1
|
Jartti M, Flodström-Tullberg M, Hankaniemi MM. Enteroviruses: epidemic potential, challenges and opportunities with vaccines. J Biomed Sci 2024; 31:73. [PMID: 39010093 PMCID: PMC11247760 DOI: 10.1186/s12929-024-01058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
Enteroviruses (EVs) are the most prevalent viruses in humans. EVs can cause a range of acute symptoms, from mild common colds to severe systemic infections such as meningitis, myocarditis, and flaccid paralysis. They can also lead to chronic diseases such as cardiomyopathy. Although more than 280 human EV serotypes exist, only four serotypes have licenced vaccines. No antiviral drugs are available to treat EV infections, and global surveillance of EVs has not been effectively coordinated. Therefore, poliovirus still circulates, and there have been alarming epidemics of non-polio enteroviruses. Thus, there is a pressing need for coordinated preparedness efforts against EVs.This review provides a perspective on recent enterovirus outbreaks and global poliovirus eradication efforts with continuous vaccine development initiatives. It also provides insights into the challenges and opportunities in EV vaccine development. Given that traditional whole-virus vaccine technologies are not suitable for many clinically relevant EVs and considering the ongoing risk of enterovirus outbreaks and the potential for new emerging pathogenic strains, the need for new effective and adaptable enterovirus vaccines is emphasized.This review also explores the difficulties in translating promising vaccine candidates for clinical use and summarizes information from published literature and clinical trial databases focusing on existing enterovirus vaccines, ongoing clinical trials, the obstacles faced in vaccine development as well as the emergence of new vaccine technologies. Overall, this review contributes to the understanding of enterovirus vaccines, their role in public health, and their significance as a tool for future preparedness.
Collapse
Affiliation(s)
- Minne Jartti
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Malin Flodström-Tullberg
- Department of Medicine Huddinge and Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Minna M Hankaniemi
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
2
|
Devaux CA, Pontarotti P, Levasseur A, Colson P, Raoult D. Is it time to switch to a formulation other than the live attenuated poliovirus vaccine to prevent poliomyelitis? Front Public Health 2024; 11:1284337. [PMID: 38259741 PMCID: PMC10801389 DOI: 10.3389/fpubh.2023.1284337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The polioviruses (PVs) are mainly transmitted by direct contact with an infected person through the fecal-oral route and respiratory secretions (or more rarely via contaminated water or food) and have a primary tropism for the gut. After their replication in the gut, in rare cases (far less than 1% of the infected individuals), PVs can spread to the central nervous system leading to flaccid paralysis, which can result in respiratory paralysis and death. By the middle of the 20th century, every year the wild polioviruses (WPVs) are supposed to have killed or paralyzed over half a million people. The introduction of the oral poliovirus vaccines (OPVs) through mass vaccination campaigns (combined with better application of hygiene measures), was a success story which enabled the World Health Organization (WHO) to set the global eradication of poliomyelitis as an objective. However this strategy of viral eradication has its limits as the majority of poliomyelitis cases today arise in individuals infected with circulating vaccine-derived polioviruses (cVDPVs) which regain pathogenicity following reversion or recombination. In recent years (between January 2018 and May 2023), the WHO recorded 8.8 times more cases of polio which were linked to the attenuated OPV vaccines (3,442 polio cases after reversion or recombination events) than cases linked to a WPV (390 cases). Recent knowledge of the evolution of RNA viruses and the exchange of genetic material among biological entities of the intestinal microbiota, call for a reassessment of the polio eradication vaccine strategies.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Pierre Pontarotti
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Anthony Levasseur
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
3
|
Kamau E, Bessaud M, Majumdar M, Martin J, Simmonds P, Harvala H. Estimating prevalence of Enterovirus D111 in human and non-human primate populations using cross-sectional serology. J Gen Virol 2023; 104:001915. [PMID: 37910158 PMCID: PMC10768692 DOI: 10.1099/jgv.0.001915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
Enteroviruses primarily affect young children with a varying severity of disease. Recent outbreaks of severe respiratory and neurological disease due to EV-D68 and EV-A71, as well as atypical hand-foot-and-mouth-disease due to CVA6, have brought to light the potency of enteroviruses to emerge as severe human pathogens. Enterovirus D111 (EV-D111) is an enteric pathogen initially detected in Central Africa in human and wildlife samples and was recently detected in environmental samples. The natural history and epidemiology of EV-D111 are poorly studied. Here, the presence of serum neutralizing antibodies to EV-D111 was estimated in human and wildlife samples from five countries. We report high prevalence of neutralizing antibodies measured against EV-D111 in human populations (range, 55-83 %), a proxy for previous infection, which indicates active virus circulation in absence of detection in clinical cases and a high number of undiagnosed infections. Notably, seroprevalence in samples from the UK varied by age and was higher in children and older adults (1-5 and >60 years old), but lower in ages 11-60. EV-D111 seroprevalence in apes and Old World monkeys was 50 % (33-66 %), which also suggests prior exposure and supports existing knowledge of enterovirus circulation in wild and captive apes and Old World monkeys. Generally, reported cases of infection likely underestimate the prevalence of infection particularly when the knowledge of community transmission is limited. Continued serologic surveillance and detection of EV-D111 in clinical and environmental samples will allow for a more robust assessment of EV-D111 epidemiology.
