1
|
Mizenko RR, Brostoff T, Jackson K, Pesavento PA, Carney RP. Extracellular Vesicles (EVs) Are Copurified with Feline Calicivirus, yet EV-Enriched Fractions Remain Infectious. Microbiol Spectr 2022; 10:e0121122. [PMID: 35876590 PMCID: PMC9430557 DOI: 10.1128/spectrum.01211-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Feline calicivirus (FCV) is a major cause of upper respiratory disease in cats and is often used as a model for human norovirus, making it of great veterinary and human medical importance. However, questions remain regarding the route of entry of FCV in vivo. Increasing work has shown that extracellular vesicles (EVs) can be active in viral infectivity, yet there is no work examining the role of EVs in FCV infection. Here, we begin to address this knowledge gap by characterizing EVs produced by a feline mammary epithelial cell line (FMEC). We have confirmed that EVs are produced by infected and mock-infected FMECs and that both virions and EVs are coisolated with standard methods of virus purification. We also show that they can be enriched differentially by continuous iodixanol density gradient. EVs were enriched at a density of 1.10 g/mL confirmed by tetraspanin expression, size profile, and transmission electron microscopy (TEM). Maximum enrichment of FCV at a density of 1.18 g/mL was confirmed by titration, quantitative reverse transcriptase PCR (q-RT PCR), and TEM. However, infectious virus was recovered from nearly all samples. When used to infect in vitro epithelium, both EV-rich and virus-rich fractions had the same levels of infectiousness as determined by percentage of wells infected or titer achieved postinfection. These findings highlight the importance of coisolates during viral purification, showing that EVs may represent a parallel route of entry that has previously been overlooked. Additional experiments are necessary to explore the role of EVs in FCV infection. IMPORTANCE Feline calicivirus (FCV) is a common cause of upper respiratory infection in cats. Both healthy and infected cells produce small particles called extracellular vesicles (EVs), which are nanoparticles that act as messengers between cells and can be hijacked during viral infection. Historically, the role of EVs in viral infection has been overlooked, and subsequently no group has studied the role of EVs in FCV infection. We hypothesized that EVs may play a role in FCV infection. Here, we show that EVs are copurified with FCV when collecting virus. To study their individual effects, we successfully enrich for viral particles and EVs separately by taking advantage of their different densities. Our initial studies show that EV-enriched versus virus-enriched fractions are equally able to infect cells in culture. These findings highlight the need to both consider the purity of virus after purification and to further study EVs' role in natural FCV infection.
Collapse
Affiliation(s)
- Rachel R. Mizenko
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Terza Brostoff
- Department of Pathology, University of California, San Diego, California, USA
| | - Kenneth Jackson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Randy P. Carney
- Department of Biomedical Engineering, University of California, Davis, California, USA
| |
Collapse
|
2
|
Kennedy S, Leroux MM, Simons A, Malve B, Devocelle M, Varbanov M. Apoptosis and autophagy as a turning point in viral–host interactions: the case of human norovirus and its surrogates. Future Virol 2020. [DOI: 10.2217/fvl-2019-0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human gastroenteritis viruses are amid the major causes of disease worldwide, responsible for more than 2 million deaths per year. Human noroviruses play a leading role in the gastroenteritis outbreaks and the continuous emergence of new strains contributes to the significant morbidity and mortality. Many aspects of the viral entry and infection process remain unclear, including the major response of the host cell to the virus, which is the trigger of several programmed cell death related mechanisms. In this review, we assessed apoptosis and autophagy at various stages in the infection process to provide better understanding of the viral–host interaction. This brings us closer to fully understanding how noroviruses work, thus allowing the development of specific antiviral therapies.
Collapse
Affiliation(s)
- Sean Kennedy
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, 1st Floor Ardilaun House Block B, 111 St Stephen’s Green, Dublin 2, Ireland
| | - Mélanie M Leroux
- Faculté de Pharmacie, 7 avenue de la forêt de Haye, 54505 Vandoeuvre-Lès-Nancy, France
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université deLorraine, F‐54000, Nancy, France
| | - Alexis Simons
- Faculté de Pharmacie, 7 avenue de la forêt de Haye, 54505 Vandoeuvre-Lès-Nancy, France
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Bactéries Pathogènes et Santé, Faculté de Pharmacie, 5 Rue Jean-Baptiste Clément, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 92296 Châtenay-Malabry, France
| | - Brice Malve
- Université deLorraine, CHRU-Nancy, Laboratoire de Virologie, F-54000 Nancy, France
| | - Marc Devocelle
- Synthesis & Solid State Pharmaceutical Centre, Research Centre and Department of Chemistry, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, Dublin 2, Ireland
| | - Mihayl Varbanov
- Faculté de Pharmacie, 7 avenue de la forêt de Haye, 54505 Vandoeuvre-Lès-Nancy, France
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| |
Collapse
|
3
|
Survivin Overexpression Has a Negative Effect on Feline Calicivirus Infection. Viruses 2019; 11:v11110996. [PMID: 31671627 PMCID: PMC6893618 DOI: 10.3390/v11110996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
It is known that levels of the anti-apoptotic protein survivin are reduced during Murine norovirus MNV-1 and Feline calicivirus (FCV) infection as part of the apoptosis establishment required for virus release and propagation in the host. Recently, our group has reported that overexpression of survivin causes a reduction of FCV protein synthesis and viral progeny production, suggesting that survivin may affect early steps of the replicative cycle. Using immunofluorescence assays, we observed that overexpression of survivin, resulted in the reduction of FCV infection not only in transfected but also in the neighboring nontransfected CrFK cells, thus suggesting autocrine and paracrine protective effects. Cells treated with the supernatants collected from CrFK cells overexpressing survivin showed a reduction in FCV but not MNV-1 protein production and viral yield, suggesting that FCV binding and/or entry were specifically altered. The reduced ability of FCV to bind to the surface of the cells overexpressing survivin, or treated with the supernatants collected from these cells, correlate with the reduction in the cell surface of the FCV receptor, the feline junctional adhesion molecule (fJAM) 1, while no effect was observed in the cells transfected with the pAm-Cyan vector or in cells treated with the corresponding supernatants. Moreover, the overexpression of survivin affects neither Vaccinia virus (VACV) production in CrFK cells nor MNV-1 virus production in RAW 267.4 cells, indicating that the effect is specific for FCV. All of these results taken together indicate that cells that overexpress survivin, or cell treatment with the conditioned medium from these cells, results in the reduction of the fJAM-1 molecule and, therefore, a specific reduction in FCV entry and infection.
