their proliferation. Lipid droplets (LDs) that play important roles in regulating cellular lipid metabolism are utilized by a variety of pathogens in mammalian cells. However, the function of LDs during pathogenic infection in plants remains unknown. We show here that infection by rice black streaked dwarf virus (RBSDV) affects the lipid metabolism of maize, which causes elevated accumulation of C18 polyunsaturated fatty acids (PUFAs) leading to viral proliferation and symptom development. The overexpression of one of the two novel LD-associated proteins (LDAPs) of maize (ZmLDAP1 and ZmLDAP2) induces LD clustering. The core capsid protein P8 of RBSDV interacts with ZmLDAP2 and prevents its degradation through the ubiquitin-proteasome system mediated by a UBX domain-containing protein, PUX10. In addition, silencing of ZmLDAP2 downregulates the expression of FA desaturase genes in maize, leading to a decrease in C18 PUFAs levels and suppression of RBSDV accumulation. Our findings reveal that plant virus may recruit LDAP to regulate cellular FA metabolism to promote viral multiplication and infection. These results expand the knowledge of LD functions and viral infection mechanisms in plants.
Collapse
Affiliation(s)
- Siyuan Wang
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
| | - Xinyu Wang
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
| | - Siqi Li
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
| | - Xi Sun
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
| | - Mingshuo Xue
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
| | - Dianping Di
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding, 071000, China
| | - Aihong Zhang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding, 071000, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Tao Zhou
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
| | - Zaifeng Fan
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
2
|
Wang F, Xu Z, Li R, Zhou Z, Hao Z, Wang L, Li M, Zhang D, Song W, Yong H, Han J, Li X, Weng J. Identification of the Coexisting Virus-Derived siRNA in Maize and Rice Infected by Rice Black-Streaked Dwarf Virus. PLANT DISEASE 2024; 108:2845-2854. [PMID: 38736149 DOI: 10.1094/pdis-11-23-2301-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Rice black-streaked dwarf virus is transmitted by small brown planthoppers, which causes maize rough dwarf disease and rice black-streaked dwarf disease. This virus leads to slow growth or death of the host plants. During the coevolutionary arms race between viruses and plants, virus-derived small interfering RNAs (vsiRNAs) challenge the plant's defense response and inhibit host immunity through the RNA silencing system. However, it is currently unknown if rice black-streaked dwarf virus can produce the same siRNAs to mediate the RNA silencing in different infected species. In this study, four small RNA libraries and four degradome libraries were constructed by extracting total RNAs from the leaves of the maize (Zea mays) inbred line B73 and japonica rice (Oryza sativa) variety Nipponbare exposed to feeding by viruliferous and nonviruliferous small brown planthoppers. We analyzed the characteristics of small RNAs and explored virus-derived siRNAs in small RNA libraries through high-throughput sequencing. On analyzing the characteristics of small RNA, we noted that the size distributions of small RNAs were mainly 24 nt (19.74 to 62.00%), whereas those of vsiRNAs were mostly 21 nt (41.06 to 41.87%) and 22 nt (39.72 to 42.26%). The 5'-terminal nucleotides of vsiRNAs tended to be adenine or uracil. Exploring the distribution of vsiRNA hot spots on the viral genome segments revealed that the frequency of hotspots in B73 was higher than those in Nipponbare. Meanwhile, hotspots in the S9 and S10 virus genome segments were distributed similarly in both hosts. In addition, the target genes of small RNA were explored by degradome sequencing. Analyses of the regulatory pathway of these target genes unveiled that viral infection affected the ribosome-related target genes in maize and the target genes in the metabolism and biosynthesis pathways in rice. Here, 562 and 703 vsiRNAs were separately obtained in maize and rice and 73 vsiRNAs named as coexisting vsiRNAs (co-vsiRNAs) were detected in both hosts. Stem-loop PCR and real-time quantitative PCR confirmed that co-vsiRNA 3.1 and co-vsiRNA 3.5, derived from genome segment S3, simultaneously play a role in maize and rice and inhibited host gene expression. The study revealed that rice black-streaked dwarf virus can produce the same siRNAs in different species and provides a new direction for developing new antiviral strategies.
Collapse
Affiliation(s)
- Feifei Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhennan Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ronggai Li
- Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050000, China
| | - Zhiqiang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuanfang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liwei Wang
- Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050000, China
| | - Mingshun Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Degui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Song
- Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050000, China
| | - Hongjun Yong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jienan Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianfeng Weng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Lagzian A, Ghorbani A, Tabein S, Riseh RS. Genetic variations and gene expression profiles of Rice Black-streaked dwarf virus (RBSDV) in different host plants and insect vectors: insights from RNA-Seq analysis. BMC Genomics 2024; 25:736. [PMID: 39080552 PMCID: PMC11289972 DOI: 10.1186/s12864-024-10649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) is an etiological agent of a destructive disease infecting some economically important crops from the Gramineae family in Asia. While RBSDV causes high yield losses, genetic characteristics of replicative viral populations have not been investigated within different host plants and insect vectors. Herein, eleven publicly available RNA-Seq datasets from Chinese RBSDV-infected rice, maize, and viruliferous planthopper (Laodelphax striatellus) were obtained from the NCBI database. The patterns of SNP and RNA expression profiles of expected RBSDV populations were analyzed by CLC Workbench 20 and Geneious Prime software. These analyses discovered 2,646 mutations with codon changes in RBSDV whole transcriptome and forty-seven co-mutated hotspots with high variant frequency within the crucial regions of S5-1, S5-2, S6, S7-1, S7-2, S9, and S10 open reading frames (ORFs) which are responsible for some virulence and host range functions. Moreover, three joint mutations are located on the three-dimensional protein of P9-1. The infected RBSDV-susceptible rice cultivar KTWYJ3 and indigenous planthopper datasets showed more co-mutated hotspot numbers than others. Our analyses showed the expression patterns of viral genomic fragments varied depending on the host type. Unlike planthopper, S5-1, S2, S6, and S9-1 ORFs, respectively had the greatest read numbers in host plants; and S5-2, S9-2, and S7-2 were expressed in the lowest level. These findings underscore virus/host complexes are effective in the genetic variations and gene expression profiles of plant viruses. Our analysis revealed no evidence of recombination events. Interestingly, the negative selection was observed at 12 RBSDV ORFs, except for position 1015 in the P1 protein, where a positive selection was detected. The research highlights the potential of SRA datasets for analysis of the virus cycle and enhances our understanding of RBSDV's genetic diversity and host specificity.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
4
|