Collapse
Affiliation(s)
- Everlyn Kamau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mael Bessaud
- Institut Pasteur-Unité de Biologie des Virus Entériques, Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines, Paris, France
| | - Manasi Majumdar
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, UK
| | - Javier Martin
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Heli Harvala
- Microbiology Services, NHS Blood Transfusion, London, UK
| |
Collapse
|
4
|
Andino R, Kirkegaard K, Macadam A, Racaniello VR, Rosenfeld AB. The Picornaviridae Family: Knowledge Gaps, Animal Models, Countermeasures, and Prototype Pathogens. J Infect Dis 2023; 228:S427-S445. [PMID: 37849401 DOI: 10.1093/infdis/jiac426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Picornaviruses are nonenveloped particles with a single-stranded RNA genome of positive polarity. This virus family includes poliovirus, hepatitis A virus, rhinoviruses, and Coxsackieviruses. Picornaviruses are common human pathogens, and infection can result in a spectrum of serious illnesses, including acute flaccid myelitis, severe respiratory complications, and hand-foot-mouth disease. Despite research on poliovirus establishing many fundamental principles of RNA virus biology and the first transgenic animal model of disease for infection by a human virus, picornaviruses are understudied. Existing knowledge gaps include, identification of molecules required for virus entry, understanding cellular and humoral immune responses elicited during virus infection, and establishment of immune-competent animal models of virus pathogenesis. Such knowledge is necessary for development of pan-picornavirus countermeasures. Defining enterovirus A71 and D68, human rhinovirus C, and echoviruses 29 as prototype pathogens of this virus family may provide insight into picornavirus biology needed to establish public health strategies necessary for pandemic preparedness.
Collapse
Affiliation(s)
- Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Andrew Macadam
- National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom
| | - Vincent R Racaniello
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Amy B Rosenfeld
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
5
|
Faleye T, Adewumi M, Japhet M, George U, David O, Oluyege A, Adeniji J, Famurewa O. Enterovirus species B isolates recovered from children with acute flaccid paralysis in Nigeria, 2010 and 2012. JOURNAL OF CLINICAL VIROLOGY PLUS 2022. [DOI: 10.1016/j.jcvp.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
6
|
Enterovirus Sequence Data Obtained from Primate Samples in Central Africa Suggest a High Prevalence of Enteroviruses. Microbiol Resour Announc 2021; 10:e0088221. [PMID: 34881972 PMCID: PMC8656378 DOI: 10.1128/mra.00882-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Enteroviruses infect humans and animals and can cause disease, and some may be transmitted across species barriers. We tested Central African wildlife and found Enterovirus RNA in primates (17) and rodents (2). Some sequences were very similar, while others were dissimilar to known species, highlighting the underexplored enterovirus diversity in wildlife.
Collapse
|
7
|
Filipe IC, Guedes MS, Zdobnov EM, Tapparel C. Enterovirus D: A Small but Versatile Species. Microorganisms 2021; 9:1758. [PMID: 34442837 PMCID: PMC8400195 DOI: 10.3390/microorganisms9081758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses (EVs) from the D species are the causative agents of a diverse range of infectious diseases in spite of comprising only five known members. This small clade has a diverse host range and tissue tropism. It contains types infecting non-human primates and/or humans, and for the latter, they preferentially infect the eye, respiratory tract, gastrointestinal tract, and nervous system. Although several Enterovirus D members, in particular EV-D68, have been associated with neurological complications, including acute myelitis, there is currently no effective treatment or vaccine against any of them. This review highlights the peculiarities of this viral species, focusing on genome organization, functional elements, receptor usage, and pathogenesis.
Collapse
Affiliation(s)
- Ines Cordeiro Filipe
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Mariana Soares Guedes
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, Switzerland and Swiss Institute of Bioinformatics, University of Geneva, 1206 Geneva, Switzerland;
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| |
Collapse
|
8
|
Abstract
Over the last two decades, the viromes of our closest relatives, the African great apes (AGA), have been intensively studied. Comparative approaches have unveiled diverse evolutionary patterns, highlighting both stable host-virus associations over extended evolutionary timescales and much more recent viral emergence events. In this chapter, we summarize these findings and outline how they have shed a new light on the origins and evolution of many human-infecting viruses. We also show how this knowledge can be used to better understand the evolution of human health in relation to viral infections.
Collapse
|
9
|
Presence and Diversity of Different Enteric Viruses in Wild Norway Rats ( Rattus norvegicus). Viruses 2021; 13:v13060992. [PMID: 34073462 PMCID: PMC8227696 DOI: 10.3390/v13060992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023] Open
Abstract
Rodents are common reservoirs for numerous zoonotic pathogens, but knowledge about diversity of pathogens in rodents is still limited. Here, we investigated the occurrence and genetic diversity of enteric viruses in 51 Norway rats collected in three different countries in Europe. RNA of at least one virus was detected in the intestine of 49 of 51 animals. Astrovirus RNA was detected in 46 animals, mostly of rat astroviruses. Human astrovirus (HAstV-8) RNA was detected in one, rotavirus group A (RVA) RNA was identified in eleven animals. One RVA RNA could be typed as rat G3 type. Rat hepatitis E virus (HEV) RNA was detected in five animals. Two entire genome sequences of ratHEV were determined. Human norovirus RNA was detected in four animals with the genotypes GI.P4-GI.4, GII.P33-GII.1, and GII.P21. In one animal, a replication competent coxsackievirus A20 strain was detected. Additionally, RNA of an enterovirus species A strain was detected in the same animal, albeit in a different tissue. The results show a high detection rate and diversity of enteric viruses in Norway rats in Europe and indicate their significance as vectors for zoonotic transmission of enteric viruses. The detailed role of Norway rats and transmission pathways of enteric viruses needs to be investigated in further studies.
