1
|
Feijó RG, Viana JT, Maggioni R, Marins LF. Infectious myonecrosis virus (IMNV) induces upregulation of RNAi-related genes in white shrimp Penaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105296. [PMID: 39631635 DOI: 10.1016/j.dci.2024.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Infectious myonecrosis virus (IMNV) still causes significant economic and social losses in American and Asian shrimp farming. In this work, we investigated the transcription patterns of Sid-1, Dicer-2 and Argonaute-2 genes from the RNAi mechanism in Penaeus vannamei naturally infected with IMNV, and injected with inoculum containing 1.02 × 105, 1.02 × 104 or 1.02 × 103 IMNV copies‧μL-1. We observed that infection with increasing IMNV concentrations affected the transcription levels of these key genes. However, the viral load did not decrease during the experiment. We suggest that changes in Sid-1 mRNA expression could be used as marker of viral replication for evaluating sanitary status in P. vannamei farming.
Collapse
Affiliation(s)
- Rubens Galdino Feijó
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Rio Grande (FURG), Av. Itália, Km 8, CEP 96203-900, Rio Grande, RS, Brazil; Laboratório de Biotecnologia Aquícola, Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Av. Desembargador Armando de Souza Louzada, S/N, CEP 62580-000, Acaraú, CE, Brazil; Centro de Diagnóstico de Enfermidades de Organismos Aquáticos (Cedecam), Instituto de Ciências do Mar (Labomar), Universidade Federal do Ceará (UFC), Av. Abolição, 3207, Meireles, CEP 60165-081, Fortaleza, CE, Brazil
| | - Jhonatas Teixeira Viana
- Laboratório de Biotecnologia Aquícola, Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Av. Desembargador Armando de Souza Louzada, S/N, CEP 62580-000, Acaraú, CE, Brazil; Centro de Diagnóstico de Enfermidades de Organismos Aquáticos (Cedecam), Instituto de Ciências do Mar (Labomar), Universidade Federal do Ceará (UFC), Av. Abolição, 3207, Meireles, CEP 60165-081, Fortaleza, CE, Brazil.
| | - Rodrigo Maggioni
- Centro de Diagnóstico de Enfermidades de Organismos Aquáticos (Cedecam), Instituto de Ciências do Mar (Labomar), Universidade Federal do Ceará (UFC), Av. Abolição, 3207, Meireles, CEP 60165-081, Fortaleza, CE, Brazil
| | - Luis Fernando Marins
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Rio Grande (FURG), Av. Itália, Km 8, CEP 96203-900, Rio Grande, RS, Brazil
| |
Collapse
|
2
|
Naim D, Ahsan A, Imtiaj A, Mollah NH. Genome-wide identification and in silico characterization of major RNAi gene families in date palm (Phoenix dactylifera). BMC Genom Data 2024; 25:31. [PMID: 38491426 PMCID: PMC10943882 DOI: 10.1186/s12863-024-01217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Dates contain various minerals that are essential for good health. The major RNA interference (RNAi) gene families play a vital role in plant growth and development by controlling the expression of protein-coding genes against different biotic and abiotic stresses. However, these gene families for date palm are not yet studied. Therefore, this study has explored major RNAi genes and their characteristics in date palm. RESULTS We have identified 4 PdDCLs, 7 PdAGOs, and 3 PdRDRs as RNAi proteins from the date palm genome by using AtRNAi genes as query sequences in BLASTp search. Domain analysis of predicted RNAi genes has revealed the Helicase_C, Dicer_dimer, PAZ, RNase III, and Piwi domains that are associated with the gene silencing mechanisms. Most PdRNAi proteins have been found in the nucleus and cytosol associated with the gene silencing actions. The gene ontology (GO) enrichment analysis has revealed some important GO terms including RNA interference, dsRNA fragmentation, and ribonuclease_III activity that are related to the protein-coding gene silencing mechanisms. Gene regulatory network (GRN) analysis has identified PAZ and SNF2 as the transcriptional regulators of PdRNAi genes. Top-ranked 10 microRNAs including Pda-miR156b, Pda-miR396a, Pda-miR166a, Pda-miR167d, and Pda-miR529a have been identified as the key post-transcriptional regulators of PdRNAi genes that are associated with different biotic/abiotic stresses. The cis-acting regulatory element analysis of PdRNAi genes has detected some vital cis-acting elements including ABRE, MBS, MYB, MYC, Box-4, G-box, I-box, and STRE that are linked with different abiotic stresses. CONCLUSION The results of this study might be valuable resources for the improvement of different characteristics in date palm by further studies in wet-lab.