Wu W, Wang M, Deng Z, Xi M, Dong Y, Wang H, Zhang J, Wang C, Zhou Y, Xu Q. The miR-184-3p promotes rice black-streaked dwarf virus infection by suppressing Ken in Laodelphax striatellus (Fallén). PEST MANAGEMENT SCIENCE 2024; 80:1849-1858. [PMID: 38050810 DOI: 10.1002/ps.7917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) play a key role in various biological processes by influencing the translation of target messenger RNAs (mRNAs) through post-transcriptional regulation. The miR-184-3p has been identified as an abundant conserved miRNA in insects. However, less is known about its functions in insect-plant virus interactions. RESULTS The function of miR-184-3p in regulation of plant viral infection in insects was investigated using a rice black-streaked dwarf virus (RBSDV) and Laodelphax striatellus (Fallén) interaction system. We found that the expression of miR-184-3p increased in L. striatellus after RBSDV infection. Injection of miR-184-3p mimics increased RBSDV accumulation, while treatment with miR-184-3p antagomirs inhibits the viral accumulation in L. striatellus. Ken, a zinc finger protein, was identified as a target of miR-184-3p. Knockdown of Ken increased the virus accumulation and promoted RBSDV transmission by L. striatellus. CONCLUSION This study demonstrates that RBSDV infection induces the expression of miR-184-3p in its insect vector L. striatellus. The miR-184-3p targets Ken to promote RBSDV accumulation and transmission. These findings provide a new insight into the function of the miRNAs in regulating plant viral infection in its insect vector. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Man Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiting Deng
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Minmin Xi
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yan Dong
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Haitao Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianhua Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Changchun Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yijun Zhou
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiufang Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
5
|
A Fijivirus Major Viroplasm Protein Shows RNA-Stimulated ATPase Activity by Adopting Pentameric and Hexameric Assemblies of Dimers. mBio 2023; 14:e0002323. [PMID: 36786587 PMCID: PMC10128069 DOI: 10.1128/mbio.00023-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Fijiviruses replicate and package their genomes within viroplasms in a process involving RNA-RNA and RNA-protein interactions. Here, we demonstrate that the 24 C-terminal residues (C-arm) of the P9-1 major viroplasm protein of the mal de Río Cuarto virus (MRCV) are required for its multimerization and the formation of viroplasm-like structures. Using an integrative structural approach, the C-arm was found to be dispensable for P9-1 dimer assembly but essential for the formation of pentamers and hexamers of dimers (decamers and dodecamers), which favored RNA binding. Although both P9-1 and P9-1ΔC-arm catalyzed ATP with similar activities, an RNA-stimulated ATPase activity was only detected in the full-length protein, indicating a C-arm-mediated interaction between the ATP catalytic site and the allosteric RNA binding sites in the (do)decameric assemblies. A stronger preference to bind phosphate moieties in the decamer was predicted, suggesting that the allosteric modulation of ATPase activity by RNA is favored in this structural conformation. Our work reveals the structural versatility of a fijivirus major viroplasm protein and provides clues to its mechanism of action. IMPORTANCE The mal de Río Cuarto virus (MRCV) causes an important maize disease in Argentina. MRCV replicates in several species of Gramineae plants and planthopper vectors. The viral factories, also called viroplasms, have been studied in detail in animal reovirids. This work reveals that a major viroplasm protein of MRCV forms previously unidentified structural arrangements and provides evidence that it may simultaneously adopt two distinct quaternary assemblies. Furthermore, our work uncovers an allosteric communication between the ATP and RNA binding sites that is favored in the multimeric arrangements. Our results contribute to the understanding of plant reovirids viroplasm structure and function and pave the way for the design of antiviral strategies for disease control.
Collapse
|
6
|
Li Y, Zhu L, Gao J, Ma H, Li C, Song Y, Zhu X, Zhu C. Silencing suppressors of rice black-streaked dwarf virus and rice stripe virus hijack the 26S proteasome of Laodelphax striatellus to facilitate virus accumulation and transmission. PEST MANAGEMENT SCIENCE 2022; 78:2940-2951. [PMID: 35439336 DOI: 10.1002/ps.6918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rice black-streaked dwarf virus (RBSDV) is transmitted by small brown planthopper (Laodelphax striatellus [L. striatellus]) and causes devastating disease in rice. P9-1 has silencing suppression activity and is the key protein for viroplasm formation in RBSDV-infected plants and insects; however, its exact function is poorly understood. RESULTS In this study, the P9-1 of RBSDV interacted with L. striatellus 26S proteasome subunit RPN8. RBSDV accumulation in L. striatellus increased after the 26S proteasome was disrupted by silencing the RPN8 expression. This finding indicated that L. striatellus 26S proteasome played a defense role against RBSDV infection by regulating RBSDV accumulation. Further investigations revealed that P9-1 could competitively bind to RPN8 with RPN7, thereby disrupting the assembly of 26S proteasome in L. striatellus and promoting the infection of RBSDV in insect vectors, and further affecting the transmission of the virus to rice by insect vectors. Similar to P9-1, rice stripe virus (RSV) NS2, a weak silencing suppressor, regulated virus accumulation and transmission by hijacking RPN8 to interfere with the function of 26S proteasome in L. striatellus. CONCLUSION These results suggest that viruses promote their own infection via interfering with ubiquitination pathway of insect vectors, and this mechanism might be of universal importance. These findings provide a new insight into the mechanism of virus transmission in insect vectors. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| | - Lifei Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| | - Jiaqi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| | - Haoran Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| | - Changyuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, Taian, P. R. China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| |
Collapse
|
7
|
Yang Y, Wang A, Wang M, Zhang Y, Zhang J, Zhao M. ATP-binding cassette transporters ABCF2 and ABCG9 regulate rice black-streaked dwarf virus infection in its insect vector, Laodelphax striatellus (Fallén). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:327-334. [PMID: 35543297 DOI: 10.1017/s0007485321000869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The majority of plant viral disease is transmitted and spread by insect vectors in the field. The small brown planthopper, Laodelphax striatellus (Fallén), is the only efficient vector for rice black-streaked dwarf virus (RBSDV), a devastating plant virus that infects multiple grain crops, including rice, maize, and wheat. Adenosine triphosphate (ATP)-binding cassette (ABC) transporters participate in various biological processes. However, little is known about whether ABC transporters affect virus infection in insects. In this study, RBSDV accumulation was significantly reduced in L. striatellus after treatment with verapamil, an effective inhibitor of ABC transporters. Thirty-four ABC transporter genes were identified in L. striatellus and expression analysis showed that LsABCF2 and LsABCG9 were significantly upregulated and downregulated, respectively, after RBSDV infection. LsABCF2 and LsABCG9 were expressed during all developmental stages, and LsABCG9 was highly expressed in the midgut of L. striatellus. Knockdown of LsABCF2 promoted RBSDV accumulation, while knockdown of LsABCG9 suppressed RBSDV accumulation in L. striatellus. Our data showed that L. striatellus might upregulate the expression of LsABCF2 and downregulate LsABCG9 expression to suppress RBSDV infection. These results will contribute to understanding the effects of ABC transporters on virus transmission and provide theoretical basis for virus management in the field.