Collapse
|
4
|
Peñaflor-Téllez Y, Trujillo-Uscanga A, Escobar-Almazán JA, Gutiérrez-Escolano AL. Immune Response Modulation by Caliciviruses. Front Immunol 2019; 10:2334. [PMID: 31632406 PMCID: PMC6779827 DOI: 10.3389/fimmu.2019.02334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Noroviruses and Sapoviruses, classified in the Caliciviridae family, are small positive-stranded RNA viruses, considered nowadays the leading cause of acute gastroenteritis globally in both children and adults. Although most noroviruses have been associated with gastrointestinal disease in humans, almost 50 years after its discovery, there is still a lack of comprehensive evidence regarding its biology and pathogenesis mainly because they can be neither conveniently grown in cultured cells nor propagated in animal models. However, other members of this family such as Feline calicivirus (FCV), Murine norovirus (MNV), Rabbit hemorrhagic disease virus (RHDV), and Porcine sapovirus (PS), from which there are accessible propagation systems, have been useful to study the calicivirus replication strategies. Using cell cultures and animal models, many of the functions of the viral proteins in the viral replication cycles have been well-characterized. Moreover, evidence of the role of viral proteins from different members of the family in the establishment of infection has been generated and the mechanism of their immunopathogenesis begins to be understood. In this review, we discuss different aspects of how caliciviruses are implicated in membrane rearrangements, apoptosis, and evasion of the immune responses, highlighting some of the pathogenic mechanisms triggered by different members of the Caliciviridae family.
Collapse
Affiliation(s)
- Yoatzin Peñaflor-Téllez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| | - Adrian Trujillo-Uscanga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| | - Jesús Alejandro Escobar-Almazán
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| |
Collapse
|
5
|
Robinson BA, Van Winkle JA, McCune BT, Peters AM, Nice TJ. Caspase-mediated cleavage of murine norovirus NS1/2 potentiates apoptosis and is required for persistent infection of intestinal epithelial cells. PLoS Pathog 2019; 15:e1007940. [PMID: 31329638 PMCID: PMC6675124 DOI: 10.1371/journal.ppat.1007940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/01/2019] [Accepted: 06/24/2019] [Indexed: 12/05/2022] Open
Abstract
Human norovirus (HNoV) is the leading cause of acute gastroenteritis and is spread by fecal shedding that can often persist for weeks to months after the resolution of symptoms. Elimination of persistent viral reservoirs has the potential to prevent outbreaks. Similar to HNoV, murine norovirus (MNV) is spread by persistent shedding in the feces and provides a tractable model to study molecular mechanisms of enteric persistence. Previous studies have identified non-structural protein 1 (NS1) from the persistent MNV strain CR6 as critical for persistent infection in intestinal epithelial cells (IECs), but its mechanism of action remains unclear. We now find that the function of CR6 NS1 is regulated by apoptotic caspase cleavage. Following induction of apoptosis in infected cells, caspases cleave the precursor NS1/2 protein, and this cleavage is prevented by mutation of caspase target motifs. These mutations profoundly compromise CR6 infection of IECs and persistence in the intestine. Conversely, NS1/2 cleavage is not strictly required for acute replication in extra-intestinal tissues or in cultured myeloid cells, suggesting an IEC-centric role. Intriguingly, we find that caspase cleavage of CR6 NS1/2 reciprocally promotes caspase activity, potentiates cell death, and amplifies spread among cultured IEC monolayers. Together, these data indicate that the function of CR6 NS1 is regulated by apoptotic caspases, and suggest that apoptotic cell death enables epithelial spread and persistent shedding. Human Norovirus infection is highly contagious and the most common cause of acute gastroenteritis. Norovirus can be persistently shed after resolution of symptoms, perpetuating or initiating new outbreaks. Murine norovirus (MNV) is also persistently shed, enabling study of host and viral determinants of norovirus pathogenesis. We previously identified a critical role for MNV non-structural protein 1 (NS1), in persistence. Herein we find that regulation of NS1 by host apoptotic caspases is required for infection of intestinal epithelial cells, but not for extra-intestinal spread. Additionally, we demonstrate that NS1 reciprocally promotes cell death and spread among epithelial cells. These data identify regulation of NS1 by host proteases and suggest that apoptotic death is a determinant of epithelial spread and persistence.
Collapse
Affiliation(s)
- Bridget A. Robinson
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jacob A. Van Winkle
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Broc T. McCune
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - A. Mack Peters
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Timothy J. Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
6
|
Barrera-Vázquez OS, Cancio-Lonches C, Hernández-González O, Chávez-Munguia B, Villegas-Sepúlveda N, Gutiérrez-Escolano AL. The feline calicivirus leader of the capsid protein causes survivin and XIAP downregulation and apoptosis. Virology 2018; 527:146-158. [PMID: 30529563 DOI: 10.1016/j.virol.2018.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 01/29/2023]
Abstract
Calicivirus infection causes intrinsic apoptosis, leading to viral propagation in the host. During murine norovirus infection, a reduction in the anti-apoptotic protein survivin has been documented. Here we report that in feline calicivirus infection, a downregulation of the anti-apoptotic proteins survivin and XIAP occur, which correlates with the translocation of the pro-apoptotic protein Smac/DIABLO from the mitochondria to the cytoplasm and the activation of caspase-3. Inhibition of survivin degradation by lactacystin treatment caused a delay in apoptosis progression, reducing virus release, without affecting virus production. However, the overexpression of survivin caused a negative effect in viral progeny production. Overexpression of the leader of the capsid protein (LC), but not of the protease-polymerase NS6/7, results in the downregulation of survivin and XIAP, caspase activation and mitochondrial damage. These results indicate that LC is responsible for the induction of apoptosis in transfected cells and most probably in FCV infection.
Collapse
Affiliation(s)
- Oscar Salvador Barrera-Vázquez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico
| | - Clotilde Cancio-Lonches
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico
| | - Olivia Hernández-González
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico
| | - Bibiana Chávez-Munguia
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico
| | - Nicolás Villegas-Sepúlveda
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico..