Collapse
Affiliation(s)
- Darun Naim
- Bioinformatics Lab, Department of Statistics, Faculty of Science, University of Rajshahi, 6205, Rajshahi, Bangladesh
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, 6205, Rajshahi, Bangladesh
| | - Asif Ahsan
- Bioinformatics Lab, Department of Statistics, Faculty of Science, University of Rajshahi, 6205, Rajshahi, Bangladesh
| | - Ahmed Imtiaj
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, 6205, Rajshahi, Bangladesh
| | - Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, Faculty of Science, University of Rajshahi, 6205, Rajshahi, Bangladesh.
| |
Collapse
|
3
|
Mohd Jaafar F, Belhouchet M, Monsion B, Bell-Sakyi L, Mertens PPC, Attoui H. Orbivirus NS4 Proteins Play Multiple Roles to Dampen Cellular Responses. Viruses 2023; 15:1908. [PMID: 37766314 PMCID: PMC10535134 DOI: 10.3390/v15091908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Non-structural protein 4 (NS4) of insect-borne and tick-borne orbiviruses is encoded by genome segment 9, from a secondary open reading frame. Though a protein dispensable for bluetongue virus (BTV) replication, it has been shown to counter the interferon response in cells infected with BTV or African horse sickness virus. We further explored the functional role(s) of NS4 proteins of BTV and the tick-borne Great Island virus (GIV). We show that NS4 of BTV or GIV helps an E3L deletion mutant of vaccinia virus to replicate efficiently in interferon-treated cells, further confirming the role of NS4 as an interferon antagonist. Our results indicate that ectopically expressed NS4 of BTV localised with caspase 3 within the nucleus and was found in a protein complex with active caspase 3 in a pull-down assay. Previous studies have shown that pro-apoptotic caspases (including caspase 3) suppress type I interferon response by cleaving mediators involved in interferon signalling. Our data suggest that orbivirus NS4 plays a role in modulating the apoptotic process and/or regulating the interferon response in mammalian cells, thus acting as a virulence factor in pathogenesis.
Collapse
Affiliation(s)
- Fauziah Mohd Jaafar
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - Mourad Belhouchet
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, Oxford OX3 7BN, UK;
| | - Baptiste Monsion
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK;
| | - Peter P. C. Mertens
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK;
| | - Houssam Attoui
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France;
| |
Collapse
|
4
|
Tenriulo A, Parenrengi A, Lante S, Suryati E, Rosmiati R, Nawang A. Application of dsRNA VP24 vaccine by oral administration at different larval stages of Tiger Shrimp Penaeus monodon. IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE 2022; 1119:012045. [DOI: 10.1088/1755-1315/1119/1/012045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
This study aimed to evaluate the effect of dsRNA VP24 application on different stages of larvae. For mass production, cloned recombinant bacteria carrying the construction of the promoter T7VP24 are planted in Luria Bertani broth medium. The bacteria were inactivated using the heat-killed bacteria method by immersion in water at 80 °C for 5 minutes. The inactivated bacteria were mixed with larval commercial feed. The nauplii were produced from broodstock from Aceh waters and reared until postlarva 12 (PL12). The feed containing the dsRNA vaccine was applied to a different stage of larva, i.e: starting from zoea 1 (A), mysis 1 (B), PL 1 to PL 12 (C), and control without dsRNA (D). The PL 12 were challenged with WSSV by the immersion method and morphological characters were assessed. Results showed that inactivating bacteria was effectively done by immersion method without damaging the dsRNA construct in the plasmid. The survival rate was significantly influenced by different stages of larvae (P 0.05), in which the highest survival (26.0%) was obtained from mysis. The highest value of morphological characters (92.3) was also inhibited in the mysis. The results suggested that the dsRNA vaccine for larvae could be started to be applied in the mysis stage.