Collapse
Affiliation(s)
- Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Man Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
8
|
Zhang JH, Zhao M, Zhou YJ, Xu QF, Yang YX. Cytochrome P450 Monooxygenases CYP6AY3 and CYP6CW1 Regulate Rice Black-Streaked Dwarf Virus Replication in Laodelphax striatellus (Fallén). Viruses 2021; 13:v13081576. [PMID: 34452441 PMCID: PMC8402780 DOI: 10.3390/v13081576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
The small brown planthopper, Laodelphax striatellus (Fallén), is an important agricultural pest that causes significant losses by sucking and transmitting multiple plant viruses, such as rice black-streaked dwarf virus (RBSDV). Insecticides are commonly used to control planthoppers and cause the induction or overexpression of cytochrome P450 monooxygenases (P450s) from the CYP3 and CYP4 clades after insecticide application. However, little is known about the roles of insecticides and P450s in the regulation of viral replication in insects. In this study, RBSDV-infected L. striatellus were injected with imidacloprid, deltamethrin, pymetrozine, and buprofezin, respectively. The insecticide treatments caused a significant decrease in RBSDV abundance in L. striatellus. Treatment of piperonyl butoxide (PBO), an effective inhibitor of P450s, significantly increased the RBSDV abundance in L. striatellus. Fourteen P450 candidate genes in the CYP3 clade and 21 in the CYP4 clade were systematically identified in L. striatellus, and their expression patterns were analyzed under RBSDV infection, in different tissues, and at different developmental stages. Among the thirty-five P450 genes, the expression level of CYP6CW1 was the highest, while CYP6AY3 was the lowest after RBSDV infection. Knockdown of CYP6CW1 and CYP6AY3 significantly increased the virus abundance and promoted virus replication in L. striatellus. Overall, our data reveal that CYP6CW1 and CYP6AY3 play a critical role in the regulation of virus replication in L.striatellus.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.-H.Z.); (Y.-J.Z.)
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Yi-Jun Zhou
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.-H.Z.); (Y.-J.Z.)
| | - Qiu-Fang Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.-H.Z.); (Y.-J.Z.)
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (Q.-F.X.); (Y.-X.Y.)
| | - Yuan-Xue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
- Correspondence: (Q.-F.X.); (Y.-X.Y.)
| |
Collapse
|
9
|
Zhang J, Wang H, Wu W, Dong Y, Wang M, Yi D, Zhou Y, Xu Q. Systematic Identification and Functional Analysis of Circular RNAs During Rice Black-Streaked Dwarf Virus Infection in the Laodelphax striatellus (Fallén) Midgut. Front Microbiol 2020; 11:588009. [PMID: 33117326 PMCID: PMC7550742 DOI: 10.3389/fmicb.2020.588009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 02/01/2023] Open
Abstract
Circular RNAs (circRNAs) are endogenous RNAs that have critical regulatory roles in numerous biological processes. However, it remains largely unknown whether circRNAs are induced in response to plant virus infection in the insect vector of the virus as well as whether the circRNAs regulate virus infection. Rice black-streaked dwarf virus (RBSDV) is transmitted by Laodelphax striatellus (Fallén) in a persistent propagative manner and causes severe losses in East Asian countries. To explore the expression and function of circRNAs in the regulation of virus infection, we determined the circRNA expression profile in RBSDV-free or RBSDV-infected L. striatellus midgut tissues by RNA-Seq. A total of 2,523 circRNAs were identified, of which thirteen circRNAs were differentially expressed after RBSDV infection. The functions of these differentially circRNAs were predicted by GO and KEGG pathway analyses. The expression changes of five differentially expressed circRNAs and eight parental genes were validated by RT-qPCR. The circRNAs-microRNAs (miRNAs) interaction networks were analyzed and two miRNAs, which were predicted to bind circRNAs, were differentially expressed after virus infection. CircRNA2030 was up-regulated after RBSDV infection in L. striatellus midgut. Knockdown of circRNA2030 by RNA interference inhibited the expression of its predicted parental gene phospholipid-transporting ATPase (PTA) and enhanced RBSDV infection in L. striatellus. However, none of the six miRNAs predicting to bind circRNA2030 was up-regulated after circRNA2030 knockdown. The results suggested that circRNA2030 might affect RBSDV infection via regulating PTA. Our results reveal the expression profile of circRNAs in L. striatellus midgut and provide new insight into the roles of circRNAs in virus-insect vector interaction.
