1
|
Ullah A, Atia-Tul-Wahab, Gong P, Khan AM, Choudhary MI. Identification of new inhibitors of NS5 from dengue virus using saturation transfer difference (STD-NMR) and molecular docking studies. RSC Adv 2022; 13:355-369. [PMID: 36605638 PMCID: PMC9768849 DOI: 10.1039/d2ra04836a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
The rapid spread of dengue virus has now emerged as a major health problem worldwide, particularly in tropical and sub-tropical regions. Nearly half of the human population is at risk of getting infection. Among the proteomes of dengue virus, nonstructural protein NS5 is conserved across the genus Flavivirus. NS5 comprises methyltransferase enzyme (MTase) domain, which helps in viral RNA capping, and RNA-dependent RNA polymerase (RdRp) domain, which is important for the virus replication. Negative modulation of NS5 decreases its activity and associated functions. Despite recent advances, there is still an immense need for effective approaches toward drug discovery against dengue virus. Drug repurposing is an approach to identify the new therapeutic indications of already approved drugs, for the treatment of both common and rare diseases, and can potentially lower the cost, and time required for drug discovery and development. In this study, we evaluated 75 compounds (grouped into 15 mixtures), including 13 natural compounds and 62 drugs, by using biophysical methods, for their ability to interact with NS5 protein, which were further validated by molecular docking and simulation studies. Our current study led to the identification of 12 ligands, including both 9 US-FDA approved drugs and 3 natural products that need to be further studied as potential antiviral agents against dengue virus.
Collapse
Affiliation(s)
- Asmat Ullah
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Atia-Tul-Wahab
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Peng Gong
- Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan Hubei 430071 China
| | - Abdul Mateen Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - M Iqbal Choudhary
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah-21589 Saudi Arabia
| |
Collapse
|
2
|
Elrefaey AME, Abdelnabi R, Rosales Rosas AL, Wang L, Basu S, Delang L. Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses 2020; 12:E964. [PMID: 32878245 PMCID: PMC7552076 DOI: 10.3390/v12090964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses contribute significantly to global mortality and morbidity in humans and animals. These viruses are mainly transmitted between susceptible vertebrate hosts by hematophagous arthropod vectors, especially mosquitoes. Recently, there has been substantial attention for a novel group of viruses, referred to as insect-specific viruses (ISVs) which are exclusively maintained in mosquito populations. Recent discoveries of novel insect-specific viruses over the past years generated a great interest not only in their potential use as vaccine and diagnostic platforms but also as novel biological control agents due to their ability to modulate arbovirus transmission. While arboviruses infect both vertebrate and invertebrate hosts, the replication of insect-specific viruses is restricted in vertebrates at multiple stages of virus replication. The vertebrate restriction factors include the genetic elements of ISVs (structural and non-structural genes and the untranslated terminal regions), vertebrate host factors (agonists and antagonists), and the temperature-dependent microenvironment. A better understanding of these bottlenecks is thus warranted. In this review, we explore these factors and the complex interplay between ISVs and their hosts contributing to this host restriction phenomenon.
Collapse
Affiliation(s)
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Ana Lucia Rosales Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Sanjay Basu
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK;
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| |
Collapse
|
3
|
Nasar S, Rashid N, Iftikhar S. Dengue proteins with their role in pathogenesis, and strategies for developing an effective anti-dengue treatment: A review. J Med Virol 2019; 92:941-955. [PMID: 31784997 DOI: 10.1002/jmv.25646] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Dengue virus is an arbovirus belonging to class Flaviviridae Its clinical manifestation ranges from asymptomatic to extreme conditions (dengue hemorrhagic fever/dengue shock syndrome). A lot of research has been done on this ailment, yet there is no effective treatment available for the disease. This review provides the systematic understanding of all dengue proteins, role of its structural proteins (C-protein, E-protein, prM) in virus entry, assembly, and secretion in host cell, and nonstructural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, and NS5) in viral assembly, replication, and immune evasion during dengue progression and pathogenesis. Furthermore, the review has highlighted the controversies related to the only commercially available dengue vaccine, that is, Dengvaxia, and the risk associated with it. Lastly, it provides an insight regarding various approaches for developing an effective anti-dengue treatment.
