1
|
Zadra N, Rizzoli A. Comprehensive phylogenomic analysis of Zika virus: Insights into its origin, past evolutionary dynamics, and global spread. Virus Res 2024; 350:199490. [PMID: 39489463 DOI: 10.1016/j.virusres.2024.199490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Zika virus (ZIKV), a Flaviviridae family member, has been linked to severe neurological disorders. Despite detailed studies on recent outbreaks, the early evolutionary history of ZIKV remains partially unclear. This study elucidates ZIKV origin and evolutionary dynamics, focusing on recombination events, early lineage diversification, and virus spread across continents. METHODS We assessed recombination using multiple methods. We conducted Bayesian phylogenetic analyses to understand the evolutionary relationships and timing of key diversification events. Model selection was carried out to determine the most appropriate evolutionary model for our dataset. RESULTS Our phylogenies revealed recent recombination between Singaporean and African lineages, indicating the co-circulation of diverse lineages during outbreaks. Thailand was identified as a crucial hub in the spread across Asia. The phylogenetic analysis suggests that the ZIKV lineage dates back to the eleventh century, with the first significant diversification occurring in the nineteenth century. The timing of the re-introduction of the Asian lineage into Africa and the delay between probable introduction and outbreak onset were also determined. CONCLUSIONS This study provides novel insights into ZIKV's origin and early evolutionary dynamics, highlighting Thailand's role in the spread of the virus in Asia and recent recombination events between distant lineages. These findings emphasize the need for continuous surveillance and a better understanding of ZIKV biology to forecast and mitigate future outbreaks.
Collapse
Affiliation(s)
- Nicola Zadra
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Annapaola Rizzoli
- Applied Ecology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
2
|
Kuno G. Mechanisms of Yellow Fever Transmission: Gleaning the Overlooked Records of Importance and Identifying Problems, Puzzles, Serious Issues, Surprises and Research Questions. Viruses 2024; 16:84. [PMID: 38257784 PMCID: PMC10820296 DOI: 10.3390/v16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
In viral disease research, few diseases can compete with yellow fever for the volume of literature, historical significance, richness of the topics and the amount of strong interest among both scientists and laypersons. While the major foci of viral disease research shifted to other more pressing new diseases in recent decades, many critically important basic tasks still remain unfinished for yellow fever. Some of the examples include the mechanisms of transmission, the process leading to outbreak occurrence, environmental factors, dispersal, and viral persistence in nature. In this review, these subjects are analyzed in depth, based on information not only in old but in modern literatures, to fill in blanks and to update the current understanding on these topics. As a result, many valuable facts, ideas, and other types of information that complement the present knowledge were discovered. Very serious questions about the validity of the arbovirus concept and some research practices were also identified. The characteristics of YFV and its pattern of transmission that make this virus unique among viruses transmitted by Ae. aegypti were also explored. Another emphasis was identification of research questions. The discovery of a few historical surprises was an unexpected benefit.
Collapse
Affiliation(s)
- Goro Kuno
- Formerly at the Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
3
|
Li Y, Bletsa M, Zisi Z, Boonen I, Gryseels S, Kafetzopoulou L, Webster JP, Catalano S, Pybus OG, Van de Perre F, Li H, Li Y, Li Y, Abramov A, Lymberakis P, Lemey P, Lequime S. Endogenous Viral Elements in Shrew Genomes Provide Insights into Pestivirus Ancient History. Mol Biol Evol 2022; 39:msac190. [PMID: 36063436 PMCID: PMC9550988 DOI: 10.1093/molbev/msac190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As viral genomic imprints in host genomes, endogenous viral elements (EVEs) shed light on the deep evolutionary history of viruses, ancestral host ranges, and ancient viral-host interactions. In addition, they may provide crucial information for calibrating viral evolutionary timescales. In this study, we conducted a comprehensive in silico screening of a large data set of available mammalian genomes for EVEs deriving from members of the viral family Flaviviridae, an important group of viruses including well-known human pathogens, such as Zika, dengue, or hepatitis C viruses. We identified two novel pestivirus-like EVEs in the reference genome of the Indochinese shrew (Crocidura indochinensis). Homologs of these novel EVEs were subsequently detected in vivo by molecular detection and sequencing in 27 shrew species, including 26 species representing a wide distribution within the Crocidurinae subfamily and one in the Soricinae subfamily on different continents. Based on this wide distribution, we estimate that the integration event occurred before the last common ancestor of the subfamily, about 10.8 million years ago, attesting to an ancient origin of pestiviruses and Flaviviridae in general. Moreover, we provide the first description of Flaviviridae-derived EVEs in mammals even though the family encompasses numerous mammal-infecting members. This also suggests that shrews were past and perhaps also current natural reservoirs of pestiviruses. Taken together, our results expand the current known Pestivirus host range and provide novel insight into the ancient evolutionary history of pestiviruses and the Flaviviridae family in general.