Collapse
Affiliation(s)
- Jianhua Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Haitao Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, China
| | - Wei Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Dong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, China
| | - Man Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, China
| | - Dianshan Yi
- Nanjing Plant Protection and Quarantine Station, Nanjing, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, China
| | - Qiufang Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, China
| |
Collapse
|
10
|
Zhang JH, Dong Y, Wu W, Yi DS, Wang M, Wang HT, Xu QF. Comprehensive Identification and Characterization of Long Non-coding RNAs Associated With Rice Black-Streaked Dwarf Virus Infection in Laodelphax striatellus (Fallén) Midgut. Front Physiol 2020; 11:1011. [PMID: 32903522 PMCID: PMC7437459 DOI: 10.3389/fphys.2020.01011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/24/2020] [Indexed: 11/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in a variety of biological functions through transcriptional and post-transcriptional regulation. However, little is known about their functions in the process of insect mediated virus transmission. In the present study, we analyzed using RNA-Seq, the lncRNAs that were differentially expressed in response to Rice black-streaked dwarf virus (RBSDV) infection in Laodelphax striatellus (Fallén) midgut. A total of 13,927 lncRNAs were identified and over 69% were assigned to intergenic regions. Among them, 176 lncRNAs were differentially expressed and predicted to target 168 trans-regulatory genes. Ten differentially expressed lncRNAs were selected and their expression changes were validated by RT-qPCR. KEGG analysis showed that these target genes were enriched in the essential biological process, such as Purine metabolism, Valine, leucine and isoleucine degradation, and Fatty acid elongation. The expression levels of the differentially expressed lncRNAs and the predicted target genes that were significantly enriched in the Human papillomavirus infection pathway were analyzed by RT-qPCR. The results showed that several lncRNAs were co-expressed with their target genes. One of the lncRNAs called MSTRG15394 and its target gene, encoding a secreted protease inhibitor (PI), were up-regulated at the transcriptional level after RBSDV infection. Knockdown of MSTRG15394 could down-regulate the PI expression at mRNA level. Inhibition of either MSTRG15394 or PI expression by RNA interference promoted RBSDV accumulation in L. striatellus midgut. Our finding provides new insights into the function of lncRNAs in regulating virus infection in an important insect vector.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Dong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, China
| | - Wei Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dian-Shan Yi
- Nanjing Plant Protection and Quarantine Station, Nanjing, China
| | - Man Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hai-Tao Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, China
| | - Qiu-Fang Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, China
| |
Collapse
|
11
|
Wu N, Zhang L, Ren Y, Wang X. Rice black-streaked dwarf virus: From multiparty interactions among plant-virus-vector to intermittent epidemics. MOLECULAR PLANT PATHOLOGY 2020; 21:1007-1019. [PMID: 32510844 PMCID: PMC7368121 DOI: 10.1111/mpp.12946] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 05/18/2023]
Abstract
UNLABELLED Rice black-streaked dwarf virus (RBSDV) (species Rice black-streaked dwarf virus, genus Fijivirus, family Reoviridae) is the causal agent of rice black-streaked dwarf and maize rough dwarf diseases, which occur in intermittent epidemics in East Asian countries and are responsible for considerable yield losses. Intermittency of epidemics make accurate forecasting and designing of effective management strategies difficult. However, recent insights into host-virus-vector insect interactions are now informing forecasting and disease control measures. Resistance genes are also being identified and mapped. SYMPTOMATOLOGY AND HOST RANGE RBSDV induces extreme stunting, darkened, and stiff leaves of crops and weeds only in the family Poaceae, including Oryza sativa, Zea mays, and Triticum aestivum. Infected plants produce totally or partially deformed panicles and remain alive through harvest. GENOME AND GENE FUNCTION The nonenveloped virus particles comprise a double-layered capsid, 50-nm core with genomic double-stranded RNA (dsRNA), and six proteins. The genome of RBSDV contains 10 segments of dsRNA, named S1 to S10 in decreasing order of molecular weight. Segments 1, 2, 3, 4, 6, 8, and 10 encode the RNA-dependent RNA polymerase (RdRp), the major core structural protein, a protein with guanylyltransferase activity, an outer-shell B-spike protein, viral RNA-silencing suppressor, the major capsid protein, and the outer capsid protein, respectively. Each of the segments 5, 7, and 9 encodes two proteins: P5-1, a component of viroplasms; P5-2 of unknown function; nonstructural protein P7-1, involved in forming the structural matrix of tubular structures in infected tissues; P7-2 of unknown function; P9-1, the main component of viroplasms in infected cells and involved in viral replication; and P9-2 of unknown function. TRANSMISSION AND EPIDEMIOLOGY RBSDV is transmitted by Laodelphax striatellus in a persistent propagative manner. The vector insect is the only means of virus spread in nature, so its migration and transmission efficiency are obligatory for disease epidemics to develop. Susceptible varieties are widely planted, but efficient transmission by vectors is the primary reason for the epidemics. Cultivation system, pesticide overuse, and climatic conditions also contribute to epidemics by affecting the development of the vector insects and their population dynamics. DISEASE MANAGEMENT In the absence of resistant varieties, integrated disease management aims at disrupting the cycle of virus transmission by the insect vector. Inheritance studies have indicated that resistance is mostly governed by quantitative trait loci or multiple genes. Genetic engineering through RNA-interference and gene-editing strategies are potential approaches for disease control.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yingdang Ren
- Institute of Plant ProtectionHenan Academy of Agricultural SciencesZhengzhouChina
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
12
|
He L, Chen X, Yang J, Zhang T, Li J, Zhang S, Zhong K, Zhang H, Chen J, Yang J. Rice black-streaked dwarf virus-encoded P5-1 regulates the ubiquitination activity of SCF E3 ligases and inhibits jasmonate signaling to benefit its infection in rice. THE NEW PHYTOLOGIST 2020; 225:896-912. [PMID: 31318448 PMCID: PMC6972624 DOI: 10.1111/nph.16066] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/09/2019] [Indexed: 05/29/2023]
Abstract
SCF (Skp1/Cullin1/F-box) complexes are key regulators of many cellular processes. Viruses encode specific factors to interfere with or hijack these complexes and ensure their infection in plants. The molecular mechanisms controlling this interference/hijack are currently largely unknown. Here, we present evidence of a novel strategy used by Rice black-streaked dwarf virus (RBSDV) to regulate ubiquitination in rice (Oryza sativa) by interfering in the activity of OsCSN5A. We also show that RBSDV P5-1 specifically affects CSN-mediated deRUBylation of OsCUL1, compromising the integrity of the SCFCOI1 complex. We demonstrate that the expressions of jasmonate (JA) biosynthesis-associated genes are not inhibited, whereas the expressions of JA-responsive genes are down-regulated in transgenic P5-1 plants. More importantly, application of JA to P5-1 transgenic plants did not reduce their susceptibility to RBSDV infection. Our results suggest that P5-1 inhibits the ubiquitination activity of SCF E3 ligases through an interaction with OsCSN5A, and hinders the RUBylation/deRUBylation of CUL1, leading to an inhibition of the JA response pathway and an enhancement of RBSDV infection in rice.