Collapse
Affiliation(s)
- Sitara Nasar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Prow NA, Edmonds JH, Williams DT, Setoh YX, Bielefeldt-Ohmann H, Suen WW, Hobson-Peters J, van den Hurk AF, Pyke AT, Hall-Mendelin S, Northill JA, Johansen CA, Warrilow D, Wang J, Kirkland PD, Doggett S, Andrade CC, Brault AC, Khromykh AA, Hall RA. Virulence and Evolution of West Nile Virus, Australia, 1960-2012. Emerg Infect Dis 2018; 22:1353-62. [PMID: 27433830 PMCID: PMC4982165 DOI: 10.3201/eid2208.151719] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite the absence of disease in humans and animals, virulent virus strains have been circulating for >30 years. Worldwide, West Nile virus (WNV) causes encephalitis in humans, horses, and birds. The Kunjin strain of WNV (WNVKUN) is endemic to northern Australia, but infections are usually asymptomatic. In 2011, an unprecedented outbreak of equine encephalitis occurred in southeastern Australia; most of the ≈900 reported cases were attributed to a newly emerged WNVKUN strain. To investigate the origins of this virus, we performed genetic analysis and in vitro and in vivo studies of 13 WNVKUN isolates collected from different regions of Australia during 1960–2012. Although no disease was recorded for 1984, 2000, or 2012, isolates collected during those years (from Victoria, Queensland, and New South Wales, respectively) exhibited levels of virulence in mice similar to that of the 2011 outbreak strain. Thus, virulent strains of WNVKUN have circulated in Australia for >30 years, and the first extensive outbreak of equine disease in Australia probably resulted from a combination of specific ecologic and epidemiologic conditions.
Collapse
|
5
|
Griesemer SB, Kramer LD, Van Slyke GA, Pata JD, Gohara DW, Cameron CE, Ciota AT. Mutagen resistance and mutation restriction of St. Louis encephalitis virus. J Gen Virol 2017; 98:201-211. [PMID: 28284278 DOI: 10.1099/jgv.0.000682] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The error rate of the RNA-dependent RNA polymerase (RdRp) of RNA viruses is important in maintaining genetic diversity for viral adaptation and fitness. Numerous studies have shown that mutagen-resistant RNA virus variants display amino acid mutations in the RdRp and other replicase subunits, which in turn exhibit an altered fidelity phenotype affecting viral fitness, adaptability and pathogenicity. St. Louis encephalitis virus (SLEV), like its close relative West Nile virus, is a mosquito-borne flavivirus that has the ability to cause neuroinvasive disease in humans. Here, we describe the successful generation of multiple ribavirin-resistant populations containing a shared amino acid mutation in the SLEV RdRp (E416K). These E416K mutants also displayed resistance to the antiviral T-1106, an RNA mutagen similar to ribavirin. Structural modelling of the E416K polymerase mutation indicated its location in the pinky finger domain of the RdRp, distant from the active site. Deep sequencing of the E416K mutant revealed lower genetic diversity than wild-type SLEV after growth in both vertebrate and invertebrate cells. Phenotypic characterization showed that E416K mutants displayed similar or increased replication in mammalian cells, as well as modest attenuation in mosquito cells, consistent with previous work with West Nile virus high-fidelity variants. In addition, attenuation was limited to mosquito cells with a functional RNA interference response, suggesting an impaired capacity to escape RNA interference could contribute to attenuation of high-fidelity variants. Our results provide increased evidence that RNA mutagen resistance arises through modulation of the RdRp and give further insight into the consequences of altered fidelity of flaviviruses.