| |
Collapse
|
7
|
Aboubakr HA, Mor SK, Higgins L, Armien A, Youssef MM, Bruggeman PJ, Goyal SM. Cold argon-oxygen plasma species oxidize and disintegrate capsid protein of feline calicivirus. PLoS One 2018; 13:e0194618. [PMID: 29566061 PMCID: PMC5864060 DOI: 10.1371/journal.pone.0194618] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/06/2018] [Indexed: 11/18/2022] Open
Abstract
Possible mechanisms that lead to inactivation of feline calicivirus (FCV) by cold atmospheric-pressure plasma (CAP) generated in 99% argon-1% O2 admixture were studied. We evaluated the impact of CAP exposure on the FCV viral capsid protein and RNA employing several cultural, molecular, proteomic and morphologic characteristics techniques. In the case of long exposure (2 min) to CAP, the reactive species of CAP strongly oxidized the major domains of the viral capsid protein (VP1) leading to disintegration of a majority of viral capsids. In the case of short exposure (15 s), some of the virus particles retained their capsid structure undamaged but failed to infect the host cells in vitro. In the latter virus particles, CAP exposure led to the oxidation of specific amino acids located in functional peptide residues in the P2 subdomain of the protrusion (P) domain, the dimeric interface region of VP1 dimers, and the movable hinge region linking the S and P domains. These regions of the capsid are known to play an essential role in the attachment and entry of the virus to the host cell. These observations suggest that the oxidative effect of CAP species inactivates the virus by hindering virus attachment and entry into the host cell. Furthermore, we found that the oxidative impact of plasma species led to oxidation and damage of viral RNA once it becomes unpacked due to capsid destruction. The latter effect most likely plays a secondary role in virus inactivation since the intact FCV genome is infectious even after damage to the capsid.
Collapse
Affiliation(s)
- Hamada A. Aboubakr
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Aflaton St, El-Shatby, Alexandria, Egypt
| | - Sunil K. Mor
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics & Proteomics Center for Mass Spectrometry, University of Minnesota, St. Paul, MN, United States of America
| | - Anibal Armien
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Mohammed M. Youssef
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Aflaton St, El-Shatby, Alexandria, Egypt
| | - Peter J. Bruggeman
- Department of Mechanical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Sagar M. Goyal
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
- * E-mail:
| |
Collapse
|
8
|
Conley M, Emmott E, Orton R, Taylor D, Carneiro DG, Murata K, Goodfellow IG, Hansman GS, Bhella D. Vesivirus 2117 capsids more closely resemble sapovirus and lagovirus particles than other known vesivirus structures. J Gen Virol 2017; 98:68-76. [PMID: 27902397 PMCID: PMC5370393 DOI: 10.1099/jgv.0.000658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/11/2016] [Indexed: 01/06/2023] Open
Abstract
Vesivirus 2117 is an adventitious agent that, in 2009, was identified as a contaminant of Chinese hamster ovary cells propagated in bioreactors at a pharmaceutical manufacturing plant belonging to Genzyme. The consequent interruption in supply of Fabrazyme and Cerezyme (drugs used to treat Fabry and Gaucher diseases, respectively) caused significant economic losses. Vesivirus 2117 is a member of the Caliciviridae, a family of small icosahedral viruses encoding a positive-sense RNA genome. We have used cryo-electron microscopy and three-dimensional image reconstruction to calculate a structure of vesivirus 2117 virus-like particles as well as feline calicivirus and a chimeric sapovirus. We present a structural comparison of several members of the Caliciviridae, showing that the distal P domain of vesivirus 2117 is morphologically distinct from that seen in other known vesivirus structures. Furthermore, at intermediate resolutions, we found a high level of structural similarity between vesivirus 2117 and Caliciviridae from other genera: sapovirus and rabbit hemorrhagic disease virus. Phylogenetic analysis confirms vesivirus 2117 as a vesivirus closely related to canine vesiviruses. We postulate that morphological differences in virion structure seen between vesivirus clades may reflect differences in receptor usage.
Collapse
Affiliation(s)
- Michaela Conley
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Edward Emmott
- Department of Pathology, Division of Virology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Richard Orton
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - David Taylor
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Present address: Howard Hughes Medical Institute, 742 Stanley Hall, MS 3220 University of California, Berkeley, CA 94720-3220, USA
| | - Daniel G Carneiro
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
- Present address: School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Ian G Goodfellow
- Department of Pathology, Division of Virology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Grant S Hansman
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Present address: Centre for Infectious Diseases, Department of Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - David Bhella
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
9
|
Identification of cleavage of NS5A of C-strain classical swine fever virus. Arch Virol 2016; 162:391-400. [PMID: 27766426 DOI: 10.1007/s00705-016-3117-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
NS5A is a multifunctional non-structural protein of classical swine fever virus (CSFV) that plays an important role in viral replication, but how it exerts its functions is unknown. Here, we report the cleavage of NS5A of the vaccine C-strain, resulting in two truncated forms (b and c). Further experiments using calpain- and caspase-family-specific inhibitors, followed by a caspase-6-specific shRNAs and inhibitor, showed that the cleavage of C-strain NS5A to produce truncated form c is mediated by caspase-6, mapping to 272DTTD275, while the cleavage producing truncated form b is probably mediated by another unknown protease. shRNA-mediated downregulation of caspase-6 and blocking of enzyme activity in ST cells significantly impaired genome replication and virus production, indicating that NS5A cleavage is required for CSFV replication.
Collapse
|
10
|
Royall E, Locker N. Translational Control during Calicivirus Infection. Viruses 2016; 8:104. [PMID: 27104553 PMCID: PMC4848598 DOI: 10.3390/v8040104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022] Open
Abstract
In this review, we provide an overview of the strategies developed by caliciviruses to subvert or regulate the host protein synthesis machinery to their advantage. As intracellular obligate parasites, viruses strictly depend on the host cell resources to produce viral proteins. Thus, many viruses have developed strategies that regulate the function of the host protein synthesis machinery, often leading to preferential translation of viral mRNAs. Caliciviruses lack a 5′ cap structure but instead have a virus-encoded VPg protein covalently linked to the 5′ end of their mRNAs. Furthermore, they encode 2–4 open reading frames within their genomic and subgenomic RNAs. Therefore, they use alternative mechanisms for translation whereby VPg interacts with eukaryotic initiation factors (eIFs) to act as a proteinaceous cap-substitute, and some structural proteins are produced by reinitiation of translation events. This review discusses our understanding of these key mechanisms during caliciviruses infection as well as recent insights into the global regulation of eIF4E activity.
Collapse
Affiliation(s)
- Elizabeth Royall
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK.