Collapse
|
5
|
Parenrengi A, Tenriulo A, Mulyaningrum SRH, Suryati E, Rosmiati R, Lante S, Nawang A. Effect of different doses of dsRNA VP15 vaccine for controlling white spot syndrome virus infection in tiger shrimp Penaeus monodon. IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE 2021; 860:012031. [DOI: 10.1088/1755-1315/860/1/012031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Peng C, Zhang A, Wang Q, Song Y, Zhang M, Ding X, Li Y, Geng Q, Zhu C. Ultrahigh-activity immune inducer from Endophytic Fungi induces tobacco resistance to virus by SA pathway and RNA silencing. BMC PLANT BIOLOGY 2020; 20:169. [PMID: 32293278 PMCID: PMC7160901 DOI: 10.1186/s12870-020-02386-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/05/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Plant viruses cause severe economic losses in agricultural production. An ultrahigh activity plant immune inducer (i.e., ZhiNengCong, ZNC) was extracted from endophytic fungi, and it could promote plant growth and enhance resistance to bacteria. However, the antiviral function has not been studied. Our study aims to evaluate the antiviral molecular mechanisms of ZNC in tobacco. RESULTS Here, we used Potato X virus (PVX), wild-type tobacco and NahG transgenic tobacco as materials to study the resistance of ZNC to virus. ZNC exhibited a high activity in enhancing resistance to viruses and showed optimal use concentration at 100-150 ng/mL. ZNC also induced reactive oxygen species accumulation, increased salicylic acid (SA) content by upregulating the expression of phenylalanine ammonia lyase (PAL) gene and activated SA signaling pathway. We generated transcriptome profiles from ZNC-treated seedlings using RNA sequencing. The first GO term in biological process was positive regulation of post-transcriptional gene silencing, and the subsequent results showed that ZNC promoted RNA silencing. ZNC-sprayed wild-type leaves showed decreased infection areas, whereas ZNC failed to induce a protective effect against PVX in NahG leaves. CONCLUSION All results indicate that ZNC is an ultrahigh-activity immune inducer, and it could enhance tobacco resistance to PVX at low concentration by positively regulating the RNA silencing via SA pathway. The antiviral mechanism of ZNC was first revealed in this study, and this study provides a new antiviral bioagent.
Collapse
Affiliation(s)
- Chune Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Ailing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Qingbin Wang
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, 271018, P.R. China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Yang Li
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, 271018, P.R. China
| | - Quanzheng Geng
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, 271018, P.R. China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China.
| |
Collapse
|
7
|
Abstract
Protection against microbial infection in eukaryotes is provided by diverse cellular and molecular mechanisms. Here, we present a comparative view of the antiviral activity of virus-derived small interfering RNAs in fungi, plants, invertebrates and mammals, detailing the mechanisms for their production, amplification and activity. We also highlight the recent discovery of viral PIWI-interacting RNAs in animals and a new role for mobile host and pathogen small RNAs in plant defence against eukaryotic pathogens. In turn, viruses that infect plants, insects and mammals, as well as eukaryotic pathogens of plants, have evolved specific virulence proteins that suppress RNA interference (RNAi). Together, these advances suggest that an antimicrobial function of the RNAi pathway is conserved across eukaryotic kingdoms.