Collapse
Affiliation(s)
- Yiqiao Li
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Magda Bletsa
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Zafeiro Zisi
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Ine Boonen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sophie Gryseels
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Belgium Evolutionary Ecology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Liana Kafetzopoulou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Virology Department, Belgium Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Joanne P Webster
- Department of Pathobiology and Population Science, Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - Stefano Catalano
- Department of Pathobiology and Population Science, Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - Oliver G Pybus
- Department of Pathobiology and Population Science, Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | | | - Haotian Li
- Marine College, Shandong University (Weihai), 264209 Weihai, China
| | - Yaoyao Li
- Marine College, Shandong University (Weihai), 264209 Weihai, China
| | - Yuchun Li
- Marine College, Shandong University (Weihai), 264209 Weihai, China
| | - Alexei Abramov
- Laboratory of Theriology, Zoological Institute of the Russian Academy of Sciences, 190121 Saint Petersburg, Russia
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sébastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
4
|
Abstract
Flaviviruses are positive-sense single-stranded RNA viruses, including some well-known human pathogens such as Zika, dengue, and yellow fever viruses, which are primarily associated with mosquito and tick vectors. The vast majority of flavivirus research has focused on terrestrial environments; however, recent findings indicate that a range of flaviviruses are also present in aquatic environments, both marine and freshwater. These flaviviruses are found in various hosts, including fish, crustaceans, molluscs, and echinoderms. Although the effects of aquatic flaviviruses on the hosts they infect are not all known, some have been detected in farmed species and may have detrimental effects on the aquaculture industry. Exploration of the evolutionary history through the discovery of the Wenzhou shark flavivirus in both a shark and crab host is of particular interest since the potential dual-host nature of this virus may indicate that the invertebrate-vertebrate relationship seen in other flaviviruses may have a more profound evolutionary root than previously expected. Potential endogenous viral elements and the range of novel aquatic flaviviruses discovered thus shed light on virus origins and evolutionary history and may indicate that, like terrestrial life, the origins of flaviviruses may lie in aquatic environments.
Collapse
Affiliation(s)
- Megan J. Lensink
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Yiqiao Li
- Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Bamford CGG, de Souza WM, Parry R, Gifford RJ. Comparative analysis of genome-encoded viral sequences reveals the evolutionary history of flavivirids (family Flaviviridae). Virus Evol 2022; 8:veac085. [PMID: 36533146 PMCID: PMC9752770 DOI: 10.1093/ve/veac085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 09/05/2022] [Indexed: 01/24/2023] Open
Abstract
Flavivirids (family Flaviviridae) are a group of positive-strand ribonucleic acid (RNA) viruses that pose serious risks to human and animal health on a global scale. Here, we use flavivirid-derived deoxyribonucleic acid (DNA) sequences, identified in animal genomes, to reconstruct the long-term evolutionary history of family Flaviviridae. We demonstrate that flavivirids are >100 million years old and show that this timing can be combined with dates inferred from co-phyletic analysis to produce a cohesive overview of their evolution, distribution, and diversity wherein the main flavivirid subgroups originate in early animals and broadly co-diverge with major animal phyla. In addition, we reveal evidence that the 'classical flaviviruses' of vertebrates, most of which are transmitted via blood-feeding arthropod vectors, originally evolved in haematophagous arachnids and later acquired the capacity to be transmitted by insects. Our findings imply that the biological properties of flavivirids have been acquired gradually over the course of animal evolution. Thus, broad-scale comparative analysis will likely reveal fundamental insights into their biology. We therefore published our results via an open, extensible, database (Flavivirid-GLUE), which we constructed to facilitate the wider utilisation of genomic data and evolution-related domain knowledge in flavivirid research.
Collapse
|
6
|
Poveda-Cuevas SA, Etchebest C, da Silva FLB. Self-association features of NS1 proteins from different flaviviruses. Virus Res 2022; 318:198838. [PMID: 35662566 DOI: 10.1016/j.virusres.2022.198838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/22/2022]
Abstract
Flaviviruses comprise a large group of arboviral species that are distributed in several countries of the tropics, neotropics, and some temperate zones. Since they can produce neurological pathologies or vascular damage, there has been intense research seeking better diagnosis and treatments for their infections in the last decades. The flavivirus NS1 protein is a relevant clinical target because it is involved in viral replication, immune evasion, and virulence. Being a key factor in endothelial and tissue-specific modulation, NS1 has been largely studied to understand the molecular mechanisms exploited by the virus to reprogram host cells. A central part of the viral maturation processes is the NS1 oligomerization because many stages rely on these protein-protein assemblies. In the present study, the self-associations of NS1 proteins from Zika, Dengue, and West Nile viruses are examined through constant-pH coarse-grained biophysical simulations. Free energies of interactions were estimated for different oligomeric states and pH conditions. Our results show that these proteins can form both dimers and tetramers under conditions near physiological pH even without the presence of lipids. Moreover, pH plays an important role mainly controlling the regimes where van der Waals interactions govern their association. Finally, despite the similarity at the sequence level, we found that each flavivirus has a well-characteristic protein-protein interaction profile. These specific features can provide new hints for the development of binders both for better diagnostic tools and the formulation of new therapeutic drugs.