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK.
| |
Collapse
|
11
|
Arslan SY, Son KN, Lipton HL. During Infection, Theiler's Virions Are Cleaved by Caspases and Disassembled into Pentamers. J Virol 2016; 90:3573-83. [PMID: 26792734 PMCID: PMC4794658 DOI: 10.1128/jvi.03035-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Infected macrophages in spinal cords of mice persistently infected with Theiler's murine encephalomyelitis virus (TMEV) undergo apoptosis, resulting in restricted virus yields, as do infected macrophages in culture. Apoptosis of murine macrophages in culture occurs via the intrinsic pathway later in infection (>10 h postinfection [p.i.]) after maximal virus titers (150 to 200 PFU/cell) have been reached, with loss of most infectious virus (<5 PFU/cell) by 20 to 24 h p.i. Here, we show that BeAn virus RNA replication, translation, polyprotein processing into final protein products, and assembly of protomers and pentamers in infected M1-D macrophages did not differ from those processes in TMEV-infected BHK-21 cells, which undergo necroptosis. However, the initial difference from BHK-21 cell infection was seen at 10 to 12 h p.i., where virions from the 160S peak in sucrose gradients had incompletely processed VP0 (compared to that in infected BHK-21 cells). Thereafter, there was a gradual loss of the 160S virion peak in sucrose gradients, with replacement by a 216S peak that was observed to contain pentamers among lipid debris in negatively stained grids by electron microscopy. After infection or incubation of purified virions with activated caspase-3 in vitro, 13- and 17-kDa capsid peptide fragments were observed and were predicted by algorithms to contain cleavage sites within proteins by cysteine-dependent aspartate-directed proteases. These findings suggest that caspase cleavage of sites in exposed capsid loops of assembled virions occurs contemporaneously with the onset and progression of apoptosis later in the infection. IMPORTANCE Theiler's murine encephalomyelitis virus (TMEV) infection in mice results in establishment of virus persistence in the central nervous system and chronic inflammatory demyelinating disease, providing an experimental animal model for multiple sclerosis. Virus persistence takes place primarily in macrophages recruited into the spinal cord that undergo apoptosis and in turn may facilitate viral spread via infected apoptotic blebs. Infection of murine macrophages in culture results in restricted virus yields late in infection. Here it is shown that the early steps of the virus life cycle in infected macrophages in vitro do not differ from these processes in TMEV-infected BHK-21 cells, which undergo necroptosis. However, the findings late in infection suggest that caspases cleave sites in exposed capsid loops and possibly internal sites of assembled virions occurring contemporaneously with onset and progression of apoptosis. Mechanistically, this would explain the dramatic loss in virus yields during TMEV-induced apoptosis and attenuate the virus, enabling persistence.
Collapse
Affiliation(s)
- Sevim Yildiz Arslan
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA The Graduate School, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyung-No Son
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Howard L Lipton
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Alvarez-Sanchez C, Cancio-Lonches C, Mora-Heredia JE, Santos-Valencia JC, Barrera-Vázquez OS, Yocupicio-Monroy M, Gutiérrez-Escolano AL. Negative effect of heat shock on feline calicivirus release from infected cells is associated with the control of apoptosis. Virus Res 2015; 198:44-52. [DOI: 10.1016/j.virusres.2015.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023]
|
13
|
Abstract
Viral infection constitutes an unwanted intrusion that needs to be eradicated by host cells. On one hand, one of the first protective barriers set up to prevent viral replication, spread or persistence involves the induction of apoptotic cell death that aims to limit the availability of the cellular components for viral amplification. On the other hand, while they completely depend on the host molecular machinery, viruses also need to evade the cellular responses that are meant to destroy them. The existence of numerous antiapoptotic products within the viral kingdom proves that apoptosis constitutes a major threat that should better be bypassed. Among the different strategies developed to deal with apoptosis, one is based on what viruses do best: backfiring the cell on itself. Several unrelated viruses have been described to take advantage of apoptosis induction by expressing proteins targeted by caspases, the key effectors of apoptotic cell death. Caspase cleavage of these proteins results in various consequences, from logical apoptosis inhibition to more surprising enhancement or attenuation of viral replication. The present review aims at discussing the characterization and relevance of this post-translational modification that adds a new complexity in the already intricate host-apoptosis-virus triangle.
Collapse
|
14
|
The antiapoptotic protein Mcl-1 controls the type of cell death in Theiler's virus-infected BHK-21 cells. J Virol 2011; 86:1922-9. [PMID: 22130544 DOI: 10.1128/jvi.06516-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) results in a persistent central nervous system infection (CNS) and immune-mediated demyelination in mice. TMEV largely persists in macrophages (Ms) in the CNS, and infected Ms in vitro undergo apoptosis, whereas the infection of other rodent cells produces necrosis. We have found that necrosis is the dominant form of cell death in BeAn virus-infected BHK-21 cells but that ~20% of cells undergo apoptosis. Mcl-1 was highly expressed in BHK-21 cells, and protein levels decreased upon infection, consistent with onset of apoptosis. In infected BHK-21 cells in which Mcl-1 expression was knocked down using silencing RNAs there was a 3-fold increase in apoptotic cell death compared to parental cells. The apoptotic program switched on by BeAn virus is similar to that in mouse Ms, with hallmarks of activation of the intrinsic apoptotic pathway in a tumor suppressor protein p53-dependent manner. Infection of stable Mcl-1-knockdown cells led to restricted virus titers and increased physical to infectious particle (PFU) ratios, with additional data suggesting that a late step in the viral life cycle after viral RNA replication, protein synthesis, and polyprotein processing is affected by apoptosis. Together, these results indicate that Mcl-1 acts as a critical prosurvival factor that protects against apoptosis and allows high yields of infectious virus in BHK-21 cells.
Collapse
|
15
|
Polypyrimidine tract binding protein functions as a negative regulator of feline calicivirus translation. PLoS One 2010; 5:e9562. [PMID: 20224775 PMCID: PMC2835748 DOI: 10.1371/journal.pone.0009562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/15/2010] [Indexed: 11/19/2022] Open
Abstract
Background Positive strand RNA viruses rely heavily on host cell RNA binding proteins for various aspects of their life cycle. Such proteins interact with sequences usually present at the 5′ or 3′ extremities of the viral RNA genome, to regulate viral translation and/or replication. We have previously reported that the well characterized host RNA binding protein polypyrimidine tract binding protein (PTB) interacts with the 5′end of the feline calicivirus (FCV) genomic and subgenomic RNAs, playing a role in the FCV life cycle. Principal Findings We have demonstrated that PTB interacts with at least two binding sites within the 5′end of the FCV genome. In vitro translation indicated that PTB may function as a negative regulator of FCV translation and this was subsequently confirmed as the translation of the viral subgenomic RNA in PTB siRNA treated cells was stimulated under conditions in which RNA replication could not occur. We also observed that PTB redistributes from the nucleus to the cytoplasm during FCV infection, partially localizing to viral replication complexes, suggesting that PTB binding may be involved in the switch from translation to replication. Reverse genetics studies demonstrated that synonymous mutations in the PTB binding sites result in a cell-type specific defect in FCV replication. Conclusions Our data indicates that PTB may function to negatively regulate FCV translation initiation. To reconcile this with efficient virus replication in cells, we propose a putative model for the function of PTB in the FCV life cycle. It is possible that during the early stages of infection, viral RNA is translated in the absence of PTB, however, as the levels of viral proteins increase, the nuclear-cytoplasmic shuttling of PTB is altered, increasing the cytoplasmic levels of PTB, inhibiting viral translation. Whether PTB acts directly to repress translation initiation or via the recruitment of other factors remains to be determined but this may contribute to the stimulation of viral RNA replication via clearance of ribosomes from viral RNA.