Collapse
|
8
|
Huang X, Yu R, Li W, Geng L, Jing X, Zhu C, Liu H. Identification and characterisation of a glycine-rich RNA-binding protein as an endogenous suppressor of RNA silencing from Nicotiana glutinosa. PLANTA 2019; 249:1811-1822. [PMID: 30840177 DOI: 10.1007/s00425-019-03122-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/27/2019] [Indexed: 05/08/2023]
Abstract
MAIN CONCLUSION This study shows that NgRBP suppresses both local and systemic RNA silencing induced by sense- or double-stranded RNA, and the RNA binding activity is essential for its function. To counteract host defence, many plant viruses encode viral suppressors of RNA silencing targeting various stages of RNA silencing. There is increasing evidence that the plants also encode endogenous suppressors of RNA silencing (ESR) to regulate this pathway. In this study, using Agrobacterium infiltration assays, we characterized NgRBP, a glycine-rich RNA-binding protein from Nicotiana glutinosa, as an ESR. Our results indicated that NgRBP suppressed both local and systemic RNA silencing induced by sense- or double-stranded RNA. We also demonstrated that NgRBP could promote Potato Virus X (PVX) infection in N. benthamiana. NgRBP knockdown by virus-induced gene silencing enhanced PVX and Cucumber mosaic virus resistance in N. glutinosa. RNA immunoprecipitation and electrophoretic mobility shift assays showed that NgRBP bound to GFP mRNA, dsRNA rather than siRNA. These findings provide the evidence that NgRBP acts as an ESR and the RNA affinity of NgRBP plays the key role in its ESR activity. NgRBP responds to multiple signals such as ABA, MeJA, SA, and Tobacco mosaic virus infection. Therefore, it could participate in the regulation of gene expression under specific conditions.
Collapse
Affiliation(s)
- Xu Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ru Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Wenjing Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Liwei Geng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiuli Jing
- Institute of Immunology, Taishan Medical University, Tai'an, Shandong, China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongmei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
9
|
Maillard PV, van der Veen AG, Poirier EZ, Reis e Sousa C. Slicing and dicing viruses: antiviral RNA interference in mammals. EMBO J 2019; 38:e100941. [PMID: 30872283 PMCID: PMC6463209 DOI: 10.15252/embj.2018100941] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
To protect against the harmful consequences of viral infections, organisms are equipped with sophisticated antiviral mechanisms, including cell-intrinsic means to restrict viral replication and propagation. Plant and invertebrate cells utilise mostly RNA interference (RNAi), an RNA-based mechanism, for cell-intrinsic immunity to viruses while vertebrates rely on the protein-based interferon (IFN)-driven innate immune system for the same purpose. The RNAi machinery is conserved in vertebrate cells, yet whether antiviral RNAi is still active in mammals and functionally relevant to mammalian antiviral defence is intensely debated. Here, we discuss cellular and viral factors that impact on antiviral RNAi and the contexts in which this system might be at play in mammalian resistance to viral infection.