Collapse
|
10
|
Stool Serology: Development of a Non-Invasive Immunological Method for the Detection of Enterovirus-Specific Antibodies in Congo Gorilla Faeces. Microorganisms 2021; 9:microorganisms9040810. [PMID: 33921300 PMCID: PMC8068960 DOI: 10.3390/microorganisms9040810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Background: The incidence of poliovirus has been significantly reduced by as much as 99.9% globally. Alongside this, however, vaccine-associated paralytic poliomyelitis has emerged. Previously, our team reported in the Lésio-Louna-Léfini Nature Reserve (Republic of Congo) the presence of a new Enterovirus C (Ibou002) in a male gorilla that was put away because of clinical symptoms of facial paralysis. This new virus, isolated was from the stool samples of this gorilla but also from the excrement of an eco-guardian, is very similar to Coxsackievirus (EV-C99) as well as poliovirus 1 and 2. We hypothesised that these symptoms might be due to poliovirus infection. To test our hypothesis, we developed and optimised a non-invasive immunoassay for the detection of Enterovirus-specific antibodies in gorilla faeces that could be useful for routine serosurveillance in such cases. Methods: In order to assess the potential role of poliovirus infection, we have developed and optimised a protocol, based on the lyophilisation and solubilisation of small volumes of stool extracts from 16 gorilla and 3 humans, to detect specific antibodies by western blot and ELISA. Results: First, total immunoglobulins were detected in the concentrated stool extracts. Specific antibodies were then detected in 4/16 gorilla samples and 2/3 human samples by western blot using both the polio vaccine antigen and the Ibou002 antigen and by ELISA using the polio vaccine antigen. Humoral responses were greater with the Ibou002 antigen. Conclusion: We therefore suggest that this recombinant virus could lead to a polio-like disease in the endangered western lowland gorilla. The development of a non-invasive approach to detect microorganism-specific immunoglobulins from faecal samples opens numerous prospects for application in zoonotic infectious diseases and could revolutionise the screening of animals for important emerging infections, such as Ebola fever, rabies and coronavirus infections.
Collapse
|
11
|
Faleye TOC, George UE, Klapsa D, Majumdar M, Oragwa AO, Adewumi MO, Martin J, Adeniji JA. Isolation and Genomic Characterization of Echovirus 11 from faeces of a Non-Human Primate in Nigeria. ECOHEALTH 2020; 17:461-468. [PMID: 33993387 DOI: 10.1007/s10393-021-01515-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
We recently investigated the presence of enteroviruses (EVs) in non-human primates (NHPs) in Northern Nigeria and documented the presence of EV-A76 of South-East Asian ancestry in an NHP. In this study, we go further to ask if we could also find EVs in NHPs indigenous to the forested South-south Nigeria. Fresh faecal samples were collected from the floor of 10 cages housing NHPs in Cross River Nigeria, re-suspended in PBS and subjected to RNA extraction, cDNA synthesis, PanEnt 5'-UTR and PanEnt VP1 PCR assays. None of the samples was positive for the PanEnt VP1 assay, but one sample was positive for PanEnt 5'-UTR PCR. This sample was subsequently inoculated into RD cell line, produced CPE and the isolate analysed by PCR assays, next-generation whole genome sequencing and passage in four different cell lines showing replication in two of them. Analysis of the complete genome of the isolate identified it as an Echovirus 11 (E11) and revealed a recombinant genomic structure. Phylogenetic analysis showed that the E11 NHP strain was related to human clinical isolates suggesting a zoonotic behaviour. We describe the first isolation and complete genome characterization of an E11 obtained from an NHP in Nigeria having zoonotic potential.
Collapse
Affiliation(s)
- T O C Faleye
- Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
- Centre for Human Virology and Genomics, Department of Microbiology, Nigerian Institute for Medical Research, Lagos, Nigeria
| | - U E George
- Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - D Klapsa
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - M Majumdar
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - A O Oragwa
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | - M O Adewumi
- Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria.
- Infectious Disease Institute, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - J Martin
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - J A Adeniji
- Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
- Infectious Disease Institute, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
- WHO National Polio Laboratory, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
12
|
Di Cristanziano V, Weimer K, Böttcher S, Sarfo FS, Dompreh A, Cesar LG, Knops E, Heger E, Wirtz M, Kaiser R, Norman B, Phillips RO, Feldt T, Eberhardt KA. Molecular Characterization and Clinical Description of Non-Polio Enteroviruses Detected in Stool Samples from HIV-Positive and HIV-Negative Adults in Ghana. Viruses 2020; 12:v12020221. [PMID: 32079128 PMCID: PMC7077198 DOI: 10.3390/v12020221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
In the post-polio eradication era, increasing attention is given to non-polio enteroviruses. Most of the data about enteroviruses in sub-Saharan Africa are related to acute flaccid paralysis surveillance and target the pediatric population. This study aimed to investigate the presence of enterovirus in PLHIV (people living with HIV) and HIV-negative individuals in Ghana. Stool samples from HIV-positive individuals (n = 250) and healthy blood donors (n = 102) attending the Komfo Anokye Teaching Hospital in Kumasi, Ghana, were screened by real-time PCR for enterovirus. Molecular typing of the VP1 region was performed. Enterovirus-positive samples were tested for norovirus, adenovirus, rotavirus, sapovirus, and cosaviruses. Twenty-six out of 250 HIV-positive subjects (10.4%) and 14 out of 102 HIV-negative individuals (13.7%) were detected enterovirus-positive, not showing a significant different infection rate between the two groups. HIV-negative individuals were infected with Enterovirus C strains only. HIV-positive participants were detected positive for species Enterovirus A, Enterovirus B, and Enterovirus C. Co-infections with other viral enteric pathogens were almost exclusively detected among HIV-positive participants. Overall, the present study provides the first data about enteroviruses within HIV-positive and HIV-negative adults living in Ghana.