Collapse
|
16
|
Simian virus 40 infection triggers a balanced network that includes apoptotic, survival, and stress pathways. J Virol 2010; 84:3431-42. [PMID: 20089643 DOI: 10.1128/jvi.01735-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The infection process by simian virus 40 (SV40) and entry of its genome into nondividing cells are only partly understood. Infection begins by binding to GM1 receptors at the cell surface, cellular entry via caveolar invaginations, and trafficking to the endoplasmic reticulum, where the virus disassembles. To gain a deeper insight into the contribution of host functions to this process, we studied cellular signaling elicited by the infecting virus. Signaling proteins were detected by Western blotting and immunofluorescence staining. The study was assisted by a preliminary proteomic screen. The contribution of signaling proteins to the infection process was evaluated using specific inhibitors. We found that CV-1 cells respond to SV40 infection by activating poly(ADP-ribose) polymerase 1 (PARP-1)-mediated apoptotic signaling, which is arrested by the Akt-1 survival pathway and stress response. A single key regulator orchestrating the three pathways is phospholipase C-gamma (PLCgamma). The counteracting apoptotic and survival pathways are robustly balanced as the infected cells neither undergo apoptosis nor proliferate. Surprisingly, we have found that the apoptotic pathway, including activation of PARP-1 and caspases, is absolutely required for the infection to proceed. Thus, SV40 hijacks the host defense to promote its infection. Activities of PLCgamma and Akt-1 are also required, and their inhibition abrogates the infection. Notably, this signaling network is activated hours before T antigen is expressed. Experiments with recombinant empty capsids, devoid of DNA, indicated that the major capsid protein VP1 alone triggers this early signaling network. The emerging robust signaling network reflects a delicate evolutionary balance between attack and defense in the host-virus relationship.
Collapse
|
17
|
Ji WT, Lin FL, Wang YC, Shih WL, Lee LH, Liu HJ. Intracellular cleavage of sigmaA protein of avian reovirus. Virus Res 2010; 149:71-7. [PMID: 20079780 DOI: 10.1016/j.virusres.2010.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 01/01/2010] [Accepted: 01/02/2010] [Indexed: 10/19/2022]
Abstract
By Western blot analyzes of expression of avian reovirus proteins, one unknown fragment was detected by an anti-sigmaA monoclonal antibody in virus-infected cells lysate. It was interesting to note that RNA interference against sigmaA resulted in the suppression of the unknown fragment. Using various lengths of sigmaA constructs conjugated with different tags, we present evidences to demonstrate that the fragment comes from the cleavage of sigmaA and is the larger carboxyl-terminus, termed sigmaAC. Cleavage of sigmaA simultaneously produces a smaller amino-terminus, named sigmaAN. sigmaAC could be seen early in viral infection and accumulated with time and dose of infection, indicating that the derived products are not just transient intermediates of protein degradation. The same type of cleaved products were also observed in different genotypes and serotypes of ARV as well as in different cell lines, suggesting that this intracellular modification of sigmaA is common to all ARVs. Similar localization of sigmaAC in both cytosol and nucleus with sigmaA suggested that further modification of sigmaA may be important for its function. Our evidences suggest that besides the outer capsid protein muB, sigmaA may also have post-translational cleavage which has never been reported before even in related mammalian reovirus.
Collapse
Affiliation(s)
- Wen T Ji
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Furman LM, Maaty WS, Petersen LK, Ettayebi K, Hardy ME, Bothner B. Cysteine protease activation and apoptosis in Murine norovirus infection. Virol J 2009; 6:139. [PMID: 19744337 PMCID: PMC2753316 DOI: 10.1186/1743-422x-6-139] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 09/10/2009] [Indexed: 02/16/2023] Open
Abstract
Background Noroviruses are the leading cause of viral gastroenteritis. Because a suitable in vitro culture system for the human virus has yet to be developed, many basic details of the infection process are unknown. Murine norovirus (MNV) serves as a model system for the study of norovirus infection. Recently it was shown that infection of RAW 264.7 cells involved a novel apoptotic pathway involving survivin. Results Using a different set of approaches, the up-regulation of caspases, DNA condensation/fragmentation, and membrane blebbing, all of which are markers of apoptosis, were confirmed. Live cell imaging and activity-based protein profiling showed that activation of caspase-like proteases occurred within two hours of infection, followed by morphological changes to the cells. MNV infection in the presence of caspase inhibitors proceeded via a distinct pathway of rapid cellular necrosis and reduced viral production. Affinity purification of activity-based protein profiling targets and identification by peptide mass fingerprinting showed that the cysteine protease cathepsin B was activated early in infection, establishing this protein as an upstream activator of the intrinsic apoptotic pathway. Conclusion This work adds cathepsin B to the noncanonical programmed cell death induced by MNV, and provides data suggesting that the virus may induce apoptosis to expand the window of time for viral replication. This work also highlights the significant power of activity-based protein profiling in the study of viral pathogenesis.
Collapse
Affiliation(s)
- Linnzi M Furman
- Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Apoptosis in murine norovirus-infected RAW264.7 cells is associated with downregulation of survivin. J Virol 2009; 83:3647-56. [PMID: 19211757 DOI: 10.1128/jvi.02028-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Noroviruses (NVs) are recognized as a major cause of nonbacterial gastroenteritis in humans. Studies of the human NVs continue to be hampered by the inability to propagate them in any cell culture system. Until recently, most data concerning NV replication were derived from studies of feline calicivirus and rabbit hemorrhagic disease virus, which are cultivable members of the family Caliciviridae. From such studies, it was proposed that caliciviruses induce apoptosis to facilitate the dissemination of viral progeny in the host. The discovery that MNV type 1 (MNV-1) grows in RAW264.7 cells provided the first cell culture system for use in studying the role of apoptosis in NV infection. We first showed that MNV-1 replication triggered apoptosis in infected RAW264.7 cells and then demonstrated that cell death was associated with activation of caspase-9 and caspase-3 through the mitochondrial pathway. This process was dependent on virus replication, since inactivated virus failed to induce signs of apoptosis. In order to better understand the apoptotic process induced by MNV-1 infection of RAW264.7 cells, we investigated the expression profiles of MNV-1-infected versus mock-infected cells. Survivin, a member of the inhibitor of apoptosis protein family, was found to be significantly downregulated in an inverse relationship with the virus genome replication. This study showed that, unlike other viruses that upregulate survivin, MNV-1 is the first virus found to downregulate the levels of survivin. We observed that MNV-1 replication in RAW264.7 cells activated caspases, resulting in apoptosis through the mitochondrial pathway, possibly as a result of downregulation of survivin.