Collapse
Affiliation(s)
- Pierre V Maillard
- Division of Infection and Immunity, University College London, London, UK
| | | | - Enzo Z Poirier
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | |
Collapse
|
10
|
Tsai K, Courtney DG, Kennedy EM, Cullen BR. Influenza A virus-derived siRNAs increase in the absence of NS1 yet fail to inhibit virus replication. RNA (NEW YORK, N.Y.) 2018; 24:1172-1182. [PMID: 29903832 PMCID: PMC6097656 DOI: 10.1261/rna.066332.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 05/08/2023]
Abstract
While the issue of whether RNA interference (RNAi) ever forms part of the antiviral innate immune response in mammalian somatic cells remains controversial, there is considerable evidence demonstrating that few, if any, viral small interfering RNAs (siRNAs) are produced in infected cells. Moreover, inhibition of RNAi by mutational inactivation of key RNAi factors, such as Dicer or Argonaute 2, fails to enhance virus replication. One potential explanation for this lack of inhibitory effect is that mammalian viruses encode viral suppressors of RNAi (VSRs) that are so effective that viral siRNAs are not produced in infected cells. Indeed, a number of mammalian VSRs have been described, of which the most prominent is the influenza A virus (IAV) NS1 protein, which has not only been reported to inhibit RNAi in plants and insects but also to prevent the production of viral siRNAs in IAV-infected human cells. Here, we confirm that an IAV mutant lacking NS1 indeed differs from wild-type IAV in that it induces the production of readily detectable levels of Dicer-dependent viral siRNAs in infected human cells. However, we also demonstrate that these siRNAs have little if any inhibitory effect on IAV gene expression. This is likely due, at least in part, to their inefficient loading into RNA-induced silencing complexes.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David G Courtney
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Edward M Kennedy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
11
|
Mongelli V, Saleh MC. Bugs Are Not to Be Silenced: Small RNA Pathways and Antiviral Responses in Insects. Annu Rev Virol 2017; 3:573-589. [PMID: 27741406 DOI: 10.1146/annurev-virology-110615-042447] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Like every other organism on Earth, insects are infected with viruses, and they rely on RNA interference (RNAi) mechanisms to circumvent viral infections. A remarkable characteristic of RNAi is that it is both broadly acting, because it is triggered by double-stranded RNA molecules derived from virtually any virus, and extremely specific, because it targets only the particular viral sequence that initiated the process. Reviews covering the different facets of the RNAi antiviral immune response in insects have been published elsewhere. In this review, we build a framework to guide future investigation. We focus on the remaining questions and avenues of research that need to be addressed to move the field forward, including issues such as the activity of viral suppressors of RNAi, comparative genomics, the development of detailed maps of the subcellular localization of viral replication complexes with the RNAi machinery, and the regulation of the antiviral RNAi response.
Collapse
Affiliation(s)
- Vanesa Mongelli
- Viruses and RNA Interference Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris Cedex 15, France;
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris Cedex 15, France;
| |
Collapse
|
12
|
Herbert KM, Nag A. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell. Viruses 2016; 8:E154. [PMID: 27271653 PMCID: PMC4926174 DOI: 10.3390/v8060154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage.
Collapse
Affiliation(s)
- Kristina M Herbert
- Department of Experimental Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California 22860, Mexico.
| | - Anita Nag
- Department of Chemistry, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
13
|
Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer. Proc Natl Acad Sci U S A 2015; 112:E6945-54. [PMID: 26621737 DOI: 10.1073/pnas.1513421112] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although RNA interference (RNAi) functions as a potent antiviral innate-immune response in plants and invertebrates, mammalian somatic cells appear incapable of mounting an RNAi response and few, if any, small interfering RNAs (siRNAs) can be detected. To examine why siRNA production is inefficient, we have generated double-knockout human cells lacking both Dicer and protein kinase RNA-activated. Using these cells, which tolerate double-stranded RNA expression, we show that a mutant form of human Dicer lacking the amino-terminal helicase domain can process double-stranded RNAs to produce high levels of siRNAs that are readily detectable by Northern blot, are loaded into RNA-induced silencing complexes, and can effectively and specifically inhibit the expression of cognate mRNAs. Remarkably, overexpression of this mutant Dicer, but not wild-type Dicer, also resulted in a partial inhibition of Influenza A virus-but not poliovirus-replication in human cells.