Collapse
Affiliation(s)
- Sergio A Poveda-Cuevas
- Universidade de São Paulo, Programa Interunidades em Bioinformática, Rua do Matão, 1010, BR-05508-090 São Paulo, São Paulo, Brazil; Universidade de São Paulo, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, BR-14040-903 Ribeirão Preto, São Paulo, Brazil; University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, Bloco B, BR-14040-903 Ribeirão Preto, São Paulo, Brazil.; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Catherine Etchebest
- Université Paris Cité, Biologie Intégrée du Globule Rouge, Equipe 2, INSERM, F-75015 Paris, France; University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, Bloco B, BR-14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Fernando L Barroso da Silva
- Universidade de São Paulo, Programa Interunidades em Bioinformática, Rua do Matão, 1010, BR-05508-090 São Paulo, São Paulo, Brazil; Universidade de São Paulo, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, BR-14040-903 Ribeirão Preto, São Paulo, Brazil; University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, Bloco B, BR-14040-903 Ribeirão Preto, São Paulo, Brazil..
| |
Collapse
|
7
|
Yang X, Gao GF, Liu WJ. Powassan virus: A tick borne flavivirus infecting humans. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
Kobayashi D, Watanabe M, Faizah AN, Amoa-Bosompem M, Higa Y, Tsuda Y, Sawabe K, Isawa H. Discovery of a Novel Flavivirus (Flaviviridae) From the Horse Fly, Tabanus rufidens (Diptera: Tabanidae): The Possible Coevolutionary Relationships Between the Classical Insect-Specific Flaviviruses and Host Dipteran Insects. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:880-890. [PMID: 33710314 DOI: 10.1093/jme/tjaa193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 06/12/2023]
Abstract
Tabanid flies (Tabanidae: Diptera) are common hematophagous insects known to transmit some pathogens mechanically or biologically to animals; they are widely distributed throughout the world. However, no tabanid-borne viruses, except mechanically transmitted viruses, have been reported to date. In this study, we conducted RNA virome analysis of several human-biting tabanid species in Japan, to discover and characterize viruses associated with tabanids. A novel flavivirus was encountered during the study in the Japanese horse fly, Tabanus rufidens (Bigot, 1887). The virus was detected only in T. rufidens, but not in other tabanid species, and as such was designated Tabanus rufidens flavivirus (TrFV). TrFV could not be isolated using a mammalian cell line and showed a closer phylogenetic relationship to the classical insect-specific flaviviruses (cISFs) rather than the vertebrate-infecting flaviviruses (VIFs), suggesting that it is a novel member of the cISFs. The first discovery of a cISF from Brachycera provides new insight into the evolutionary history and dynamics of flaviviruses.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Research Promotion, Japan Agency for Medical Research and Development, Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Michael Amoa-Bosompem
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshio Tsuda
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
9
|
de Oliveira Ribeiro G, da Costa AC, Gill DE, Ribeiro ESD, Rego MODS, Monteiro FJC, Villanova F, Nogueira JS, Maeda AY, de Souza RP, Tahmasebi R, Morais VS, Pandey RP, Raj VS, Scandar SAS, da Silva Vasami FG, D'Agostino LG, Maiorka PC, Deng X, Nogueira ML, Sabino EC, Delwart E, Leal É, Cunha MS. Guapiaçu virus, a new insect-specific flavivirus isolated from two species of Aedes mosquitoes from Brazil. Sci Rep 2021; 11:4674. [PMID: 33633167 PMCID: PMC7907106 DOI: 10.1038/s41598-021-83879-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Classical insect-flaviviruses (cISFVs) and dual host-related insect-specific flavivirus (dISFV) are within the major group of insect-specific flavivirus. Remarkably dISFV are evolutionarily related to some of the pathogenic flavivirus, such as Zika and dengue viruses. The Evolutionary relatedness of dISFV to flavivirus allowed us to investigate the evolutionary principle of host adaptation. Additionally, dISFV can be used for the development of flavivirus vaccines and to explore underlying principles of mammalian pathogenicity. Here we describe the genetic characterization of a novel putative dISFV, termed Guapiaçu virus (GUAPV). Distinct strains of GUAPV were isolated from pools of Aedes terrens and Aedes scapularis mosquitoes. Additionally, we also detected viral GUAPV RNA in a plasma sample of an individual febrile from the Amazon region (North of Brazil). Although GUAPV did not replicate in tested mammalian cells, 3′UTR secondary structures duplication and codon usage index were similar to pathogenic flavivirus.
Collapse
Affiliation(s)
| | | | - Danielle Elise Gill
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Edcelha Soares D'Athaide Ribeiro
- Public Health Laboratory of Amapa-LACEN/AP, Health Surveillance Superintendence of Amapa, Rua Tancredo Neves, 1.118, Macapá, AP, CEP 68905-230, Brazil
| | - Marlisson Octavio da S Rego
- Public Health Laboratory of Amapa-LACEN/AP, Health Surveillance Superintendence of Amapa, Rua Tancredo Neves, 1.118, Macapá, AP, CEP 68905-230, Brazil
| | - Fred Julio Costa Monteiro
- Public Health Laboratory of Amapa-LACEN/AP, Health Surveillance Superintendence of Amapa, Rua Tancredo Neves, 1.118, Macapá, AP, CEP 68905-230, Brazil
| | - Fabiola Villanova
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, 66075-000, Brazil
| | - Juliana Silva Nogueira
- Vector-Borne Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, SP, 01246-000, Brazil
| | - Adriana Yurika Maeda
- Vector-Borne Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, SP, 01246-000, Brazil
| | - Renato Pereira de Souza
- Vector-Borne Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, SP, 01246-000, Brazil
| | - Roozbeh Tahmasebi
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Vanessa S Morais
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | | | | | | | - Paulo César Maiorka
- Department of Pathology, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Xutao Deng
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118-4417, USA.,Department Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | | | - Ester Cerdeira Sabino
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Eric Delwart
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118-4417, USA. .,Department Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, 66075-000, Brazil.