Collapse
Affiliation(s)
- Long He
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingbo315000China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Provincial Key Laboratory of Plant VirologyInstitute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
- College of Plant ProtectionNanjing Agricultural UniversityNanjing21000China
| | - Xuan Chen
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingbo315000China
| | - Jin Yang
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingbo315000China
- College of Plant ProtectionHunan Agricultural UniversityChangsha410000China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingbo315000China
- College of Forestry and BiotechnologyZhejiang A&F UniversityLinan311300China
| | - Juan Li
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingbo315000China
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Songbai Zhang
- Institute of Plant ProtectionHunan Academy of Agricultural SciencesChangsha410000China
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingbo315000China
| | - Hengmu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Provincial Key Laboratory of Plant VirologyInstitute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingbo315000China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingbo315000China
| |
Collapse
|
13
|
Zhang H, He Y, Tan X, Xie K, Li L, Hong G, Li J, Cheng Y, Yan F, Chen J, Sun Z. The Dual Effect of the Brassinosteroid Pathway on Rice Black-Streaked Dwarf Virus Infection by Modulating the Peroxidase-Mediated Oxidative Burst and Plant Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:685-696. [PMID: 30540528 DOI: 10.1094/mpmi-10-18-0285-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The phytohormone brassinosteroid (BR) not only plays key roles in regulating plant growth and development but is also involved in modulating the plant defense system in response to pathogens. We previously found that BR application made rice plants more susceptible to the devastating pathogen rice black-streaked dwarf virus (RBSDV), but the mechanism of BR-mediated susceptibility remains unclear. We now show that both BR-deficient and -insensitive mutants are resistant to RBSDV infection. High-throughput sequencing showed that the defense hormone salicylic acid and jasmonic acid pathways were activated in the RBSDV-infected BR mutant. Meanwhile, a number of class III peroxidases (OsPrx) were significantly changed and basal reactive oxygen species (ROS) accumulated in BR mutants. Treatment with exogenous hormones and other chemicals demonstrated that the BR pathway could suppress the levels of OsPrx and the ROS burst by directly binding the promoters of OsPrx genes. Together, our findings indicate that BR-mediated susceptibility is at least partly caused by inhibition of the action of defense hormones, preventing the accumulation of the peroxidase-mediated oxidative burst.
Collapse
Affiliation(s)
- Hehong Zhang
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuqing He
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoxiang Tan
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kaili Xie
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
| | - Lulu Li
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gaojie Hong
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junmin Li
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
| | - Ye Cheng
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
| | - Fei Yan
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
| | - Jianping Chen
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zongtao Sun
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
14
|
Zhang H, Tan X, He Y, Xie K, Li L, Wang R, Hong G, Li J, Li J, Taliansky M, MacFarlane S, Yan F, Chen J, Sun Z. Rice black-streaked dwarf virus P10 acts as either a synergistic or antagonistic determinant during superinfection with related or unrelated virus. MOLECULAR PLANT PATHOLOGY 2019; 20:641-655. [PMID: 30623552 PMCID: PMC6637905 DOI: 10.1111/mpp.12782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus, is a devastating pathogen of crop plants. RBSDV S10 encodes a capsid protein (P10) that is an important component of the double-layered particle. However, little information is available on the roles of RBSDV P10 in viral infection or in interactions with other viruses. Here, we demonstrate that the expression of P10 in plants alleviates the symptoms of both RBSDV and the closely related Southern rice black-streaked dwarf virus (SRBSDV), and reduces the disease incidence, but renders the plants more susceptible to the unrelated Rice stripe virus (RSV). Further experiments suggest that P10-mediated resistance to RBSDV and SRBSDV operates at the protein level, rather than the RNA level, and is not a result of post-transcriptional gene silencing. Transcriptomic data reveal that the expression of P10 in plants significantly suppresses the expression of rice defence-related genes, which may play important roles in resistance to RSV infection. After infection with RBSDV, plants are more resistant to subsequent challenge by SRBSDV, but more susceptible to RSV. Overall, these results indicate that P10 acts as an important effector in virus interactions.
Collapse
Affiliation(s)
- Hehong Zhang
- Institute of Plant VirologyNingbo UniversityNingbo315211China
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Xiaoxiang Tan
- Institute of Plant VirologyNingbo UniversityNingbo315211China
- College of Plant ProtectionNorthwest Agriculture and Forestry UniversityYangling 712100ShaanxiChina
| | - Yuqing He
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Kaili Xie
- Institute of Plant VirologyNingbo UniversityNingbo315211China
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Lulu Li
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Rong Wang
- Institute of Plant VirologyNingbo UniversityNingbo315211China
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Gaojie Hong
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Junmin Li
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Jing Li
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Michael Taliansky
- The James Hutton Institute, Cell and Molecular Sciences GroupInvergowrieDundeeDD2 5DAUK
| | - Stuart MacFarlane
- The James Hutton Institute, Cell and Molecular Sciences GroupInvergowrieDundeeDD2 5DAUK
| | - Fei Yan
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Jianping Chen
- Institute of Plant VirologyNingbo UniversityNingbo315211China
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Zongtao Sun
- Institute of Plant VirologyNingbo UniversityNingbo315211China
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| |
Collapse
|
15
|
Xie K, Li L, Zhang H, Wang R, Tan X, He Y, Hong G, Li J, Ming F, Yao X, Yan F, Sun Z, Chen J. Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice. PLANT, CELL & ENVIRONMENT 2018; 41:2504-2514. [PMID: 29920686 DOI: 10.1111/pce.13372] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/12/2018] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) plays a multifaceted role in plant immunity and can either increase resistance or increase susceptibility to some bacterial and fungal pathogens depending on the pathosystem. ABA is also known to mediate plant defence to some viruses. In this study, the relationship between the ABA pathway and rice black-streaked dwarf virus (RBSDV) was investigated in rice. The expression of ABA pathway genes was significantly reduced upon RBSDV infection. Application of exogenous hormones and various ABA pathway mutants revealed that the ABA pathway plays a negative role in rice defence against RBSDV. Exogenous hormone treatment and virus inoculation showed that ABA inhibits the jasmonate-mediated resistance to RBSDV. ABA treatment also suppressed accumulation of reactive oxygen species by inducing the expression of superoxidase dismutases and catalases. Thus, ABA modulates the rice-RBSDV interaction by suppressing the jasmonate pathway and regulating reactive oxygen species levels. This is the first example of ABA increasing susceptibility to a plant virus.
Collapse
Affiliation(s)
- Kaili Xie
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Virology, Ningbo University, Ningbo, China
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lulu Li
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hehong Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoxiang Tan
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuqing He
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gaojie Hong
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junmin Li
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Feng Ming
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xuefeng Yao
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fei Yan
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zongtao Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Yang A, Yu L, Chen Z, Zhang S, Shi J, Zhao X, Yang Y, Hu D, Song B. Label-Free Quantitative Proteomic Analysis of Chitosan Oligosaccharide-Treated Rice Infected with Southern Rice Black-Streaked Dwarf Virus. Viruses 2017; 9:v9050115. [PMID: 28524115 PMCID: PMC5454427 DOI: 10.3390/v9050115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) has spread from thesouth of China to the north of Vietnam in the past few years and severelyinfluenced rice production. Its long incubation period and early symptoms are not evident; thus, controlling it is difficult. Chitosan oligosaccharide (COS) is a green plant immunomodulator. Early studies showed that preventing and controlling SRBSDV have a certain effect and reduce disease infection rate, but its underlying controlling and preventing mechanism is unclear. In this study, label-free proteomics was used to analyze differentially expressed proteins in rice after COS treatment. The results showed that COS can up-regulate the plant defense-related proteins and down-regulate the protein expression levels of SRBSDV. Meanwhile, quantitative real-time PCR test results showed that COS can improve defense gene expression in rice. Moreover, COS can enhance the defense enzymatic activities of peroxidase, superoxide dismutase and catalase through mitogen-activated protein kinase signaling cascade pathway, and enhance the rice disease resistance.