Collapse
|
14
|
ClRTL1 Encodes a Chinese Fir RNase III-Like Protein Involved in Regulating Shoot Branching. Int J Mol Sci 2015; 16:25691-710. [PMID: 26516842 PMCID: PMC4632822 DOI: 10.3390/ijms161025691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
Identification of genes controlling shoot branching is crucial for improving plant architecture and increasing crop yield or biomass. A branching mutant of Chinese fir named “Dugansha” (Cunninghamia lanceolata var. dugan.) has been isolated in our laboratory. We chose the cDNA-AFLP technique and an effective strategy to screen genes that potentially regulate shoot branching in Chinese fir using this mutant. An RNase III-like1 cDNA fragment named ClRTL1 was identified as a potential positive regulator. To investigate the function of ClRTL1 in regulating shoot branching, we cloned the full-length cDNA sequence from C. lanceolata (Lamb.) Hook, deduced its secondary structure and function, and overexpressed the coding sequence in Arabidopsis. The ClRTL1 cDNA is 1045 bp and comprises an open reading frame of 705 bp. It encodes a protein of 235 amino acids. The deduced secondary structure of the ClRTL1 indicates that it is a mini-RNase III-like protein. The expression analysis and phenotypes of 35S: ClRTL1 in A. thaliana implies that ClRTL1 plays a role in promoting shoot branching in Chinese fir.
Collapse
|
15
|
Song L, Wang H, Wang T, Lu L. Sequestration of RNA by grass carp Ctenopharyngodon idella TIA1 is associated with its positive role in facilitating grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2015; 46:442-448. [PMID: 26208752 PMCID: PMC7173117 DOI: 10.1016/j.fsi.2015.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/10/2015] [Accepted: 07/19/2015] [Indexed: 05/27/2023]
Abstract
Previous report demonstrated that grass carp reovirus (GCRV) infection resulted in unlinking cellular stress granule formation from aggregation of grass carp Ctenopharyngodon idella TIA1 (CiTIA1). Here, we provided evidence to show that CiTIA1 bound to synthesized ssRNA and dsRNA in vitro. Both GST-pull down assay and RNA immunoprecipitation analysis confirmed the association between GCRV-specific RNA and GST-tagged CiTIA1 in C. idella kidney (CIK) cells. Furthermore, CiTIA1 was shown to protect dsRNA of virus-origin from degradation in CIK cells through Northern blot analysis. Finally, transient overexpression of CiTIA1 enhanced the replication efficiency of GCRV in CIK cells. Taken together, our results suggested that cellular CiTIA1 might facilitate GCRV replication through sequestrating and protecting viral RNA from degradation.
Collapse
Affiliation(s)
- Lang Song
- MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, PR China
| | - Hao Wang
- MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, PR China
| | - Tu Wang
- MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, PR China
| | - Liqun Lu
- MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
16
|
Hedil M, Sterken MG, de Ronde D, Lohuis D, Kormelink R. Analysis of Tospovirus NSs Proteins in Suppression of Systemic Silencing. PLoS One 2015; 10:e0134517. [PMID: 26275304 PMCID: PMC4537313 DOI: 10.1371/journal.pone.0134517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/09/2015] [Indexed: 01/05/2023] Open
Abstract
RNA silencing is a sequence-specific gene regulation mechanism that in plants also acts antiviral. In order to counteract antiviral RNA silencing, viruses have evolved RNA silencing suppressors (RSS). In the case of tospoviruses, the non-structural NSs protein has been identified as the RSS. Although the tomato spotted wilt virus (TSWV) tospovirus NSs protein has been shown to exhibit affinity to long and small dsRNA molecules, its ability to suppress the non-cell autonomous part of RNA silencing has only been studied to a limited extent. Here, the NSs proteins of TSWV, groundnut ringspot virus (GRSV) and tomato yellow ring virus (TYRV), representatives for three distinct tospovirus species, have been studied on their ability and strength to suppress local and systemic silencing. A system has been developed to quantify suppression of GFP silencing in Nicotiana benthamiana 16C lines, to allow a comparison of relative RNA silencing suppressor strength. It is shown that NSs of all three tospoviruses are suppressors of local and systemic silencing. Unexpectedly, suppression of systemic RNA silencing by NSsTYRV was just as strong as those by NSsTSWV and NSsGRSV, even though NSsTYRV was expressed in lower amounts. Using the system established, a set of selected NSsTSWV gene constructs mutated in predicted RNA binding domains, as well as NSs from TSWV isolates 160 and 171 (resistance breakers of the Tsw resistance gene), were analyzed for their ability to suppress systemic GFP silencing. The results indicate another mode of RNA silencing suppression by NSs that acts further downstream the biogenesis of siRNAs and their sequestration. The findings are discussed in light of the affinity of NSs for small and long dsRNA, and recent mutant screen of NSsTSWV to map domains required for RSS activity and triggering of Tsw-governed resistance.