Collapse
Affiliation(s)
- Veronica Di Cristanziano
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (V.D.C.); (K.W.); (E.K.); (E.H.); (M.W.); (R.K.)
| | - Kristina Weimer
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (V.D.C.); (K.W.); (E.K.); (E.H.); (M.W.); (R.K.)
| | - Sindy Böttcher
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
| | - Fred Stephen Sarfo
- Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana; (F.S.S.); (B.N.); (R.O.P.)
- Komfo Anokye Teaching Hospital, Kumasi 00233, Ghana;
| | | | | | - Elena Knops
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (V.D.C.); (K.W.); (E.K.); (E.H.); (M.W.); (R.K.)
| | - Eva Heger
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (V.D.C.); (K.W.); (E.K.); (E.H.); (M.W.); (R.K.)
| | - Maike Wirtz
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (V.D.C.); (K.W.); (E.K.); (E.H.); (M.W.); (R.K.)
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (V.D.C.); (K.W.); (E.K.); (E.H.); (M.W.); (R.K.)
| | - Betty Norman
- Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana; (F.S.S.); (B.N.); (R.O.P.)
- Komfo Anokye Teaching Hospital, Kumasi 00233, Ghana;
| | - Richard Odame Phillips
- Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana; (F.S.S.); (B.N.); (R.O.P.)
- Komfo Anokye Teaching Hospital, Kumasi 00233, Ghana;
- Kumasi Center for Collaborative Research in Tropical Medicine, Kumasi 00233, Ghana
| | - Torsten Feldt
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| | - Kirsten Alexandra Eberhardt
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20359 Hamburg, Germany
- Correspondence: ; Tel.: +49-40-428-180
| |
Collapse
|
13
|
Sadeuh-Mba SA, Joffret ML, Mazitchi A, Endegue-Zanga MC, Njouom R, Delpeyroux F, Gouandjika-Vasilache I, Bessaud M. Genetic and phenotypic characterization of recently discovered enterovirus D type 111. PLoS Negl Trop Dis 2019; 13:e0007797. [PMID: 31622358 PMCID: PMC6818792 DOI: 10.1371/journal.pntd.0007797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/29/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
Members of the species Enterovirus D (EV-D) remain poorly studied. The two first EV-D types (EV-D68 and EV-D70) have regularly caused outbreaks in humans since their discovery five decades ago but have been neglected until the recent occurrence of severe respiratory diseases due to EV-D68. The three other known EV-D types (EV-D94, EV-D111 and EV-D120) were discovered in the 2000s-2010s in Africa and have never been observed elsewhere. One strain of EV-D111 and all known EV-D120s were detected in stool samples of wild non-human primates, suggesting that these viruses could be zoonotic viruses. To date, EV-D111s are only known through partial genetic sequences of the few strains that have been identified so far. In an attempt to bring new pieces to the puzzle, we genetically characterized four EV-D111 strains (among the seven that have been reported until now). We observed that the EV-D111 strains from human samples and the unique simian EV-D111 strain were not phylogenetically distinct, thus suggesting a recent zoonotic transmission. We also discovered evidences of probable intertypic genetic recombination events between EV-D111s and EV-D94s. As recombination can only happen in co-infected cells, this suggests that EV-D94s and EV-D111s share common replication sites in the infected hosts. These sites could be located in the gut since the phenotypic analysis we performed showed that, contrary to EV-D68s and like EV-D94s, EV-D111s are resistant to acid pHs. We also found that EV-D111s induce strong cytopathic effects on L20B cells, a cell line routinely used to specifically detect polioviruses. An active circulation of EV-D111s among humans could then induce a high number of false-positive detection of polioviruses, which could be particularly problematic in Central Africa, where EV-D111 circulates and which is a key region for poliovirus eradication.
Collapse
Affiliation(s)
| | - Marie-Line Joffret
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| | - Arthur Mazitchi
- Enteric Viruses and Measles Laboratory—Institut Pasteur de Bangui—Bangui, Central African Republic
| | | | - Richard Njouom
- Virology Service—Centre Pasteur of Cameroon–Yaounde, Cameroon
| | - Francis Delpeyroux
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| | | | - Maël Bessaud
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| |
Collapse
|
14
|
A systematic review of evidence that enteroviruses may be zoonotic. Emerg Microbes Infect 2018; 7:164. [PMID: 30258048 PMCID: PMC6158190 DOI: 10.1038/s41426-018-0159-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022]
Abstract
Enteroviruses infect millions of humans annually worldwide, primarily infants and children. With a high mutation rate and frequent recombination, enteroviruses are noted to evolve and change over time. Given the evidence that human enteroviruses are commonly found in other mammalian species and that some human and animal enteroviruses are genetically similar, it is possible that enzootic enteroviruses may also be infecting human populations. We conducted a systematic review of the English and Chinese literature published between 2007 and 2017 to examine evidence that enteroviruses may be zoonotic. Of the 2704 articles screened for inclusion, 16 articles were included in the final review. The review of these articles yielded considerable molecular evidence of zooanthroponosis transmission, particularly among non-human primates. While there were more limited instances of anthropozoonosis transmission, the available data support the biological plausibility of cross-species transmission and the need to conduct periodic surveillance at the human–animal interface.