| | - Mariana Sequetin Cunha
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil. .,Vector-Borne Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, SP, 01246-000, Brazil.
| |
Collapse
|
10
|
Yang J, Jing X, Yi W, Li XD, Yao C, Zhang B, Zheng Z, Wang H, Gong P. Crystal structure of a tick-borne flavivirus RNA-dependent RNA polymerase suggests a host adaptation hotspot in RNA viruses. Nucleic Acids Res 2021; 49:1567-1580. [PMID: 33406260 PMCID: PMC7897508 DOI: 10.1093/nar/gkaa1250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 01/07/2023] Open
Abstract
The RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses represent a unique class of nucleic acid polymerases. RdRPs are essential in virus life cycle due to their central role in viral genome replication/transcription processes. However, their contribution in host adaption has not been well documented. By solving the RdRP crystal structure of the tick-borne encephalitis virus (TBEV), a tick-borne flavivirus, and comparing the structural and sequence features with mosquito-borne flavivirus RdRPs, we found that a region between RdRP catalytic motifs B and C, namely region B-C, clearly bears host-related diversity. Inter-virus substitutions of region B-C sequence were designed in both TBEV and mosquito-borne Japanese encephalitis virus backbones. While region B-C substitutions only had little or moderate effect on RdRP catalytic activities, virus proliferation was not supported by these substitutions in both virus systems. Importantly, a TBEV replicon-derived viral RNA replication was significantly reduced but not abolished by the substitution, suggesting the involvement of region B-C in viral and/or host processes beyond RdRP catalysis. A systematic structural analysis of region B-C in viral RdRPs further emphasizes its high level of structure and length diversity, providing a basis to further refine its relevance in RNA virus-host interactions in a general context.
Collapse
Affiliation(s)
- Jieyu Yang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuping Jing
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfu Yi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Xiao-Dan Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Chen Yao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin 300350, China
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | | | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin 300350, China
| |
Collapse
|
11
|
Parry R, Asgari S. Discovery of Novel Crustacean and Cephalopod Flaviviruses: Insights into the Evolution and Circulation of Flaviviruses between Marine Invertebrate and Vertebrate Hosts. J Virol 2019; 93:e00432-19. [PMID: 31068424 PMCID: PMC6600200 DOI: 10.1128/jvi.00432-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Most described flaviviruses (family Flaviviridae) are disease-causing pathogens of vertebrates maintained in zoonotic cycles between mosquitoes or ticks and vertebrate hosts. Poor sampling of flaviviruses outside vector-borne flaviviruses such as Zika virus and dengue virus has presented a narrow understanding of flavivirus diversity and evolution. In this study, we discovered three crustacean flaviviruses (Gammarus chevreuxi flavivirus, Gammarus pulex flavivirus, and Crangon crangon flavivirus) and two cephalopod flaviviruses (Southern Pygmy squid flavivirus and Firefly squid flavivirus). Bayesian and maximum likelihood phylogenetic methods demonstrate that crustacean flaviviruses form a well-supported clade and share a more closely related ancestor with terrestrial vector-borne flaviviruses than with classical insect-specific flaviviruses. In addition, we identify variants of Wenzhou shark flavivirus in multiple gazami crab (Portunus trituberculatus) populations, with active replication supported by evidence of an active RNA interference response. This suggests that Wenzhou shark flavivirus moves horizontally between sharks and gazami crabs in ocean ecosystems. Analyses of the mono- and dinucleotide composition of marine flaviviruses compared to that of flaviviruses with known host status suggest that some marine flaviviruses share a nucleotide bias similar to that of vector-borne flaviviruses. Furthermore, we identify crustacean flavivirus endogenous viral elements that are closely related to elements of terrestrial vector-borne flaviviruses. Taken together, these data provide evidence of flaviviruses circulating between marine vertebrates and invertebrates, expand our understanding of flavivirus host range, and offer potential insights into the evolution and emergence of terrestrial vector-borne flaviviruses.IMPORTANCE Some flaviviruses are known to cause disease in vertebrates and are typically transmitted by blood-feeding arthropods such as ticks and mosquitoes. While an ever-increasing number of insect-specific flaviviruses have been described, we have a narrow understanding of flavivirus incidence and evolution. To expand this understanding, we discovered a number of novel flaviviruses that infect a range of crustaceans and cephalopod hosts. Phylogenetic analyses of these novel marine flaviviruses suggest that crustacean flaviviruses share a close ancestor to all terrestrial vector-borne flaviviruses, and squid flaviviruses are the most divergent of all known flaviviruses to date. Additionally, our results indicate horizontal transmission of a marine flavivirus between crabs and sharks. Taken together, these data suggest that flaviviruses move horizontally between invertebrates and vertebrates in ocean ecosystems. This study demonstrates that flavivirus invertebrate-vertebrate host associations have arisen in flaviviruses at least twice and may potentially provide insights into the emergence or origin of terrestrial vector-borne flaviviruses.