Collapse
|
20
|
Abstract
Autophagy is a cellular process that creates double-membraned vesicles, engulfs and degrades cytoplasmic material, and generates and recycles nutrients. A recognized participant in the innate immune response to microbial infection, a functional autophagic response can help to control the replication of many viruses. However, for several viruses, there is functional and mechanistic evidence that components of the autophagy pathway act as host factors in viral replicative cycles, viral dissemination, or both. Investigating the mechanisms by which viruses subvert or imitate autophagy, as well as the mechanisms by which they inhibit autophagy, will reveal cell biological tools and processes that will be useful for understanding the many functional ramifications of the double-membraned vesicle formation and cytosolic entrapment unique to the autophagy pathway.
Collapse
|
21
|
Cheetham S, Souza M, Meulia T, Grimes S, Han MG, Saif LJ. Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J Virol 2006; 80:10372-81. [PMID: 17041218 PMCID: PMC1641747 DOI: 10.1128/jvi.00809-06] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the gnotobiotic (Gn) pig as a model to study the pathogenesis of human norovirus (HuNoV) and to determine the target cells for viral replication. Sixty-five Gn pigs were inoculated with fecal filtrates of the NoV/GII/4/HS66/2001/US strain or with pig-passaged intestinal contents (IC) and euthanized acutely (n = 43) or after convalescence (n = 22). Age-matched Gn piglets (n = 14) served as mock-inoculated controls. Seventy-four percent (48/65) of the inoculated animals developed mild diarrhea compared to 0 of 14 controls. Pigs from postinoculation days (PID) 1 to 4 tested positive for HuNoV by reverse transcription-PCR of rectal swab fluids (29/65) and IC (9/43) and by antigen (Ag) enzyme-linked immunosorbent assay (ELISA) using antiserum to virus-like particles of HuNoV GII/4. No control pigs were positive. Histopathologic examination showed mild lesions in the proximal small intestine of only one pig (1/7). Seroconversion after PID 21 was detected by antibody ELISA in 13 of 22 virus-inoculated pigs (titers, 1:20 to 1:200) but not in controls. Immunofluorescent microscopy using a monoclonal antibody to HuNoV GII capsid revealed patchy infection of duodenal and jejunal enterocytes of 18 of 31 HuNoV-inoculated pigs with a few stained cells in the ileum and no immunofluorescence (IF) in mock-inoculated controls. Immunofluorescent detection of the viral nonstructural N-terminal protein antigen in enterocytes confirmed translation. Transmission electron microscopy of intestines from HuNoV-inoculated pigs showed disrupted enterocytes, with cytoplasmic membrane vesicles containing calicivirus-like particles of 25 to 40 nm in diameter. In summary, serial passage of HuNoV in pigs, with occurrence of mild diarrhea and shedding, and immunofluorescent detection of the HuNoV structural and nonstructural proteins in enterocytes confirm HuNoV replication in Gn pigs.
Collapse
Affiliation(s)
- Sonia Cheetham
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | | | | | | | | | | |
Collapse
|
22
|
Sosnovtsev SV, Belliot G, Chang KO, Prikhodko VG, Thackray LB, Wobus CE, Karst SM, Virgin HW, Green KY. Cleavage map and proteolytic processing of the murine norovirus nonstructural polyprotein in infected cells. J Virol 2006; 80:7816-31. [PMID: 16873239 PMCID: PMC1563789 DOI: 10.1128/jvi.00532-06] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 05/23/2006] [Indexed: 11/20/2022] Open
Abstract
Murine norovirus (MNV) is presently the only member of the genus Norovirus in the Caliciviridae that can be propagated in cell culture. The goal of this study was to elucidate the proteolytic processing strategy of MNV during an authentic replication cycle in cells. A proteolytic cleavage map of the ORF1 polyprotein was generated, and the virus-encoded 3C-like (3CL) proteinase (Pro) mediated cleavage at five dipeptide cleavage sites, 341E/G342, Q705/N706, 870E/G871, 994E/A995, and 1177Q/G1178, that defined the borders of six proteins with the gene order p38.3 (Nterm)-p39.6 (NTPase)-p18.6-p14.3 (VPg)-p19.2 (Pro)-p57.5 (Pol). Bacterially expressed MNV 3CL Pro was sufficient to mediate trans cleavage of the ORF1 polyprotein containing the mutagenized Pro sequence into products identical to those observed during cotranslational processing of the authentic ORF1 polyprotein in vitro and to those observed in MNV-infected cells. Immunoprecipitation and Western blot analysis of proteins produced in virus-infected cells demonstrated efficient cleavage of the proteinase-polymerase precursor. Evidence for additional processing of the Nterm protein in MNV-infected cells by caspase 3 was obtained, and Nterm sequences 118DRPD121 and 128DAMD131 were mapped as caspase 3 cleavage sites by site-directed mutagenesis. The availability of the MNV nonstructural polyprotein cleavage map in concert with a permissive cell culture system should facilitate studies of norovirus replication.
Collapse
Affiliation(s)
- Stanislav V Sosnovtsev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Makino A, Shimojima M, Miyazawa T, Kato K, Tohya Y, Akashi H. Junctional adhesion molecule 1 is a functional receptor for feline calicivirus. J Virol 2006; 80:4482-90. [PMID: 16611908 PMCID: PMC1472022 DOI: 10.1128/jvi.80.9.4482-4490.2006] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The life cycle of calicivirus is not fully understood because most of the viruses cannot be propagated in tissue culture cells. We studied the mechanism of calicivirus entry into cells using feline calicivirus (FCV), a cultivable calicivirus. From the cDNA library of Crandell-Rees feline kidney (CRFK) cells, feline junctional adhesion molecule 1 (JAM-1), an immunoglobulin-like protein present in tight junctions, was identified as a cellular-binding molecule of the FCV F4 strain, a prototype strain in Japan. Feline JAM-1 expression in nonpermissive hamster lung cells led to binding and infection by F4 and all other strains tested. An anti-feline JAM-1 antibody reduced the binding of FCV to permissive CRFK cells and strongly suppressed the cytopathic effect (CPE) and FCV progeny production in infected cells. Some strains of FCV, such as F4 and F25, have the ability to replicate in Vero cells. We found that regardless of replication ability, FCV bound to Vero and 293T cells via simian and human JAM-1, respectively. In Vero cells, an anti-human JAM-1 antibody inhibited binding, CPE, and progeny production by F4 and F25. In addition, feline JAM-1 expression permitted FCV infection in 293T cells. Taken together, our results demonstrate that feline JAM-1 is a functional receptor for FCV, simian JAM-1 also functions as a receptor for some strains of FCV, and the interaction between FCV and JAM-1 molecules may be a determinant of viral tropism. This is the first report concerning a functional receptor for the viruses in the family Caliciviridae.