Collapse
|
15
|
Lowenstine LJ, McManamon R, Terio KA. Apes. PATHOLOGY OF WILDLIFE AND ZOO ANIMALS 2018. [PMCID: PMC7173580 DOI: 10.1016/b978-0-12-805306-5.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Abstract
Enteroviruses (EVs) belong to the family Picornaviridae and are responsible for mild to severe diseases in mammals including humans and non-human primates (NHP). Simian EVs were first discovered in the 1950s in the Old World Monkeys and recently in wild chimpanzee, gorilla and mandrill in Cameroon. In the present study, we screened by PCR EVs in 600 fecal samples of wild apes and monkeys that were collected at four sites in Gabon. A total of 32 samples were positive for EVs (25 from mandrills, 7 from chimpanzees, none from gorillas). The phylogenetic analysis of VP1 and VP2 genes showed that EVs identified in chimpanzees were members of two human EV species, EV-A and EV-B, and those identified in mandrills were members of the human species EV-B and the simian species EV-J. The identification of two novel enterovirus types, EV-B112 in a chimpanzee and EV-B113 in a mandrill, suggests these NHPs could be potential sources of new EV types. The identification of EV-B107 and EV90 that were previously found in humans indicates cross-species transfers. Also the identification of chimpanzee-derived EV110 in a mandrill demonstrated a wide host range of this EV. Further research of EVs in NHPs would help understanding emergence of new types or variants, and evaluating the real risk of cross-species transmission for humans as well for NHPs populations.
Collapse
|
17
|
Patel MC, Wang W, Pletneva LM, Rajagopala SV, Tan Y, Hartert TV, Boukhvalova MS, Vogel SN, Das SR, Blanco JCG. Enterovirus D-68 Infection, Prophylaxis, and Vaccination in a Novel Permissive Animal Model, the Cotton Rat (Sigmodon hispidus). PLoS One 2016; 11:e0166336. [PMID: 27814404 PMCID: PMC5096705 DOI: 10.1371/journal.pone.0166336] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
In recent years, there has been a significant increase in detection of Enterovirus D-68 (EV-D68) among patients with severe respiratory infections worldwide. EV-D68 is now recognized as a re-emerging pathogen; however, due to lack of a permissive animal model for EV-D68, a comprehensive understanding of the pathogenesis and immune response against EV-D68 has been hampered. Recently, it was shown that EV-D68 has a strong affinity for α2,6-linked sialic acids (SAs) and we have shown previously that α2,6-linked SAs are abundantly present in the respiratory tract of cotton rats (Sigmodon hispidus). Thus, we hypothesized that cotton rats could be a potential model for EV-D68 infection. Here, we evaluated the ability of two recently isolated EV-D68 strains (VANBT/1 and MO/14/49), along with the historical prototype Fermon strain (ATCC), to infect cotton rats. We found that cotton rats are permissive to EV-D68 infection without virus adaptation. The different strains of EV-D68 showed variable infection profiles and the ability to produce neutralizing antibody (NA) upon intranasal infection or intramuscular immunization. Infection with the VANBT/1 resulted in significant induction of pulmonary cytokine gene expression and lung pathology. Intramuscular immunization with live VANBT/1 or MO/14/49 induced strong homologous antibody responses, but a moderate heterologous NA response. We showed that passive prophylactic administration of serum with high content of NA against VANBT/1 resulted in an efficient antiviral therapy. VANBT/1-immunized animals showed complete protection from VANBT/1 challenge, but induced strong pulmonary Th1 and Th2 cytokine responses and enhanced lung pathology, indicating the generation of exacerbated immune response by immunization. In conclusion, our data illustrate that the cotton rat is a powerful animal model that provides an experimental platform to investigate pathogenesis, immune response, anti-viral therapies and vaccines against EV-D68 infection.
Collapse
Affiliation(s)
- Mira C. Patel
- Sigmovir Biosystems Inc., Rockville, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Wei Wang
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Seesandra V. Rajagopala
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Yi Tan
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Suman R. Das
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail: (JCGB); (SRD)
| | - Jorge C. G. Blanco
- Sigmovir Biosystems Inc., Rockville, Maryland, United States of America
- * E-mail: (JCGB); (SRD)
| |
Collapse
|
18
|
Grützmacher KS, Köndgen S, Keil V, Todd A, Feistner A, Herbinger I, Petrzelkova K, Fuh T, Leendertz SA, Calvignac-Spencer S, Leendertz FH. Codetection of Respiratory Syncytial Virus in Habituated Wild Western Lowland Gorillas and Humans During a Respiratory Disease Outbreak. ECOHEALTH 2016; 13:499-510. [PMID: 27436109 PMCID: PMC7088376 DOI: 10.1007/s10393-016-1144-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 05/11/2023]
Abstract
Pneumoviruses have been identified as causative agents in several respiratory disease outbreaks in habituated wild great apes. Based on phylogenetic evidence, transmission from humans is likely. However, the pathogens have never been detected in the local human population prior to or at the same time as an outbreak. Here, we report the first simultaneous detection of a human respiratory syncytial virus (HRSV) infection in western lowland gorillas (Gorilla gorilla gorilla) and in the local human population at a field program in the Central African Republic. A total of 15 gorilla and 15 human fecal samples and 80 human throat swabs were tested for HRSV, human metapneumovirus, and other respiratory viruses. We were able to obtain identical sequences for HRSV A from four gorillas and four humans. In contrast, we did not detect HRSV or any other classic human respiratory virus in gorilla fecal samples in two other outbreaks in the same field program. Enterovirus sequences were detected but the implication of these viruses in the etiology of these outbreaks remains speculative. Our findings of HRSV in wild but human-habituated gorillas underline, once again, the risk of interspecies transmission from humans to endangered great apes.