Collapse
Affiliation(s)
- Anming Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Lu Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Zhuo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Shanxue Zhang
- Hainan ZhengyeZhongnong High Techchnolngy Co., Ltd/National Joint Engineering Laboratory of marine biological pesticide discovery, Haikou 570206, China.
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Xiaozhen Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Yuanyou Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
17
|
Structure and components of the globular and filamentous viroplasms induced by Rice black-streaked dwarf virus. Micron 2017; 98:12-23. [PMID: 28359957 DOI: 10.1016/j.micron.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/18/2017] [Accepted: 03/02/2017] [Indexed: 01/15/2023]
Abstract
Viroplasms of members of the family Reoviridae are considered to be viral factories for genome replication and virion assembly. Globular and filamentous phenotypes have different components and probably have different functions. We used transmission electron microscopy and electron tomography to examine the structure and components of the two viroplasm phenotypes induced by Rice black-streaked dwarf virus (RBSDV). Immuno-gold labeling was used to localize each of the 13 RBSDV encoded proteins as well as double-stranded RNA, host cytoskeleton actin-11 and α-tubulin. Ten of the RBSDV proteins were localized in one or both types of viroplasm. P5-1, P6 and P9-1 were localized on both viroplasm phenotypes but P5-1 was preferentially associated with filaments and P9-1 with the matrix. Structural analysis by electron tomography showed that osmiophilic granules 6-8nm in diameter served as the fundamental unit for constructing both of the viroplasm phenotypes but were more densely packed in the filamentous phenotype.
Collapse
|
18
|
Llauger G, de Haro LA, Alfonso V, Del Vas M. Interaction of Mal de Río Cuarto virus (Fijivirus genus) proteins and identification of putative factors determining viroplasm formation and decay. Virus Res 2017; 230:19-28. [PMID: 28087398 DOI: 10.1016/j.virusres.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/01/2023]
Abstract
Mal de Río Cuarto virus (MRCV) is a member of the Fijivirus genus, within the Reoviridae family, that replicates and assembles in cytoplasmic inclusion bodies called viroplasms. In this study, we investigated interactions between ten MRCV proteins by yeast two-hybrid (Y2H) assays and identified interactions of non-structural proteins P6/P6, P9-2/P9-2 and P6/P9-1. P9-1 and P6 are the major and minor components of the viroplasms respectively, whereas P9-2 is an N-glycosylated membrane protein of unknown function. Interactions involving P6 and P9-1 were confirmed by bimolecular fluorescence complementation (BiFC) in rice protoplasts. We demonstrated that a region including a predicted coiled-coil domain within the C-terminal moiety of P6 was necessary for P6/P6 and P6/P9-1 interactions. In turn, a short C-terminal arm was necessary for the previously reported P9-1 self-interaction. Transient expression of these proteins by agroinfiltration of Nicotiana benthamiana leaves showed very low accumulation levels and further in silico analyses allowed us to identify conserved PEST degradation sequences [rich in proline (P), glutamic acid (E), serine (S), and threonine (T)] within P6 and P9-1. The removal of these PEST sequences resulted in a significant increase of the accumulation of both proteins.
Collapse
Affiliation(s)
- Gabriela Llauger
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Hurlingham, Argentina
| | - Luis Alejandro de Haro
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Victoria Alfonso
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Mariana Del Vas
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Huang HJ, Liu CW, Zhou X, Zhang CX, Bao YY. A mitochondrial membrane protein is a target for rice ragged stunt virus in its insect vector. Virus Res 2016; 229:48-56. [PMID: 28034779 DOI: 10.1016/j.virusres.2016.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Rice ragged stunt virus (RRSV; Reoviridae) is exclusively transmitted by the brown planthopper Nilaparvata lugens in a persistent-propagative manner. It is understood that RNA viral proliferation is associated with the intracellular membranes of the insect host cells. However, the molecular mechanisms of the interaction between the RRSV proliferation and the intracellular membranes remain essentially unknown. It will be of great interest to determine whether RRSV protein(s) directly interact with intracellular membrane components of its host cells. In this study, we identified a RRSV nonstructural protein Pns10 interacting with a host oligomycin-sensitivity conferral protein (OSCP) using yeast two-hybrid system. The interaction between RRSV Pns10 and N. lugens OSCP was verified by a glutathione S-transferase pull-down assay. Confocal miscopy revealed colocalization of these two proteins in the cytoplasm of the salivary gland cells during the viral infection. The virions were further detected in the mitochondria under confocal miscopy and transmission electron microscopy combined with western blotting assay. This is the first observation that RRSV protein has a direct link with mitochondria. Suppressing OSCP gene expression by RNA interference notably decreased the viral loads in RRSV-infected insects. These findings revealed novel aspects of a viral protein in targeting the host mitochondrial membrane and provide insights concerning the mitochondrial membrane protein-based virus proliferation mode in the insect vector.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Cheng-Wen Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiang Zhou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
20
|
Ahmed MMS, Bian S, Wang M, Zhao J, Zhang B, Liu Q, Zhang C, Tang S, Gu M, Yu H. RNAi-mediated resistance to rice black-streaked dwarf virus in transgenic rice. Transgenic Res 2016; 26:197-207. [PMID: 27900537 DOI: 10.1007/s11248-016-9999-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/13/2016] [Indexed: 10/20/2022]
Abstract
Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Development of resistant varieties by using conventional breeding methods is limited, as germplasm with high level of resistance to RBSDV have not yet been found. One of the most promising methods to confer resistance against RBSDV is the use of RNA interference (RNAi) technology. RBSDV non-structural protein P7-2, encoded by S7-2 gene, is a potential F-box protein and involved in the plant-virus interaction through the ubiquitination pathway. P8, encoded by S8 gene, is the minor core protein that possesses potent active transcriptional repression activity. In this study, we transformed rice calli using a mini-twin T-DNA vector harboring RNAi constructs of the RBSDV genes S7-2 or S8, and obtained plants harboring the target gene constructs and the selectable marker gene, hygromycin phosphotransferase (HPT). From the offspring of these transgenic plants, we obtained selectable marker (HPT gene)-free plants. Homozygous T5 transgenic lines which harbored either S7-2-RNAi or S8-RNAi exhibited high level resistance against RBSDV under field infection pressure from indigenous viruliferous small brown planthoppers. Thus, our results showed that RNA interference with the expression of S7-2 or S8 genes seemed an effective way to induce high level resistance in rice against RBSD disease.