Collapse
Affiliation(s)
- Sara B Griesemer
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Laura D Kramer
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA.,The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Greta A Van Slyke
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Janice D Pata
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA.,The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - David W Gohara
- Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, 1100 South Grand Avenue, St Louis, MO, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Alexander T Ciota
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA.,The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| |
Collapse
|
6
|
Teramoto T, Balasubramanian A, Choi KH, Padmanabhan R. Serotype-specific interactions among functional domains of dengue virus 2 nonstructural proteins (NS) 5 and NS3 are crucial for viral RNA replication. J Biol Chem 2017; 292:9465-9479. [PMID: 28396347 DOI: 10.1074/jbc.m117.775643] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/21/2017] [Indexed: 11/06/2022] Open
Abstract
Four serotypes of mosquito-borne dengue virus (DENV), evolved from a common ancestor, are human pathogens of global significance for which there is no vaccine or antiviral drug available. The N-terminal domain of DENV NS5 has guanylyltransferase and methyltransferase (MTase), and the C-terminal region has the polymerase (POL), all of which are important for 5'-capping and RNA replication. The crystal structure of NS5 shows it as a dimer, but the functional evidence for NS5 dimer is lacking. Our studies showed that the substitution of DENV2 NS5 MTase or POL for DENV4 NS5 within DENV2 RNA resulted in a severe attenuation of replication in the transfected BHK-21 cells. A replication-competent species was evolved with the acquired mutations in the DENV2 and DENV4 NS5 MTase or POL domain or in the DENV2 NS3 helicase domain in the DENV2 chimera RNAs by repeated passaging of infected BHK-21 or mosquito cells. The linker region of seven residues in NS5, rich in serotype-specific residues, is important for the recovery of replication fitness in the chimera RNA. Our results, taken together, provide genetic evidence for a serotype-specific interaction between NS3 and NS5 as well as specific interdomain interaction within NS5 required for RNA replication. Genome-wide RNAseq analysis revealed the distribution of adaptive mutations in RNA quasispecies. Those within NS3 and NS5 are located at the surface and/or within the NS5 dimer interface, providing a functional significance to the crystal structure NS5 dimer.
Collapse
Affiliation(s)
- Tadahisa Teramoto
- From the Department of Microbiology and Immunology, School of Medicine, Georgetown University, Washington, D. C. 20057 and
| | - Anuradha Balasubramanian
- From the Department of Microbiology and Immunology, School of Medicine, Georgetown University, Washington, D. C. 20057 and
| | - Kyung H Choi
- the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0156
| | - Radhakrishnan Padmanabhan
- From the Department of Microbiology and Immunology, School of Medicine, Georgetown University, Washington, D. C. 20057 and
| |
Collapse
|
7
|
Klema VJ, Ye M, Hindupur A, Teramoto T, Gottipati K, Padmanabhan R, Choi KH. Dengue Virus Nonstructural Protein 5 (NS5) Assembles into a Dimer with a Unique Methyltransferase and Polymerase Interface. PLoS Pathog 2016; 12:e1005451. [PMID: 26895240 PMCID: PMC4760774 DOI: 10.1371/journal.ppat.1005451] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/22/2016] [Indexed: 01/07/2023] Open
Abstract
Flavivirus nonstructural protein 5 (NS5) consists of methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, which catalyze 5'-RNA capping/methylation and RNA synthesis, respectively, during viral genome replication. Although the crystal structure of flavivirus NS5 is known, no data about the quaternary organization of the functional enzyme are available. We report the crystal structure of dengue virus full-length NS5, where eight molecules of NS5 are arranged as four independent dimers in the crystallographic asymmetric unit. The relative orientation of each monomer within the dimer, as well as the orientations of the MTase and RdRp domains within each monomer, is conserved, suggesting that these structural arrangements represent the biologically relevant conformation and assembly of this multi-functional enzyme. Essential interactions between MTase and RdRp domains are maintained in the NS5 dimer via inter-molecular interactions, providing evidence that flavivirus NS5 can adopt multiple conformations while preserving necessary interactions between the MTase and RdRp domains. Furthermore, many NS5 residues that reduce viral replication are located at either the inter-domain interface within a monomer or at the inter-molecular interface within the dimer. Hence the X-ray structure of NS5 presented here suggests that MTase and RdRp activities could be coordinated as a dimer during viral genome replication.