Collapse
Affiliation(s)
- Marcio Hedil
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Mark G. Sterken
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Dryas de Ronde
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Dick Lohuis
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
17
|
Bronkhorst AW, van Cleef KWR, Venselaar H, van Rij RP. A dsRNA-binding protein of a complex invertebrate DNA virus suppresses the Drosophila RNAi response. Nucleic Acids Res 2014; 42:12237-48. [PMID: 25274730 PMCID: PMC4231766 DOI: 10.1093/nar/gku910] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invertebrate RNA viruses are targets of the host RNA interference (RNAi) pathway, which limits virus infection by degrading viral RNA substrates. Several insect RNA viruses encode suppressor proteins to counteract this antiviral response. We recently demonstrated that the dsDNA virus Invertebrate iridescent virus 6 (IIV-6) induces an RNAi response in Drosophila. Here, we show that RNAi is suppressed in IIV-6-infected cells and we mapped RNAi suppressor activity to the viral protein 340R. Using biochemical assays, we reveal that 340R binds long dsRNA and prevents Dicer-2-mediated processing of long dsRNA into small interfering RNAs (siRNAs). We demonstrate that 340R additionally binds siRNAs and inhibits siRNA loading into the RNA-induced silencing complex. Finally, we show that 340R is able to rescue a Flock House virus replicon that lacks its viral suppressor of RNAi. Together, our findings indicate that, in analogy to RNA viruses, DNA viruses antagonize the antiviral RNAi response.
Collapse
Affiliation(s)
- Alfred W Bronkhorst
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Koen W R van Cleef
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
18
|
van Mierlo JT, Overheul GJ, Obadia B, van Cleef KWR, Webster CL, Saleh MC, Obbard DJ, van Rij RP. Novel Drosophila viruses encode host-specific suppressors of RNAi. PLoS Pathog 2014; 10:e1004256. [PMID: 25032815 PMCID: PMC4102588 DOI: 10.1371/journal.ppat.1004256] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/03/2014] [Indexed: 12/24/2022] Open
Abstract
The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary ‘arms race’ may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors. Viruses and their hosts can engage in an evolutionary arms race. Viruses may select for hosts with more effective immune responses, whereas the immune response of the host may select for viruses that evade the immune system. These viral counter-defenses may in turn drive adaptations in host immune genes. A potential outcome of this perpetual cycle is that the interaction between virus and host becomes more specific. In insects, the host antiviral RNAi machinery exerts strong evolutionary pressure that has led to the evolution of viral proteins that can antagonize the RNAi response. We have identified novel viruses that infect different fruit fly species and we show that the RNAi suppressor proteins of these viruses can be specific to their host. Furthermore, we show that these proteins can enhance virus replication in a host-specific manner. These results are in line with the hypothesis that virus-host co-evolution shapes the genomes of both virus and host. Moreover, our results suggest that RNAi suppressor proteins have the potential to determine host specificity of viruses.