Collapse
Affiliation(s)
- Mohamed M S Ahmed
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.,Department of Crop Protection, Faculty of Agriculture, University of Khartoum, 13314, Khartoum North, Sudan
| | - Shiquan Bian
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Muyue Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jing Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Bingwei Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Shuzhu Tang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
21
|
Jia D, Han Y, Sun X, Wang Z, Du Z, Chen Q, Wei T. The speed of tubule formation of two fijiviruses corresponds with their dissemination efficiency in their insect vectors. Virol J 2016; 13:174. [PMID: 27760544 PMCID: PMC5069929 DOI: 10.1186/s12985-016-0632-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/05/2016] [Indexed: 11/15/2022] Open
Abstract
Background Rice black-streaked dwarf virus (RBSDV) and Southern rice black-streaked dwarf virus (SRBSDV) are two closely related fijiviruses transmitted by the small brown planthopper (SBPH) and white-backed planthopper (WBPH), respectively. SRBSDV has a latent period 4 days shorter than that of RBSDV, implying a more efficient spread in insect vector. Currently, the mechanisms underlying this higher efficiency are poorly understood. However, our recent studies have implicated a role of virus induced tubular structures in the dissemination of fijiiruses within their insect vectors. Methods Immunofluorescence labeling was performed to visualize and compare the dynamics of P7-1 tubule formation of the RBSDV and SRBSDV in their own vector insects and nonhost Spodoptera frugiperda (Sf9) cells. Results Tubule formation of SRBSDV P7-1 was faster than that of RBSDV P7-1. For RBSDV, P7-1 formed tubules were observed at 3-days post-first access to diseased plants (padp) in SBPH. For SRBSDV, these structures were detected as early as 1 day padp in WBPH. Importantly, similar phenomena were observed when P7-1 proteins from the two viruses were expressed alone in Sf9 cells. Conclusions Our research revealed a relationship between the speed of P7-1 tubule formation and virus dissemination efficiency and also supports a role of such tubular structures in the spread of reoviruses within insect vectors.
Collapse
Affiliation(s)
- Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| | - Yu Han
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Xiang Sun
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Zhenzhen Wang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Zhenguo Du
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| |
Collapse
|
22
|
Abstract
Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses.
Collapse
Affiliation(s)
- Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China;
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China;
| |
Collapse
|
23
|
A phloem-limited fijivirus induces the formation of neoplastic phloem tissues that house virus multiplication in the host plant. Sci Rep 2016; 6:29848. [PMID: 27432466 PMCID: PMC4949464 DOI: 10.1038/srep29848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/24/2016] [Indexed: 11/26/2022] Open
Abstract
A number of phloem-limited viruses induce the development of tumours (enations) in the veins of host plants, but the relevance of tumour induction to the life cycle of those viruses is unclear. In this study, we performed molecular and structural analyses of tumours induced by rice black-streaked dwarf virus (RBSDV, genus Fijivirus) infection in maize plants. The transcript level of the maize cdc2 gene, which regulates the cell cycle, was highly elevated in tumour tissues. Two-dimensional electrophoresis identified 25 cellular proteins with altered accumulation in the tumour tissues. These proteins are involved in various metabolic pathways, including photosynthesis, redox, energy pathways and amino acid synthesis. Histological analysis indicated that the tumours predominantly originated from hyperplastic growth of phloem, but those neoplastic tissues have irregular structures and cell arrangements. Immunodetection assays and electron microscopy observations indicated that in the shoots, RBSDV is confined to phloem and tumour regions and that virus multiplication actively occurs in the tumour tissue, as indicated by the high accumulation of non-structural proteins and formation of viroplasms in the tumour cells. Thus, the induction of tumours by RBSDV infection provides a larger environment that is favourable for virus propagation in the host plant.
Collapse
|
24
|
Xu Q, Ni H, Zhang J, Lan Y, Ren C, Zhou Y. Whole-genome expression analysis of Rice black-streaked dwarf virus in different plant hosts and small brown planthopper. Gene 2015; 572:169-74. [DOI: 10.1016/j.gene.2015.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 11/25/2022]
|
25
|
Li X, Zhang W, Ding Y, Wang Z, Wu Z, Yu L, Hu D, Li P, Song B. Characterization of the importance of terminal residues for southern rice black-streaked dwarf virus P9-1 viroplasm formations. Protein Expr Purif 2015; 111:98-104. [DOI: 10.1016/j.pep.2015.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 11/25/2022]
|
26
|
Sun Z, He Y, Li J, Wang X, Chen J. Genome-Wide Characterization of Rice Black Streaked Dwarf Virus-Responsive MicroRNAs in Rice Leaves and Roots by Small RNA and Degradome Sequencing. ACTA ACUST UNITED AC 2014; 56:688-99. [DOI: 10.1093/pcp/pcu213] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 12/16/2014] [Indexed: 11/14/2022]
|
27
|
Sun L, Andika IB, Shen J, Yang D, Chen J. The P2 of Wheat yellow mosaic virus rearranges the endoplasmic reticulum and recruits other viral proteins into replication-associated inclusion bodies. MOLECULAR PLANT PATHOLOGY 2014; 15:466-78. [PMID: 24304930 PMCID: PMC6638913 DOI: 10.1111/mpp.12109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Viruses commonly modify host endomembranes to facilitate biological processes in the viral life cycle. Infection by viruses belonging to the genus Bymovirus (family Potyviridae) has long been known to induce the formation of large membranous inclusion bodies in host cells, but their assembly and biological roles are still unclear. Immunoelectron microscopy of cells infected with the bymovirus Wheat yellow mosaic virus (WYMV) showed that P1, P2 and P3 are the major viral protein constituents of the membranous inclusions, whereas NIa-Pro (nuclear inclusion-a protease) and VPg (viral protein genome-linked) are probable minor components. P1, P2 and P3 associated with the endoplasmic reticulum (ER), but only P2 was able to rearrange ER and form large aggregate structures. Bioinformatic analyses and chemical experiments showed that P2 is an integral membrane protein and depends on the active secretory pathway to form aggregates of ER membranes. In planta and in vitro assays demonstrated that P2 interacts with P1, P3, NIa-Pro or VPg and recruits these proteins into the aggregates. In vivo RNA labelling using WYMV-infected wheat protoplasts showed that the synthesis of viral RNAs occurs in the P2-associated inclusions. Our results suggest that P2 plays a major role in the formation of membranous compartments that house the genomic replication of WYMV.