Collapse
Affiliation(s)
- Valerie J. Klema
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Mengyi Ye
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Aditya Hindupur
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Keerthi Gottipati
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Kyung H. Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Klema VJ, Padmanabhan R, Choi KH. Flaviviral Replication Complex: Coordination between RNA Synthesis and 5'-RNA Capping. Viruses 2015; 7:4640-56. [PMID: 26287232 PMCID: PMC4576198 DOI: 10.3390/v7082837] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 12/28/2022] Open
Abstract
Genome replication in flavivirus requires (-) strand RNA synthesis, (+) strand RNA synthesis, and 51-RNA capping and methylation. To carry out viral genome replication, flavivirus assembles a replication complex, consisting of both viral and host proteins, on the cytoplasmic side of the endoplasmic reticulum (ER) membrane. Two major components of the replication complex are the viral non-structural (NS) proteins NS3 and NS5. Together they possess all the enzymatic activities required for genome replication, yet how these activities are coordinated during genome replication is not clear. We provide an overview of the flaviviral genome replication process, the membrane-bound replication complex, and recent crystal structures of full-length NS5. We propose a model of how NS3 and NS5 coordinate their activities in the individual steps of (-) RNA synthesis, (+) RNA synthesis, and 51-RNA capping and methylation.
Collapse
Affiliation(s)
- Valerie J Klema
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX 77555-0647, USA.
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20057, USA.
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX 77555-0647, USA.
| |
Collapse
|
9
|
Lim SP, Noble CG, Shi PY. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res 2015; 119:57-67. [DOI: 10.1016/j.antiviral.2015.04.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/19/2015] [Accepted: 04/11/2015] [Indexed: 12/25/2022]
|
10
|
Zhao Y, Soh TS, Zheng J, Chan KWK, Phoo WW, Lee CC, Tay MYF, Swaminathan K, Cornvik TC, Lim SP, Shi PY, Lescar J, Vasudevan SG, Luo D. A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathog 2015; 11:e1004682. [PMID: 25775415 PMCID: PMC4361662 DOI: 10.1371/journal.ppat.1004682] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/12/2015] [Indexed: 01/28/2023] Open
Abstract
Flavivirus RNA replication occurs within a replication complex (RC) that assembles on ER membranes and comprises both non-structural (NS) viral proteins and host cofactors. As the largest protein component within the flavivirus RC, NS5 plays key enzymatic roles through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent-RNA polymerase (RdRp) domains, and constitutes a major target for antivirals. We determined a crystal structure of the full-length NS5 protein from Dengue virus serotype 3 (DENV3) at a resolution of 2.3 Å in the presence of bound SAH and GTP. Although the overall molecular shape of NS5 from DENV3 resembles that of NS5 from Japanese Encephalitis Virus (JEV), the relative orientation between the MTase and RdRp domains differs between the two structures, providing direct evidence for the existence of a set of discrete stable molecular conformations that may be required for its function. While the inter-domain region is mostly disordered in NS5 from JEV, the NS5 structure from DENV3 reveals a well-ordered linker region comprising a short 310 helix that may act as a swivel. Solution Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) analysis reveals an increased mobility of the thumb subdomain of RdRp in the context of the full length NS5 protein which correlates well with the analysis of the crystallographic temperature factors. Site-directed mutagenesis targeting the mostly polar interface between the MTase and RdRp domains identified several evolutionarily conserved residues that are important for viral replication, suggesting that inter-domain cross-talk in NS5 regulates virus replication. Collectively, a picture for the molecular origin of NS5 flexibility is emerging with profound implications for flavivirus replication and for the development of therapeutics targeting NS5. DENV causes widespread mosquito-borne viral infections worldwide and nearly 40% of the world’s population is at risk of being infected. Currently, no licensed vaccines or specific drugs are available to treat severe infections by DENV. NS5 is a large protein of 900 amino acids composed of two domains with several key enzymatic activities for viral RNA replication in the host cell and constitutes a prime target for the design of antiviral inhibitors. We succeeded in trapping a stable conformation of the full-length NS5 protein and report its crystal structure at a resolution of 2.3 Å. This conformation reveals the entire inter-domain region and clarifies the determinants of NS5 flexibility. The inter-domain interface is stabilized by several polar contacts between residues projecting from the MTase and RdRp domains of NS5. Several evolutionarily conserved residues at the interface play a crucial role for virus replication as shown by reverse genetics, although the analogous mutations mostly do not abolish the in vitro enzymatic activities of the recombinant proteins.