Collapse
Affiliation(s)
- Rhys Parry
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Burdmann EA. Flaviviruses and Kidney Diseases. Adv Chronic Kidney Dis 2019; 26:198-206. [PMID: 31202392 DOI: 10.1053/j.ackd.2019.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
The genus Flavivirus comprises approximately 73 viruses, which share several common aspects, such as dimension, structure, nucleic acid properties, and shape in electronic microscopy. Global incidence of flavivirus infection increased dramatically over the last decades, causing large outbreaks in several areas of the world. These viruses are expanding from endemic tropical and subtropical areas to previously nonendemic areas, affecting and causing diseases in millions of individuals worldwide and posing a formidable challenge to public health in several countries. The majority of clinically significant flavivirus-associated infections are mosquito borne (arboviruses-acronym for ARthropod-BOrne VIRUSES), such as dengue, yellow fever, Japanese encephalitis, Zika, and West Nile fever. Most diseases caused by flaviviruses are asymptomatic or manifest as self-limited, mild, undifferentiated febrile diseases. In a limited number of cases, these diseases may evolve to severe inflammatory, multisystem diseases, causing high morbidity and mortality. Some flaviviruses have been consistently identified in kidney tissue and urine and have been clinically associated with kidney diseases. In this review, we will provide an overview of the epidemiology, risk factors, kidney pathology, etiopathogenesis, and outcomes of acute and chronic kidney syndromes associated with dengue, yellow fever, Zika, and West Nile virus disease.
Collapse
|
13
|
Abstract
The tick-borne pathogen Powassan virus is a rare cause of encephalitis in North America and the Russian Far East. The number of documented cases described since the discovery of Powassan virus in 1958 may be <150, although detection of cases has increased over the past decade. In the United States, the incidence of Powassan virus infections expanded from the estimated 1 case per year prior to 2005 to 10 cases per year during the subsequent decade. The increased detection rate may be associated with several factors, including enhanced surveillance, the availability of improved laboratory diagnostic methods, the expansion of the vector population, and, perhaps, altered human activities that lead to more exposure. Nonetheless, it remains unclear whether Powassan virus is indeed an emerging threat or if enzootic cycles in nature remain more-or-less stable with periodic fluctuations of host and vector population sizes. Despite the low disease incidence, the approximately 10% to 15% case fatality rate of neuroinvasive Powassan virus infection and the temporary or prolonged sequelae in >50% of survivors make Powassan virus a medical concern requiring the attention of public health authorities and clinicians. The medical importance of Powassan virus justifies more research on developing specific and effective treatments and prevention and control measures.
Collapse
Affiliation(s)
- Gábor Kemenesi
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
14
|
Corrin T, Greig J, Harding S, Young I, Mascarenhas M, Waddell LA. Powassan virus, a scoping review of the global evidence. Zoonoses Public Health 2018; 65:595-624. [PMID: 29911344 DOI: 10.1111/zph.12485] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/19/2018] [Accepted: 05/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Powassan virus (POWV), a flavivirus discovered in 1958, causes sporadic but severe cases of encephalitis in humans. Since 2007, the number of human Powassan cases diagnosed each year in the USA has steadily increased. This is in agreement with predictions that Powassan cases may increase in North America as a result of increased exposure to infected ticks. However, the increase may also reflect improved diagnostics and reporting among other factors. METHODS A scoping review was prioritized to identify and characterize the global literature on POWV. Following an a priori developed protocol, a comprehensive search strategy was implemented. Two reviewers screened titles and abstracts for relevant research and the identified full papers were used to characterize the POWV literature using a predetermined data characterization tool. RESULTS One hundred and seventy-eight articles were included. The majority of the studies were conducted in North America (88.2%) between 1958 and 2017. Both genotypes of POWV (Powassan lineage 1 and Deer Tick virus) were isolated or studied in vitro, in vectors, nonhuman hosts and human populations. To date, POWV has been reported in 147 humans in North America. The virus has also been isolated from five tick species, and several animals have tested positive for exposure to the virus. The relevant articles identified in this review cover the following eight topics: epidemiology (123 studies), pathogenesis (66), surveillance (33), virus characterization (22), POWV transmission (8), diagnostic test accuracy (8), treatment (4) and mitigation strategies (3). CONCLUSION The literature on POWV is relatively small compared with other vector-borne diseases, likely because POWV has not been prioritized due to the small number of severe sporadic human cases. With the projected impact of climate change on tick populations, increases in the number of human cases are expected. It is recommended that future research efforts focus on closing some of the important knowledge gaps identified in this scoping review.