Collapse
Affiliation(s)
- Akiko Makino
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Natoni A, Kass GEN, Carter MJ, Roberts LO. The mitochondrial pathway of apoptosis is triggered during feline calicivirus infection. J Gen Virol 2006; 87:357-361. [PMID: 16432022 DOI: 10.1099/vir.0.81399-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Feline calicivirus (FCV) belongs to the family Caliciviridae and is an important pathogen of the upper respiratory tract of cats. Recent studies have shown that cells infected with FCV undergo apoptosis, as evidenced by caspase activation, chromatin condensation and cleavage of poly(ADP-ribose) polymerase. Here, the upstream events were investigated in order to define the molecular mechanism of apoptosis in FCV-infected cells. It was shown that FCV induced translocation of phosphatidylserine to the cell outer membrane and release of cytochrome c from mitochondria at about 6-8 h post-infection. These events were preceded by the loss of mitochondrial membrane potential and Bax translocation from the cytosol to mitochondria between 4 and 6 h after infection. Release of cytochrome c from mitochondria triggered the activation of caspase-9 and the subsequent activation of the executioner caspase, caspase-3. These results suggest that the mitochondrial pathway of apoptosis is triggered during FCV infection.
Collapse
Affiliation(s)
- Alessandro Natoni
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - George E N Kass
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Michael J Carter
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Lisa O Roberts
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
25
|
Kalamvoki M, Georgopoulou U, Mavromara P. The NS5A protein of the hepatitis C virus genotype 1a is cleaved by caspases to produce C-terminal-truncated forms of the protein that reside mainly in the cytosol. J Biol Chem 2006; 281:13449-13462. [PMID: 16517592 DOI: 10.1074/jbc.m601124200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nonstructural 5A (NS5A) protein of the hepatitis C virus (HCV) is a multifunctional protein that is implicated in viral replication and pathogenesis. We report here that NS5A of HCV-1a is cleaved at multiple sites by caspase proteases in transfected cells. Two cleavage sites at positions Asp154 and 248DXXD251 were mapped. Cleavage at Asp154 has been previously recognized as one of the caspase cleavage sites for the NS5A protein of HCV genotype 1b (1, 2) and results in the production of a 17-kDa fragment. The sequence 248DXXD251 is a novel caspase recognition motif for NS5A and is responsible for the production of a 31-kDa fragment. Furthermore, we show that Arg217 is implicated in the production of the previously described 24-kDa product, whose accumulation is affected by both calpain and caspase inhibitors. We also showed that caspase-mediated cleavage occurs in the absence of exogenous proapoptotic stimuli and is not related to the accumulation of the protein in the endoplasmic reticulum. Interestingly, our data indicate that NS5A is targeted by at least two different caspases and suggest that caspase 6 is implicated in the production of the 17-kDa fragment. Most importantly, we report that, all the detectable NS5A fragments following caspase-mediated cleavage are C-terminal-truncated forms of NS5A and are mainly localized in the cytosol. Thus, in sharp contrast to the current view we found no evidence supporting a role for caspase-mediated cleavage in the transport of the NS5A protein to the nucleus, which could lead to transcriptional activation.
Collapse
Affiliation(s)
- Maria Kalamvoki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Urania Georgopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece.
| |
Collapse
|
26
|
Ren L, Yang R, Guo L, Qu J, Wang J, Hung T. Apoptosis induced by the SARS-associated coronavirus in Vero cells is replication-dependent and involves caspase. DNA Cell Biol 2005; 24:496-502. [PMID: 16101347 DOI: 10.1089/dna.2005.24.496] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pathogenesis of the severe acute respiratory syndrome (SARS), a newly emerging life-threatening disease in humans, remains unknown. It is believed that the modulation of apoptosis is relevant to diseases that are caused by various viruses. To examine potential apoptotic mechanisms related to SARS, we investigated features of apoptosis induced by the SARS-associated coronavirus (SARS-CoV) in host cells. The results indicated that the SARS-CoV-induced apoptosis in Vero cells in a virus replication-dependent manner. Additionally, the downregulation of Bcl-2, the activation of casapse 3, as well as the upregulation of Bax were detected, suggesting the involvement of the caspase family and the activation of the mitochondrial signaling pathway. Although there is a positive correlation between apoptosis and virus replication, the latter is not significantly blocked by treatment with the caspase inhibitor z-DEVD-FMK. These preliminary data provide important information on both the pathogenesis and potential antiviral targets of SARS-CoV.
Collapse
Affiliation(s)
- Lili Ren
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republicof China
| | | | | | | | | | | |
Collapse
|
27
|
Méndez E, Salas-Ocampo E, Arias CF. Caspases mediate processing of the capsid precursor and cell release of human astroviruses. J Virol 2004; 78:8601-8. [PMID: 15280469 PMCID: PMC479052 DOI: 10.1128/jvi.78.16.8601-8608.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work we have shown that astrovirus infection induces apoptosis of Caco-2 cells, since fragmentation of cellular DNA, cleavage of cellular proteins which are substrate of activated caspases, and a change in the mitochondrial transmembrane potential occur upon virus infection. The human astrovirus Yuc8 polyprotein capsid precursor VP90 is initially processed to yield VP70, and we have shown that this processing is trypsin independent and occurs intracellularly through four cleavages at its carboxy-terminal region. We further showed that VP90-VP70 processing is mediated by caspases, since it was blocked by the pancaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk), and it was promoted by the apoptosis inducer TNF-related apoptosis-inducing ligand (TRAIL). Although the cell-associated virus produced in the presence of these compounds was not affected, the release of infectious virus to the cell supernatant was drastically reduced in the presence of z-VAD-fmk and increased by TRAIL, indicating that VP90-VP70 cleavage is important for the virus particles to be released from the cell. This is the first report that describes the induction and utilization of caspase activity by a virus to promote processing of the capsid precursor and dissemination of the viral particles.