Collapse
Affiliation(s)
- Yongqian Zhao
- Program in Emerging Infectious Diseases, DUKE-NUS Graduate Medical School, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Tingjin Sherryl Soh
- School of Biological Sciences, Nanyang Technological University, Singapore
- Novartis Institute for Tropical Diseases, Singapore
| | - Jie Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, DUKE-NUS Graduate Medical School, Singapore
| | - Wint Wint Phoo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Chin Chin Lee
- Program in Emerging Infectious Diseases, DUKE-NUS Graduate Medical School, Singapore
| | - Moon Y. F. Tay
- Program in Emerging Infectious Diseases, DUKE-NUS Graduate Medical School, Singapore
| | - Kunchithapadam Swaminathan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Tobias C. Cornvik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore
- UPMC UMRS CR7—CNRS ERL 8255-INSERM U1135 Centre d’Immunologie et des Maladies Infectieuses, Centre Hospitalier Universitaire Pitié-Salpêtrière, Faculté de Médecine Pierre et Marie Curie, Paris, France
- * E-mail: (JL); (SGV); (DL)
| | - Subhash G. Vasudevan
- Program in Emerging Infectious Diseases, DUKE-NUS Graduate Medical School, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- * E-mail: (JL); (SGV); (DL)
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- * E-mail: (JL); (SGV); (DL)
| |
Collapse
|
11
|
O’Brien CA, Hobson-Peters J, Yam AWY, Colmant AMG, McLean BJ, Prow NA, Watterson D, Hall-Mendelin S, Warrilow D, Ng ML, Khromykh AA, Hall RA. Viral RNA intermediates as targets for detection and discovery of novel and emerging mosquito-borne viruses. PLoS Negl Trop Dis 2015; 9:e0003629. [PMID: 25799391 PMCID: PMC4370754 DOI: 10.1371/journal.pntd.0003629] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/19/2015] [Indexed: 12/15/2022] Open
Abstract
Mosquito-borne viruses encompass a range of virus families, comprising a number of significant human pathogens (e.g., dengue viruses, West Nile virus, Chikungunya virus). Virulent strains of these viruses are continually evolving and expanding their geographic range, thus rapid and sensitive screening assays are required to detect emerging viruses and monitor their prevalence and spread in mosquito populations. Double-stranded RNA (dsRNA) is produced during the replication of many of these viruses as either an intermediate in RNA replication (e.g., flaviviruses, togaviruses) or the double-stranded RNA genome (e.g., reoviruses). Detection and discovery of novel viruses from field and clinical samples usually relies on recognition of antigens or nucleotide sequences conserved within a virus genus or family. However, due to the wide antigenic and genetic variation within and between viral families, many novel or divergent species can be overlooked by these approaches. We have developed two monoclonal antibodies (mAbs) which show co-localised staining with proteins involved in viral RNA replication in immunofluorescence assay (IFA), suggesting specific reactivity to viral dsRNA. By assessing binding against a panel of synthetic dsRNA molecules, we have shown that these mAbs recognise dsRNA greater than 30 base pairs in length in a sequence-independent manner. IFA and enzyme-linked immunosorbent assay (ELISA) were employed to demonstrate detection of a panel of RNA viruses from several families, in a range of cell types. These mAbs, termed monoclonal antibodies to viral RNA intermediates in cells (MAVRIC), have now been incorporated into a high-throughput, economical ELISA-based screening system for the detection and discovery of viruses from mosquito populations. Our results have demonstrated that this simple system enables the efficient detection and isolation of a range of known and novel viruses in cells inoculated with field-caught mosquito samples, and represents a rapid, sequence-independent, and cost-effective approach to virus discovery.