Collapse
Affiliation(s)
- Liying Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MoA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | | | | | | | | |
Collapse
|
28
|
Nucleo-cytoplasmic shuttling of VPg encoded by Wheat yellow mosaic virus requires association with the coat protein. J Gen Virol 2013; 94:2790-2802. [DOI: 10.1099/vir.0.055830-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VPg (virus protein, genome-linked) is a multifunctional protein that plays important roles in viral multiplication in the cytoplasm. However, a number of VPgs encoded by plant viruses target the nucleus and this appears to be biologically significant. These VPgs may therefore be translocated between nuclear and cytoplasmic compartments during virus infection, but such nucleo-cytoplasmic transport has not been demonstrated. We report that VPg encoded by Wheat yellow mosaic virus (WYMV, genus Bymovirus, family Potyviridae) accumulated in both the nucleus and cytoplasm of infected cells, but localized exclusively in the nucleus when expressed alone in plants. Computational analyses predicted the presence of a nuclear localization signal (NLS) and a nuclear export signal (NES) in WYMV VPg. Mutational analyses showed that both the N-terminal and the NLS domains of VPg contribute to the efficiency of nuclear targeting. In vitro and in planta assays indicated that VPg interacts with WYMV coat protein (CP) and proteinase 1 (P1) proteins. Observation of VPg fused to a fluorescent protein and subcellular fractionation experiments showed that VPg was translocated to the cytoplasm when co-expressed with CP, but not with P1. Mutations in the NES domain or treatment with leptomycin B prevented VPg translocation to the cytoplasm when co-expressed with CP. Our results suggest that association with CP facilitates the nuclear export of VPg during WYMV infection.
Collapse
|
29
|
Sun F, Yuan X, Xu Q, Zhou T, Fan Y, Zhou Y. Overexpression of rice black-streaked dwarf virus p7-1 in Arabidopsis results in male sterility due to non-dehiscent anthers. PLoS One 2013; 8:e79514. [PMID: 24260239 PMCID: PMC3829848 DOI: 10.1371/journal.pone.0079514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/21/2013] [Indexed: 12/28/2022] Open
Abstract
Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, is propagatively transmitted by the small brown planthopper (Laodelphax striatellus Fallén). RBSDV causes rice black-streaked dwarf and maize rough dwarf diseases, which lead to severe yield losses in crops in China. Although several RBSDV proteins have been studied in detail, the functions of the nonstructural protein P7-1 are still largely unknown. To investigate the role of the P7-1 protein in virus pathogenicity, transgenic Arabidopsis thaliana plants were generated in which the P7-1 gene was expressed under the control of the 35S promoter. The RBSDV P7-1-transgenic Arabidopsis plants (named P7-1-OE) were male sterility. Flowers and pollen from P7-1-transgenic plants were of normal size and shape, and anthers developed to the normal size but failed to dehisce. The non-dehiscent anthers observed in P7-1-OE were attributed to decreased lignin content in the anthers. Furthermore, the reactive oxygen species levels were quite low in the transgenic plants compared with the wild type. These results indicate that ectopic expression of the RBSDV P7-1 protein in A. thaliana causes male sterility, possibly through the disruption of the lignin biosynthesis and H2O2-dependent polymerization pathways.
Collapse
Affiliation(s)
- Feng Sun
- Key Laboratory of Monitoring and Management of Plant Virus Diseases, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Xia Yuan
- Key Laboratory of Monitoring and Management of Plant Virus Diseases, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Qiufang Xu
- Key Laboratory of Monitoring and Management of Plant Virus Diseases, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Tong Zhou
- Key Laboratory of Monitoring and Management of Plant Virus Diseases, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Yongjian Fan
- Key Laboratory of Monitoring and Management of Plant Virus Diseases, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Yijun Zhou
- Key Laboratory of Monitoring and Management of Plant Virus Diseases, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| |
Collapse
|
30
|
Wang Q, Tao T, Han Y, Chen X, Fan Z, Li D, Yu J, Han C. Nonstructural protein P7-2 encoded by Rice black-streaked dwarf virus interacts with SKP1, a core subunit of SCF ubiquitin ligase. Virol J 2013; 10:325. [PMID: 24176102 PMCID: PMC3819663 DOI: 10.1186/1743-422x-10-325] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/24/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus within the family Reoviridae, causes severe damage to cereal crops in South East Asia. The protein P7-2, encoded by the second open reading frame of segment S7, is conserved among most plant-infecting fijiviruses, but its function is still obscure. RESULTS In this study, P7-2 was used as bait in two-hybrid screens of a cDNA library expressing Zea mays proteins. It was found that there is a strong interaction between P7-2 and Z. mays SKP1 (SKP1Maize), a core subunit of the multicomponent SCF (SKP1/Cullin1/F-box/Rbx1) E3 ubiquitin ligase. The interaction was then confirmed in leaf epidermal cells of Nicotiana benthamiana by bimolecular fluorescence complementation assay. Further investigations indicated that P7-2 also interacts with SKP1 proteins from other plants, including Arabidopsis thaliana, N. benthamiana,Oryza sativa and Saccharum sinense. The C-terminal fragment of SKP1Maize (residues 97-176) and the middle fragment of P7-2 (residues 79-214) are necessary to sustain the interaction, while the C-terminal putative α-helix domain spanning residues 214-295 of P7-2 greatly facilitates the interaction. Agrobacterium-mediated transient suppression assay showed that P7-2 has no obvious activity to suppress local RNA silencing. CONCLUSIONS Taken together, our results indicated that RBSDV P7-2 can interact with SKP1 proteins from different plants. This is the first report linking a Fijivirus protein to a component of the ubiquitin proteasome system. P7-2 might be a potential F-box protein encoded by RBSDV and involved in the plant-virus interaction through ubiquitination pathway.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, P. R. China
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Tao Tao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Yanhong Han
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Xiangru Chen
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Zaifeng Fan
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Dawei Li
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Jialin Yu
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Chenggui Han
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|