Collapse
Affiliation(s)
- Ernesto Méndez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Colonia Miraval, Cuernavaca, Morelos 62250, Mexico.
| | | | | |
Collapse
|
28
|
Kuyumcu-Martinez M, Belliot G, Sosnovtsev SV, Chang KO, Green KY, Lloyd RE. Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein. J Virol 2004; 78:8172-82. [PMID: 15254188 PMCID: PMC446144 DOI: 10.1128/jvi.78.15.8172-8182.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 03/23/2004] [Indexed: 11/20/2022] Open
Abstract
Caliciviruses are single-stranded RNA viruses that cause a wide range of diseases in both humans and animals, but little is known about the regulation of cellular translation during infection. We used two distinct calicivirus strains, MD145-12 (genus Norovirus) and feline calicivirus (FCV) (genus Vesivirus), to investigate potential strategies used by the caliciviruses to inhibit cellular translation. Recombinant 3C-like proteinases (r3CL(pro)) from norovirus and FCV were found to cleave poly(A)-binding protein (PABP) in the absence of other viral proteins. The norovirus r3CL(pro) PABP cleavage products were indistinguishable from those generated by poliovirus (PV) 3C(pro) cleavage, while the FCV r3CL(pro) products differed due to cleavage at an alternate cleavage site 24 amino acids downstream of one of the PV 3C(pro) cleavage sites. All cleavages by calicivirus or PV proteases separated the C-terminal domain of PABP that binds translation factors eIF4B and eRF3 from the N-terminal RNA-binding domain of PABP. The effect of PABP cleavage by the norovirus r3CL(pro) was analyzed in HeLa cell translation extracts, and the presence of r3CL(pro) inhibited translation of both endogenous and exogenous mRNAs. Translation inhibition was poly(A) dependent, and replenishment of the extracts with PABP restored translation. Analysis of FCV-infected feline kidney cells showed that the levels of de novo cellular protein synthesis decreased over time as virus-specific proteins accumulated, and cleavage of PABP occurred in virus-infected cells. Our data indicate that the calicivirus 3CL(pro), like PV 3C(pro), mediates the cleavage of PABP as part of its strategy to inhibit cellular translation. PABP cleavage may be a common mechanism among certain virus families to manipulate cellular translation.
Collapse
Affiliation(s)
- Muge Kuyumcu-Martinez
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
29
|
Roberts LO, Al-Molawi N, Carter MJ, Kass GEN. Apoptosis in cultured cells infected with feline calicivirus. Ann N Y Acad Sci 2004; 1010:587-90. [PMID: 15033797 DOI: 10.1196/annals.1299.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Caliciviruses are important pathogens of man and animals; feline calicivirus (FCV) is responsible for an acute upper respiratory tract disease in cats. To date, little is known about the mechanism of cell damage induced by these viruses. We set out to determine if apoptosis played any role in cell death in FCV infection of cultured cells. We demonstrate that caspase-2, -3, and -7 were activated during FCV infection, as evidenced by pro-form processing and an increase in acetyl-Asp-Glu-Val-Asp-7-amido-4-trifluoromethylcoumarin cleavage activity, as well as cleavage of poly(ADP-ribose)polymerase. Caspase activation coincided with the condensation of chromatin. At about 8 h post infection we also detected cleavage of the FCV capsid protein; this was prevented by caspase inhibitors. Taken together these results suggest that FCV triggers apoptosis within infected cells and that caspases are involved in the cleavage of the capsid protein.
Collapse
Affiliation(s)
- Lisa O Roberts
- School of Biomedical and Life Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | | | | | | |
Collapse
|
30
|
Willcocks MM, Carter MJ, Roberts LO. Cleavage of eukaryotic initiation factor eIF4G and inhibition of host-cell protein synthesis during feline calicivirus infection. J Gen Virol 2004; 85:1125-1130. [PMID: 15105529 DOI: 10.1099/vir.0.19564-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Caliciviruses are small, non-enveloped, positive-stranded RNA viruses that are pathogenic for both animals and man. Although their capsid structure and genomic organization are distinct from picornaviruses, they have similarities to these viruses in their non-structural proteins. Picornaviruses induce a rapid inhibition of host-cell cap-dependent protein synthesis and this is mainly achieved through cleavage of eIF4G and/or dephosphorylation of 4E-BP1. In this study, the effect of calicivirus infection was examined on host-cell protein synthesis in order to determine whether they also induce host shut-off. We report that infection of cells with feline calicivirus (FCV) leads to the inhibition of cellular protein synthesis. This is accompanied by the cleavage of the eukaryotic translation initiation factors eIF4GI and eIF4GII in a manner reminiscent of that induced by picornaviruses. However, the cleavages occur at different sites. The potential mechanisms of these cleavage events and the implications for the translation of calicivirus mRNA are discussed.
Collapse
Affiliation(s)
- Margaret M Willcocks
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Michael J Carter
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Lisa O Roberts
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
31
|
Affiliation(s)
- Sonja M Best
- Laboratory of Persistent Viral Diseases, NIAID, NIH, Rocky Mountain Labs, Hamilton, MT 59840, USA.
| | | |
Collapse
|
32
|
Guix S, Bosch A, Ribes E, Dora Martínez L, Pintó RM. Apoptosis in astrovirus-infected CaCo-2 cells. Virology 2004; 319:249-61. [PMID: 14980485 PMCID: PMC7127648 DOI: 10.1016/j.virol.2003.10.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Revised: 10/20/2003] [Accepted: 10/23/2003] [Indexed: 02/08/2023]
Abstract
Cell death processes during human astrovirus replication in CaCo-2 cells and their underlying mechanisms were investigated. Morphological and biochemical alterations typical of apoptosis were analyzed in infected cells using a combination of techniques, including DAPI staining, the sub-G0/G1 technique and the TUNEL assay. The onset of apoptosis was directly proportional to the virus multiplicity of infection. Transient expression experiments showed a direct link between astrovirus ORF1a encoded proteins and apoptosis induction. A computer analysis of the astrovirus genome revealed the presence of a death domain in the nonstructural protein p38 of unknown function, encoded in ORF1a. Apoptosis inhibition experiments suggested the involvement of caspase 8 in the apoptotic response, and led to a reduction in the infectivity of the virus progeny released to the supernatant. We conclude that apoptotic death of host cells seems necessary for efficient human astrovirus replication and particle maturation.
Collapse
Affiliation(s)
- Susana Guix
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Spain
- Corresponding author. Department of Microbiology, School of Biology, University of Barcelona, Avda Diagonal 645, 08028 Barcelona, Spain. Fax: +34-93-4034629.
| | - Enric Ribes
- Enteric Virus Group, Department of Cell Biology, University of Barcelona, Spain
| | - L. Dora Martínez
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Spain
| | - Rosa M. Pintó
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Spain
| |
Collapse
|