Collapse
Affiliation(s)
- Caitlin A. O’Brien
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alice Wei Yee Yam
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Agathe M. G. Colmant
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Breeanna J. McLean
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Natalie A. Prow
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology Laboratory, Forensic and Scientific Services, Department of Health, Archerfield, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Forensic and Scientific Services, Department of Health, Archerfield, Queensland, Australia
| | - Mah-Lee Ng
- Department of Microbiology, National University Health System, National University of Singapore, Singapore
| | - Alexander A. Khromykh
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Roy A. Hall
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
12
|
Potisopon S, Priet S, Collet A, Decroly E, Canard B, Selisko B. The methyltransferase domain of dengue virus protein NS5 ensures efficient RNA synthesis initiation and elongation by the polymerase domain. Nucleic Acids Res 2014; 42:11642-56. [PMID: 25209234 PMCID: PMC4191377 DOI: 10.1093/nar/gku666] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Viral RNA-dependent RNA polymerases (RdRps) responsible for the replication of single-strand RNA virus genomes exert their function in the context of complex replication machineries. Within these replication complexes the polymerase activity is often highly regulated by RNA elements, proteins or other domains of multi-domain polymerases. Here, we present data of the influence of the methyltransferase domain (NS5-MTase) of dengue virus (DENV) protein NS5 on the RdRp activity of the polymerase domain (NS5-Pol). The steady-state polymerase activities of DENV-2 recombinant NS5 and NS5-Pol are compared using different biochemical assays allowing the dissection of the de novo initiation, transition and elongation steps of RNA synthesis. We show that NS5-MTase ensures efficient RdRp activity by stimulating the de novo initiation and the elongation phase. This stimulation is related to a higher affinity of NS5 toward the single-strand RNA template indicating NS5-MTase either completes a high-affinity RNA binding site and/or promotes the correct formation of the template tunnel. Furthermore, the NS5-MTase increases the affinity of the priming nucleotide ATP upon de novo initiation and causes a higher catalytic efficiency of the polymerase upon elongation. The complex stimulation pattern is discussed under the perspective that NS5 adopts several conformations during RNA synthesis.
Collapse
Affiliation(s)
- Supanee Potisopon
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Stéphane Priet
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Axelle Collet
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Etienne Decroly
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Bruno Canard
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Barbara Selisko
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France CNRS, AFMB UMR 7257, 13288 Marseille, France
| |
Collapse
|
13
|
Li XD, Shan C, Deng CL, Ye HQ, Shi PY, Yuan ZM, Gong P, Zhang B. The interface between methyltransferase and polymerase of NS5 is essential for flavivirus replication. PLoS Negl Trop Dis 2014; 8:e2891. [PMID: 24852307 PMCID: PMC4031075 DOI: 10.1371/journal.pntd.0002891] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/10/2014] [Indexed: 12/15/2022] Open
Abstract
The flavivirus NS5 harbors both a methyltransferase (MTase) and an RNA-dependent RNA polymerase (RdRP). Both enzyme activities of NS5 are critical for viral replication. Recently, the full-length NS5 crystal structure of Japanese encephalitis virus reveals a conserved MTase-RdRP interface that features two conserved components: a six-residue hydrophobic network and a GTR sequence. Here we showed for the first time that these key interface components are essential for flavivirus replication by various reverse genetics approaches. Interestingly, some replication-impaired variants generated a common compensatory NS5 mutation outside the interface (L322F), providing novel routes to further explore the crosstalk between MTase and RdRP.