Collapse
Affiliation(s)
- Kim S Grützmacher
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany
| | - Sophie Köndgen
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany
| | - Verena Keil
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany
| | - Angelique Todd
- World Wildlife Fund (WWF), Dzanga Sangha Protected Areas, Bayanga, Central African Republic
| | - Anna Feistner
- World Wildlife Fund (WWF), Dzanga Sangha Protected Areas, Bayanga, Central African Republic
| | | | - Klara Petrzelkova
- Institute of Vertebrate Biology, Academy of Sciences, Brno, 60365, Czech Republic
- Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Terrence Fuh
- World Wildlife Fund (WWF), Dzanga Sangha Protected Areas, Bayanga, Central African Republic
| | - Siv Aina Leendertz
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany
| | - Sébastien Calvignac-Spencer
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany
| | - Fabian H Leendertz
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany.
| |
Collapse
|
19
|
Holm-Hansen CC, Midgley SE, Fischer TK. Global emergence of enterovirus D68: a systematic review. THE LANCET. INFECTIOUS DISEASES 2016; 16:e64-e75. [PMID: 26929196 DOI: 10.1016/s1473-3099(15)00543-5] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/15/2023]
Abstract
Since its discovery in California in 1962, reports of enterovirus D68 have been infrequent. Before 2014, infections were confirmed in only 699 people worldwide. In August, 2014, two paediatric hospitals in the USA reported increases in the number of patients with severe respiratory illness, with an over-representation in children with asthma. Shortly after, the authorities recognised a nationwide outbreak, which then spread to Canada, Europe, and Asia. In 2014, more than 2000 cases of enterovirus D68 were reported in 20 countries. Concurrently, clusters of children with acute flaccid paralysis of unknown cause were reported in several US states and in Europe. Enterovirus D68 infection was confirmed in some of the paralysed children, but not all. Complications in patients who were severely neurologically affected resemble those caused by poliomyelitis. In this paper we systematically review reports on enterovirus D68 to estimate its global epidemiology and its ability to cause respiratory infections and neurological damage in children. We extracted data from 70 papers to report on prevalence, symptoms, hospitalisation and mortality, and complications of enterovirus D68, both before and during the large outbreak of 2014. The magnitude and severity of the enterovirus D68 outbreak underscores a need for improved diagnostic work-up of paediatric respiratory illness, not only to prevent unnecessary use of antibiotics, but also to ensure better surveillance of diseases. Existing surveillance systems should be assessed in terms of capacity and ability to detect and report any upsurge of respiratory viruses such as enterovirus D68 in a timely manner, and focus should be paid to development of preventive measures against these emerging enteroviruses that have potential for severe disease.
Collapse
Affiliation(s)
- Charlotte Carina Holm-Hansen
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Sofie Elisabeth Midgley
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Thea Kølsen Fischer
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark; Center for Global Health and Department of Infectious Diseases, Clinical Institute, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
20
|
Molecular Evolution and Intraclade Recombination of Enterovirus D68 during the 2014 Outbreak in the United States. J Virol 2015; 90:1997-2007. [PMID: 26656685 DOI: 10.1128/jvi.02418-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED In August 2014, an outbreak of enterovirus D68 (EV-D68) occurred in North America, causing severe respiratory disease in children. Due to a lack of complete genome sequence data, there is only a limited understanding of the molecular evolution and epidemiology of EV-D68 during this outbreak, and it is uncertain whether the differing clinical manifestations of EV-D68 infection are associated with specific viral lineages. We developed a high-throughput complete genome sequencing pipeline for EV-D68 that produced a total of 59 complete genomes from respiratory samples with a 95% success rate, including 57 genomes from Kansas City, MO, collected during the 2014 outbreak. With these data in hand, we performed phylogenetic analyses of complete genome and VP1 capsid protein sequences. Notably, we observed considerable genetic diversity among EV-D68 isolates in Kansas City, manifest as phylogenetically distinct lineages, indicative of multiple introductions of this virus into the city. In addition, we identified an intersubclade recombination event within EV-D68, the first recombinant in this virus reported to date. Finally, we found no significant association between EV-D68 genetic variation, either lineages or individual mutations, and a variety of demographic and clinical variables, suggesting that host factors likely play a major role in determining disease severity. Overall, our study revealed the complex pattern of viral evolution within a single geographic locality during a single outbreak, which has implications for the design of effective intervention and prevention strategies. IMPORTANCE Until recently, EV-D68 was considered to be an uncommon human pathogen, associated with mild respiratory illness. However, in 2014 EV-D68 was responsible for more than 1,000 disease cases in North America, including severe respiratory illness in children and acute flaccid myelitis, raising concerns about its potential impact on public health. Despite the emergence of EV-D68, a lack of full-length genome sequences means that little is known about the molecular evolution of this virus within a single geographic locality during a single outbreak. Here, we doubled the number of publicly available complete genome sequences of EV-D68 by performing high-throughput next-generation sequencing, characterized the evolutionary history of this outbreak in detail, identified a recombination event, and investigated whether there was any correlation between the demographic and clinical characteristics of the patients and the viral variant that infected them. Overall, these results will help inform the design of intervention strategies for EV-D68.