Collapse
Affiliation(s)
- Tricia Corrin
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Judy Greig
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Shannon Harding
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Ian Young
- School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada
| | - Mariola Mascarenhas
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Lisa A Waddell
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| |
Collapse
|
15
|
Kenney JL, Anishchenko M, Hermance M, Romo H, Chen CI, Thangamani S, Brault AC. Generation of a Lineage II Powassan Virus (Deer Tick Virus) cDNA Clone: Assessment of Flaviviral Genetic Determinants of Tick and Mosquito Vector Competence. Vector Borne Zoonotic Dis 2018; 18:371-381. [PMID: 29782238 DOI: 10.1089/vbz.2017.2224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Flavivirus genus comprises a diverse group of viruses that utilize a wide range of vertebrate hosts and arthropod vectors. The genus includes viruses that are transmitted solely by mosquitoes or vertebrate hosts as well as viruses that alternate transmission between mosquitoes or ticks and vertebrates. Nevertheless, the viral genetic determinants that dictate these unique flaviviral host and vector specificities have been poorly characterized. In this report, a cDNA clone of a flavivirus that is transmitted between ticks and vertebrates (Powassan lineage II, deer tick virus [DTV]) was generated and chimeric viruses between the mosquito/vertebrate flavivirus, West Nile virus (WNV), were constructed. These chimeric viruses expressed the prM and E genes of either WNV or DTV in the heterologous nonstructural (NS) backbone. Recombinant chimeric viruses rescued from cDNAs were characterized for their capacity to grow in vertebrate and arthropod (mosquito and tick) cells as well as for in vivo vector competence in mosquitoes and ticks. Results demonstrated that the NS elements were insufficient to impart the complete mosquito or tick growth phenotypes of parental viruses; however, these NS genetic elements did contribute to a 100- and 100,000-fold increase in viral growth in vitro in tick and mosquito cells, respectively. Mosquito competence was observed only with parental WNV, while infection and transmission potential by ticks were observed with both DTV and WNV-prME/DTV chimeric viruses. These data indicate that NS genetic elements play a significant, but not exclusive, role for vector usage of mosquito- and tick-borne flaviviruses.
Collapse
Affiliation(s)
- Joan L Kenney
- 1 Division of Vector-Borne Diseases, Centers for Disease Control and Prevention , Fort Collins, Colorado
| | - Michael Anishchenko
- 1 Division of Vector-Borne Diseases, Centers for Disease Control and Prevention , Fort Collins, Colorado
| | - Meghan Hermance
- 2 Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch , Galveston, Texas
| | - Hannah Romo
- 1 Division of Vector-Borne Diseases, Centers for Disease Control and Prevention , Fort Collins, Colorado
| | - Ching-I Chen
- 3 Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California , Davis, Davis, California
| | - Saravanan Thangamani
- 2 Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch , Galveston, Texas
| | - Aaron C Brault
- 1 Division of Vector-Borne Diseases, Centers for Disease Control and Prevention , Fort Collins, Colorado
| |
Collapse
|
16
|
Does adaptation to vertebrate codon usage relate to flavivirus emergence potential? PLoS One 2018; 13:e0191652. [PMID: 29385205 PMCID: PMC5792106 DOI: 10.1371/journal.pone.0191652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
Codon adaptation index (CAI) is a measure of synonymous codon usage biases given a usage reference. Through mutation, selection, and drift, viruses can optimize their replication efficiency and produce more offspring, which could increase the chance of secondary transmission. To evaluate how higher CAI towards the host has been associated with higher viral titers, we explored temporal trends of several historic and extensively sequenced zoonotic flaviviruses and relationships within the genus itself. To showcase evolutionary and epidemiological relationships associated with silent, adaptive synonymous changes of viruses, we used codon usage tables from human housekeeping and antiviral immune genes, as well as tables from arthropod vectors and vertebrate species involved in the flavivirus maintenance cycle. We argue that temporal trends of CAI changes could lead to a better understanding of zoonotic emergences, evolutionary dynamics, and host adaptation. CAI appears to help illustrate historically relevant trends of well-characterized viruses, in different viral species and genetic diversity within a single species. CAI can be a useful tool together with in vivo and in vitro kinetics, phylodynamics, and additional functional genomics studies to better understand species trafficking and viral emergence in a new host.