Collapse
Affiliation(s)
- Xiao-Dan Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Shan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Lin Deng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han-Qing Ye
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Pei-Yong Shi
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Zhi-Ming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Peng Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (PG); (BZ)
| | - Bo Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (PG); (BZ)
| |
Collapse
|
14
|
Replication cycle and molecular biology of the West Nile virus. Viruses 2013; 6:13-53. [PMID: 24378320 PMCID: PMC3917430 DOI: 10.3390/v6010013] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV) is a member of the genus Flavivirus in the family Flaviviridae. Flaviviruses replicate in the cytoplasm of infected cells and modify the host cell environment. Although much has been learned about virion structure and virion-endosomal membrane fusion, the cell receptor(s) used have not been definitively identified and little is known about the early stages of the virus replication cycle. Members of the genus Flavivirus differ from members of the two other genera of the family by the lack of a genomic internal ribosomal entry sequence and the creation of invaginations in the ER membrane rather than double-membrane vesicles that are used as the sites of exponential genome synthesis. The WNV genome 3' and 5' sequences that form the long distance RNA-RNA interaction required for minus strand initiation have been identified and contact sites on the 5' RNA stem loop for NS5 have been mapped. Structures obtained for many of the viral proteins have provided information relevant to their functions. Viral nonstructural protein interactions are complex and some may occur only in infected cells. Although interactions between many cellular proteins and virus components have been identified, the functions of most of these interactions have not been delineated.
Collapse
|
15
|
Li XD, Li XF, Ye HQ, Deng CL, Ye Q, Shan C, Shang BD, Xu LL, Li SH, Cao SB, Yuan ZM, Shi PY, Qin CF, Zhang B. Recovery of a chemically synthesized Japanese encephalitis virus reveals two critical adaptive mutations in NS2B and NS4A. J Gen Virol 2013; 95:806-815. [PMID: 24362961 DOI: 10.1099/vir.0.061838-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A full-length genome infectious clone is a powerful tool for functional assays in virology. In this study, using a chemical synthesized complete genome of Japanese encephalitis virus (JEV) strain SA14 (GenBank accession no. U14163), we constructed a full-length genomic cDNA clone of JEV. The recovered virus from the cDNA clone replicated poorly in baby hamster kidney (BHK-21) cells and in suckling mice brain. Following serial passage in BHK-21 cells, adaptive mutations within the NS2B and NS4A proteins were recovered in the passaged viruses leading to viruses with a large-plaque phenotype. Mutagenesis analysis, using a genome-length RNA and a replicon of JEV, demonstrated that the adaptive mutations restored replication to different degrees, and the restoration efficiencies were in the order: NS2B-T102M<NS4A-R79K<NS2B-T102M+NS4A-R79K. An in vivo virulence assay in mice showed that the recombinant virus containing double mutations showed similar virulence to the WT SA14 (GenBank accession no. M55506). This study reports the first chemically synthesized JEV. A reverse genetics assay demonstrated that substitutions of NS2B-T102M and NS4A-R79K altered JEV replication.
Collapse
Affiliation(s)
- Xiao-Dan Li
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Han-Qing Ye
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Cheng-Lin Deng
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Chao Shan
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Bao-Di Shang
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Lin-Lin Xu
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Shi-Hua Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Sheng-Bo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhi-Ming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Pei-Yong Shi
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Bo Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|