Collapse
|
21
|
First Detection of an Enterovirus C99 in a Captive Chimpanzee with Acute Flaccid Paralysis, from the Tchimpounga Chimpanzee Rehabilitation Center, Republic of Congo. PLoS One 2015; 10:e0136700. [PMID: 26301510 PMCID: PMC4547728 DOI: 10.1371/journal.pone.0136700] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022] Open
Abstract
Enteroviruses, members of the Picornaviridae family, are ubiquitous viruses responsible for mild to severe infections in human populations around the world. In 2010 Pointe-Noire, Republic of Congo recorded an outbreak of acute flaccid paralysis (AFP) in the humans, caused by wild poliovirus type 1 (WPV1). One month later, in the Tchimpounga sanctuary near Pointe-Noire, a chimpanzee developed signs similar to AFP, with paralysis of the lower limbs. In the present work, we sought to identify the pathogen, including viral and bacterial agents, responsible for this illness. In order to identify the causative agent, we evaluated a fecal specimen by PCR and sequencing. A Human enterovirus C, specifically of the EV-C99 type was potentially responsible for the illness in this chimpanzee. To rule out other possible causative agents, we also investigated the bacteriome and the virome using next generation sequencing. The majority of bacterial reads obtained belonged to commensal bacteria (95%), and the mammalian virus reads matched mainly with viruses of the Picornaviridae family (99%), in which enteroviruses were the most abundant (99.6%). This study thus reports the first identification of a chimpanzee presenting AFP most likely caused by an enterovirus and demonstrates once again the cross-species transmission of a human pathogen to an ape.
Collapse
|
22
|
De Nys HM, Madinda NF, Merkel K, Robbins M, Boesch C, Leendertz FH, Calvignac-Spencer S. A cautionary note on fecal sampling and molecular epidemiology in predatory wild great apes. Am J Primatol 2015; 77:833-40. [PMID: 26031302 DOI: 10.1002/ajp.22418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/18/2015] [Accepted: 03/22/2015] [Indexed: 11/06/2022]
Abstract
Fecal samples are an important source of information on parasites (viruses, prokaryotes, or eukaryotes) infecting wild great apes. Molecular analysis of fecal samples has already been used for deciphering the origins of major human pathogens such as HIV-1 or Plasmodium falciparum. However, for apes that hunt (chimpanzees and bonobos), detection of parasite nucleic acids may reflect either true infection of the host of interest or ingestion of an infected prey, for example, another non-human primate. To determine the potential magnitude of this issue, we estimated the prevalence of prey DNA in fecal samples obtained from two wild chimpanzee communities. We observed values >15%, which are higher than or close to the fecal detection rates of many great ape parasites. Contamination of fecal samples with parasite DNA from dietary origin may therefore occasionally impact non-invasive epidemiological studies. This problem can be addressed (at least partially) by monitoring the presence of prey DNA.
Collapse
Affiliation(s)
- Hélène Marie De Nys
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Nordufer, Berlin, Germany.,Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany.,Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Nadège Freda Madinda
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Nordufer, Berlin, Germany.,Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany.,Institut de Recherches en Ecologie Tropicale, Libreville, Gabon
| | - Kevin Merkel
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Nordufer, Berlin, Germany
| | - Martha Robbins
- Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany
| | - Christophe Boesch
- Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany
| | | | | |
Collapse
|
23
|
Diversity and Prevalence of Diarrhea-Associated Viruses in the Lemur Community and Associated Human Population of Ranomafana National Park, Madagascar. INT J PRIMATOL 2015. [DOI: 10.1007/s10764-015-9817-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Abstract
UNLABELLED The roles of host genetics versus exposure and contact frequency in driving cross-species transmission remain the subject of debate. Here, we used a multitaxon lemur collection at the Saint Louis Zoo in the United States as a model to gain insight into viral transmission in a setting of high interspecies contact. Lemurs are a diverse and understudied group of primates that are highly endangered. The speciation of lemurs, which are endemic to the island of Madagascar, occurred in geographic isolation apart from that of continental African primates. Although evidence of endogenized viruses in lemur genomes exists, no exogenous viruses of lemurs have been described to date. Here we identified two novel picornaviruses in fecal specimens of ring-tailed lemurs (Lemur catta) and black-and-white ruffed lemurs (Varecia variegata). We found that the viruses were transmitted in a species-specific manner (lesavirus 1 was detected only in ring-tailed lemurs, while lesavirus 2 was detected only in black-and-white ruffed lemurs). Longitudinal sampling over a 1-year interval demonstrated ongoing infection in the collection. This was supported by evidence of viral clearance in some animals and new infections in previously uninfected animals, including a set of newly born triplets that acquired the infection. While the two virus strains were found to be cocirculating in a mixed-species exhibit of ring-tailed lemurs, black-and-white ruffed lemurs, and black lemurs, there was no evidence of cross-species transmission. This suggests that despite high-intensity contact, host species barriers can prevent cross-species transmissions of these viruses. IMPORTANCE Up to 75% of emerging infectious diseases in humans today are the result of zoonotic transmission. However, a challenge in understanding transmission dynamics has been the limited models of cross-species transmission. Zoos provide a unique opportunity to explore parameters defining viral transmission. We demonstrated that ongoing virus transmission in a mixed lemur species exhibit was species specific. This suggests that despite high contact intensity, host species barriers contribute to protection from cross-species transmission of these viruses. While the combinations of species might differ, most zoological parks worldwide commonly feature mixed-species exhibits. Collectively, this report demonstrates a widely applicable approach toward understanding infectious disease transmission.
Collapse
|
25
|
Keita MB, Hamad I, Bittar F. Looking in apes as a source of human pathogens. Microb Pathog 2014; 77:149-54. [PMID: 25220240 DOI: 10.1016/j.micpath.2014.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/05/2014] [Indexed: 12/27/2022]
Abstract
Because of the close genetic relatedness between apes and humans, apes are susceptible to many human infectious agents and can serve as carriers of these pathogens. Consequently, they present a serious health hazard to humans. Moreover, many emerging infectious diseases originate in wildlife and continue to threaten human populations, especially vector-borne diseases described in great apes, such as malaria and rickettsiosis. These wild primates may be permanent reservoirs and important sources of human pathogens. In this special issue, we report that apes, including chimpanzees (Pan troglodytes), bonobos (Pan paniscus), gorillas (Gorilla gorilla and Gorilla beringei), orangutans (Pongo pygmaeus and Pongo abelii), gibbons (Hylobates spp., Hoolock spp. and Nomascus spp) and siamangs (Symphalangus syndactylus syndactylus and Symphalangus continentis), have many bacterial, viral, fungal and parasitic species that are capable of infecting humans. Serious measures should be adopted in tropical forests and sub-tropical areas where habitat overlaps are frequent to survey and prevent infectious diseases from spreading from apes to people.