Collapse
|
17
|
Brody T, Yavatkar AS, Park DS, Kuzin A, Ross J, Odenwald WF. Flavivirus and Filovirus EvoPrinters: New alignment tools for the comparative analysis of viral evolution. PLoS Negl Trop Dis 2017. [PMID: 28622346 PMCID: PMC5489223 DOI: 10.1371/journal.pntd.0005673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Flavivirus and Filovirus infections are serious epidemic threats to human populations. Multi-genome comparative analysis of these evolving pathogens affords a view of their essential, conserved sequence elements as well as progressive evolutionary changes. While phylogenetic analysis has yielded important insights, the growing number of available genomic sequences makes comparisons between hundreds of viral strains challenging. We report here a new approach for the comparative analysis of these hemorrhagic fever viruses that can superimpose an unlimited number of one-on-one alignments to identify important features within genomes of interest. Methodology/Principal finding We have adapted EvoPrinter alignment algorithms for the rapid comparative analysis of Flavivirus or Filovirus sequences including Zika and Ebola strains. The user can input a full genome or partial viral sequence and then view either individual comparisons or generate color-coded readouts that superimpose hundreds of one-on-one alignments to identify unique or shared identity SNPs that reveal ancestral relationships between strains. The user can also opt to select a database genome in order to access a library of pre-aligned genomes of either 1,094 Flaviviruses or 460 Filoviruses for rapid comparative analysis with all database entries or a select subset. Using EvoPrinter search and alignment programs, we show the following: 1) superimposing alignment data from many related strains identifies lineage identity SNPs, which enable the assessment of sublineage complexity within viral outbreaks; 2) whole-genome SNP profile screens uncover novel Dengue2 and Zika recombinant strains and their parental lineages; 3) differential SNP profiling identifies host cell A-to-I hyper-editing within Ebola and Marburg viruses, and 4) hundreds of superimposed one-on-one Ebola genome alignments highlight ultra-conserved regulatory sequences, invariant amino acid codons and evolutionarily variable protein-encoding domains within a single genome. Conclusions/Significance EvoPrinter allows for the assessment of lineage complexity within Flavivirus or Filovirus outbreaks, identification of recombinant strains, highlights sequences that have undergone host cell A-to-I editing, and identifies unique input and database SNPs within highly conserved sequences. EvoPrinter’s ability to superimpose alignment data from hundreds of strains onto a single genome has allowed us to identify unique Zika virus sublineages that are currently spreading in South, Central and North America, the Caribbean, and in China. This new set of integrated alignment programs should serve as a useful addition to existing tools for the comparative analysis of these viruses. Flaviviruses, including Zika and Dengue viruses, and Filoviruses, including Ebola and Marburg viruses, are significant global public health threats. Genetic surveillance of viral isolates provides important insights into the origin of outbreaks, reveals lineage heterogeneity and diversification, and facilitates identification of novel recombinant strains and host cell modified viral genomes. We report the development of EvoPrinter, a web-accessed alignment tool for the rapid comparative analysis of viral genomes. EvoPrinter superimposes alignment data from multiple pairwise comparisons onto a single reference sequence of interest, to reveal both similarities and differences detected in hundreds of selected viral isolates. Evoprinter databases provide easy access to hundreds of non-redundant Flavivirus and Filovirus genomes. allowing the user to distinguish between sublineage identity SNPs and unique strain-specific SNPs, thus facilitating analysis of the history of viral diversification during an epidemic. EvoPrinter also proves useful in identifying recombinant strains and their parental lineages and detecting host-cell genomic editing. EvoPrinter should serve as a useful addition to existing tools for the comparative analysis of these viruses.
Collapse
Affiliation(s)
- Thomas Brody
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, United States of America
- * E-mail: (TB); (WFO)
| | - Amarendra S. Yavatkar
- Division of Intramural Research Information Technology Program, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Dong Sun Park
- Division of Intramural Research Information Technology Program, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Jermaine Ross
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Ward F. Odenwald
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, United States of America
- * E-mail: (TB); (WFO)
| |
Collapse
|
18
|
Holbrook MR. Historical Perspectives on Flavivirus Research. Viruses 2017; 9:E97. [PMID: 28468299 PMCID: PMC5454410 DOI: 10.3390/v9050097] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The flaviviruses are small single-stranded RNA viruses that are typically transmitted by mosquito or tick vectors. These "arboviruses" are found around the world and account for a significant number of cases of human disease. The flaviviruses cause diseases ranging from mild or sub-clinical infections to lethal hemorrhagic fever or encephalitis. In many cases, survivors of neurologic flavivirus infections suffer long-term debilitating sequelae. Much like the emergence of West Nile virus in the United States in 1999, the recent emergence of Zika virus in the Americas has significantly increased the awareness of mosquito-borne viruses. The diseases caused by several flaviviruses have been recognized for decades, if not centuries. However, there is still a lot that is unknown about the flaviviruses as the recent experience with Zika virus has taught us. The objective of this review is to provide a general overview and some historical perspective on several flaviviruses that cause significant human disease. In addition, available medical countermeasures and significant gaps in our understanding of flavivirus biology are also discussed.
Collapse
Affiliation(s)
- Michael R Holbrook
- NIAID Integrated Research Facility, 8200 Research Plaza, Ft. Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
19
|
Conway MJ. Identification of a Flavivirus Sequence in a Marine Arthropod. PLoS One 2015; 10:e0146037. [PMID: 26717191 PMCID: PMC4699914 DOI: 10.1371/journal.pone.0146037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/11/2015] [Indexed: 01/12/2023] Open
Abstract
Phylogenetic analysis has yet to uncover the early origins of flaviviruses. In this study, I mined a database of expressed sequence tags in order to discover novel flavivirus sequences. Flavivirus sequences were identified in a pool of mRNA extracted from the sea spider Endeis spinosa (Pycnogonida, Pantopoda). Reconstruction of the translated sequences and BLAST analysis matched the sequence to the flavivirus NS5 gene. Additional sequences corresponding to envelope and the NS5 MTase domain were also identified. Phylogenetic analysis of homologous NS5 sequences revealed that Endeis spinosa NS5 (ESNS5) is likely related to classical insect-specific flaviviruses. It is unclear if ESNS5 represents genetic material from an active viral infection or an integrated viral genome. These data raise the possibility that classical insect-specific flaviviruses and perhaps medically relevant flaviviruses, evolved from progenitors that infected marine arthropods.
Collapse
Affiliation(s)
- Michael J. Conway
- Foundational Sciences, Central Michigan University, College of Medicine, Mt. Pleasant, Michigan, 48859, United States of America
| |
Collapse
|
20
|
Duchêne S, Di Giallonardo F, Holmes EC. Substitution Model Adequacy and Assessing the Reliability of Estimates of Virus Evolutionary Rates and Time Scales. Mol Biol Evol 2015; 33:255-67. [PMID: 26416981 DOI: 10.1093/molbev/msv207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Determining the time scale of virus evolution is central to understanding their origins and emergence. The phylogenetic methods commonly used for this purpose can be misleading if the substitution model makes incorrect assumptions about the data. Empirical studies consider a pool of models and select that with the highest statistical fit. However, this does not allow the rejection of all models, even if they poorly describe the data. An alternative is to use model adequacy methods that evaluate the ability of a model to predict hypothetical future observations. This can be done by comparing the empirical data with data generated under the model in question. We conducted simulations to evaluate the sensitivity of such methods with nucleotide, amino acid, and codon data. These effectively detected underparameterized models, but failed to detect mutational saturation and some instances of nonstationary base composition, which can lead to biases in estimates of tree topology and length. To test the applicability of these methods with real data, we analyzed nucleotide and amino acid data sets from the genus Flavivirus of RNA viruses. In most cases these models were inadequate, with the exception of a data set of relatively closely related sequences of Dengue virus, for which the GTR+Γ nucleotide and LG+Γ amino acid substitution models were adequate. Our results partly explain the lack of consensus over estimates of the long-term evolutionary time scale of these viruses, and indicate that assessing the adequacy of substitution models should be routinely used to determine whether estimates are reliable.
Collapse
Affiliation(s)
- Sebastián Duchêne
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Francesca Di Giallonardo
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Ecuador Paraiso Escondido Virus, a New Flavivirus Isolated from New World Sand Flies in Ecuador, Is the First Representative of a Novel Clade in the Genus Flavivirus. J Virol 2015; 89:11773-85. [PMID: 26355096 PMCID: PMC4645344 DOI: 10.1128/jvi.01543-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A new flavivirus, Ecuador Paraiso Escondido virus (EPEV), named after the village where it was discovered, was isolated from sand flies (Psathyromyia abonnenci, formerly Lutzomyia abonnenci) that are unique to the New World. This represents the first sand fly-borne flavivirus identified in the New World. EPEV exhibited a typical flavivirus genome organization. Nevertheless, the maximum pairwise amino acid sequence identity with currently recognized flaviviruses was 52.8%. Phylogenetic analysis of the complete coding sequence showed that EPEV represents a distinct clade which diverged from a lineage that was ancestral to the nonvectored flaviviruses Entebbe bat virus, Yokose virus, and Sokoluk virus and also the Aedes-associated mosquito-borne flaviviruses, which include yellow fever virus, Sepik virus, Saboya virus, and others. EPEV replicated in C6/36 mosquito cells, yielding high infectious titers, but failed to reproduce either in vertebrate cell lines (Vero, BHK, SW13, and XTC cells) or in suckling mouse brains. This surprising result, which appears to eliminate an association with vertebrate hosts in the life cycle of EPEV, is discussed in the context of the evolutionary origins of EPEV in the New World. IMPORTANCE The flaviviruses are rarely (if ever) vectored by sand fly species, at least in the Old World. We have identified the first representative of a sand fly-associated flavivirus, Ecuador Paraiso Escondido virus (EPEV), in the New World. EPEV constitutes a novel clade according to current knowledge of the flaviviruses. Phylogenetic analysis of the virus genome showed that EPEV roots the Aedes-associated mosquito-borne flaviviruses, including yellow fever virus. In light of this new discovery, the New World origin of EPEV is discussed together with that of the other flaviviruses.
Collapse
|
22
|
Moureau G, Cook S, Lemey P, Nougairede A, Forrester NL, Khasnatinov M, Charrel RN, Firth AE, Gould EA, de Lamballerie X. New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences. PLoS One 2015; 10:e0117849. [PMID: 25719412 PMCID: PMC4342338 DOI: 10.1371/journal.pone.0117849] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022] Open
Abstract
To generate the most diverse phylogenetic dataset for the flaviviruses to date, we determined the genomic sequences and phylogenetic relationships of 14 flaviviruses, of which 10 are primarily associated with Culex spp. mosquitoes. We analyze these data, in conjunction with a comprehensive collection of flavivirus genomes, to characterize flavivirus evolutionary and biogeographic history in unprecedented detail and breadth. Based on the presumed introduction of yellow fever virus into the Americas via the transatlantic slave trade, we extrapolated a timescale for a relevant subset of flaviviruses whose evolutionary history, shows that different Culex-spp. associated flaviviruses have been introduced from the Old World to the New World on at least five separate occasions, with 2 different sets of factors likely to have contributed to the dispersal of the different viruses. We also discuss the significance of programmed ribosomal frameshifting in a central region of the polyprotein open reading frame in some mosquito-associated flaviviruses.
Collapse
Affiliation(s)
- Gregory Moureau
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Shelley Cook
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Antoine Nougairede
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Naomi L. Forrester
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, United States of America
| | - Maxim Khasnatinov
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh, Gifford, Wallingford, Oxfordshire, OX10, United Kingdom
| | - Remi N. Charrel
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Andrew E. Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Ernest A. Gould
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| |
Collapse
|