Collapse
Affiliation(s)
- Mamadou B Keita
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | - Ibrahim Hamad
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | - Fadi Bittar
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| |
Collapse
|
26
|
Sadeuh-Mba SA, Bessaud M, Joffret ML, Endegue Zanga MC, Balanant J, Mpoudi Ngole E, Njouom R, Reynes JM, Delpeyroux F, Rousset D. Characterization of Enteroviruses from non-human primates in cameroon revealed virus types widespread in humans along with candidate new types and species. PLoS Negl Trop Dis 2014; 8:e3052. [PMID: 25079078 PMCID: PMC4117447 DOI: 10.1371/journal.pntd.0003052] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/14/2014] [Indexed: 12/28/2022] Open
Abstract
Enteroviruses (EVs) infecting African Non-Human Primates (NHP) are still poorly documented. This study was designed to characterize the genetic diversity of EVs among captive and wild NHP in Cameroon and to compare this diversity with that found in humans. Stool specimens were collected in April 2008 in NHP housed in sanctuaries in Yaounde and neighborhoods. Moreover, stool specimens collected from wild NHP from June 2006 to October 2008 in the southern rain forest of Cameroon were considered. RNAs purified directly from stool samples were screened for EVs using a sensitive RT-nested PCR targeting the VP1 capsid coding gene whose nucleotide sequence was used for molecular typing. Captive chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) were primarily infected by EV types already reported in humans in Cameroon and elsewhere: Coxsackievirus A13 and A24, Echovirus 15 and 29, and EV-B82. Moreover EV-A119, a novel virus type recently described in humans in central and west Africa, was also found in a captive Chimpanzee. EV-A76, which is a widespread virus in humans, was identified in wild chimpanzees, thus suggesting its adaptation and parallel circulation in human and NHP populations in Cameroon. Interestingly, some EVs harbored by wild NHP were genetically distinct from all existing types and were thus assigned as new types. One chimpanzee-derived virus was tentatively assigned as EV-J121 in the EV-J species. In addition, two EVs from wild monkeys provisionally registered as EV-122 and EV-123 were found to belong to a candidate new species. Overall, this study indicates that the genetic diversity of EVs among NHP is more important than previously known and could be the source of future new emerging human viral diseases.
Collapse
Affiliation(s)
| | - Maël Bessaud
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM, U994, Paris, France
| | - Marie-Line Joffret
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM, U994, Paris, France
| | | | - Jean Balanant
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM, U994, Paris, France
| | | | - Richard Njouom
- Service de Virologie, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - Jean-Marc Reynes
- Service de Virologie, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - Francis Delpeyroux
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM, U994, Paris, France
| | | |
Collapse
|
27
|
High rates of infection with novel enterovirus variants in wild populations of mandrills and other old world monkey species. J Virol 2014; 88:5967-76. [PMID: 24623420 DOI: 10.1128/jvi.00088-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Enteroviruses (EVs) are a genetically and antigenically diverse group of viruses infecting humans. A mostly distinct set of EV variants have additionally been documented to infect wild apes and several, primarily captive, Old World monkey (OWM) species. To investigate the prevalence and genetic characteristics of EVs infecting OWMs in the wild, fecal samples from mandrills (Mandrillus sphinx) and other species collected in remote regions of southern Cameroon were screened for EV RNA. Remarkably high rates of EV positivity were detected in M. sphinx (100 of 102 screened), Cercocebus torquatus (7/7), and Cercopithecus cephus (2/4), with high viral loads indicative of active infection. Genetic characterization in VP4/VP2 and VP1 regions allowed EV variants to be assigned to simian species H (EV-H) and EV-J (including one or more new types), while seven matched simian EV-B variants, SA5 and EV110 (chimpanzee). Sequences from the remaining 70 formed a new genetic group distinct in VP4/2 and VP1 region from all currently recognized human or simian EV species. Complete genome sequences were obtained from three to determine their species assignment. In common with EV-J and the EV-A A13 isolate, new group sequences were chimeric, being most closely related to EV-A in capsid genes and to EV-B in the nonstructural gene region. Further recombination events created different groupings in 5' and 3' untranslated regions. While clearly a distinct EV group, the hybrid nature of new variants prevented their unambiguous classification as either members of a new species or as divergent members of EV-A using current International Committee on Taxonomy of Viruses (ICTV) assignment criteria. IMPORTANCE This study is the first large-scale investigation of the frequency of infection and diversity of enteroviruses (EVs) infecting monkeys (primarily mandrills) in the wild. Our findings demonstrate extremely high frequencies of active infection (95%) among mandrills and other Old World monkey species inhabiting remote regions of Cameroon without human contact. EV variants detected were distinct from those infecting human populations, comprising members of enterovirus species B, J, and H and a large novel group of viruses most closely related to species A in the P1 region. The viral sequences obtained contribute substantially to our growing understanding of the genetic diversity of EVs and the existence of interspecies chimerism that characterizes the novel variants in the current study, as well as in previously characterized species A and J viruses infecting monkeys. The latter findings will contribute to future development of consensus criteria for species assignments in enteroviruses and other picornavirus genera.
Collapse
|