Collapse
Affiliation(s)
- Joël T. van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Benjamin Obadia
- Institut Pasteur, Viruses and RNA interference Unit and Centre National de la Recherche Scientifique, UMR 3569, Paris, France
| | - Koen W. R. van Cleef
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Claire L. Webster
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA interference Unit and Centre National de la Recherche Scientifique, UMR 3569, Paris, France
| | - Darren J. Obbard
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DJO); (RPvR)
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- * E-mail: (DJO); (RPvR)
| |
Collapse
|
19
|
van Cleef KWR, van Mierlo JT, Miesen P, Overheul GJ, Fros JJ, Schuster S, Marklewitz M, Pijlman GP, Junglen S, van Rij RP. Mosquito and Drosophila entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi. Nucleic Acids Res 2014; 42:8732-44. [PMID: 24939903 PMCID: PMC4117760 DOI: 10.1093/nar/gku528] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA interference (RNAi) is a crucial antiviral defense mechanism in insects, including the major mosquito species that transmit important human viruses. To counteract the potent antiviral RNAi pathway, insect viruses encode RNAi suppressors. However, whether mosquito-specific viruses suppress RNAi remains unclear. We therefore set out to study RNAi suppression by Culex Y virus (CYV), a mosquito-specific virus of the Birnaviridae family that was recently isolated from Culex pipiens mosquitoes. We found that the Culex RNAi machinery processes CYV double-stranded RNA (dsRNA) into viral small interfering RNAs (vsiRNAs). Furthermore, we show that RNAi is suppressed in CYV-infected cells and that the viral VP3 protein is responsible for RNAi antagonism. We demonstrate that VP3 can functionally replace B2, the well-characterized RNAi suppressor of Flock House virus. VP3 was found to bind long dsRNA as well as siRNAs and interfered with Dicer-2-mediated cleavage of long dsRNA into siRNAs. Slicing of target RNAs by pre-assembled RNA-induced silencing complexes was not affected by VP3. Finally, we show that the RNAi-suppressive activity of VP3 is conserved in Drosophila X virus, a birnavirus that persistently infects Drosophila cell cultures. Together, our data indicate that mosquito-specific viruses may encode RNAi antagonists to suppress antiviral RNAi.
Collapse
Affiliation(s)
- Koen W R van Cleef
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Joël T van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Susan Schuster
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Marco Marklewitz
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sandra Junglen
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
20
|
Cullen BR, Cherry S, tenOever BR. Is RNA interference a physiologically relevant innate antiviral immune response in mammals? Cell Host Microbe 2014; 14:374-8. [PMID: 24139396 DOI: 10.1016/j.chom.2013.09.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While RNA interference (RNAi) functions as an antiviral response in plants, nematodes, and arthropods, a similar antiviral role in mammals has remained controversial. Three recent papers provide evidence that either favors or challenges this hypothesis. Here, we discuss these new findings in the context of previous research.
Collapse
Affiliation(s)
- Bryan R Cullen
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
21
|
Pumplin N, Voinnet O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 2013; 11:745-60. [PMID: 24129510 DOI: 10.1038/nrmicro3120] [Citation(s) in RCA: 407] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RNA silencing is a central regulator of gene expression in most eukaryotes and acts both at the transcriptional level through DNA methylation and at the post-transcriptional level through direct mRNA interference mediated by small RNAs. In plants and invertebrates, the same pathways also function directly in host defence against viruses by targeting viral RNA for degradation. Successful viruses have consequently evolved diverse mechanisms to avoid silencing, most notably through the expression of viral suppressors of RNA silencing. RNA silencing suppressors have also been recently identified in plant pathogenic bacteria and oomycetes, suggesting that disruption of host silencing is a general virulence strategy across several kingdoms of plant pathogens. There is also increasing evidence that plants have evolved specific defences against RNA-silencing suppression by pathogens, providing yet another illustration of the never-ending molecular arms race between plant pathogens and their hosts.
Collapse
Affiliation(s)
- Nathan Pumplin
- Swiss Federal Institute of Technology Zurich (ETH-Zurich), Department of Biology, Zurich, Switzerland
| | | |
Collapse
|
22
|
Weinheimer I, Boonrod K, Moser M, Wassenegger M, Krczal G, Butcher SJ, Valkonen JPT. Binding and processing of small dsRNA molecules by the class 1 RNase III protein encoded by sweet potato chlorotic stunt virus. J Gen Virol 2013; 95:486-495. [PMID: 24187016 DOI: 10.1099/vir.0.058693-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus, family Closteroviridae) causes heavy yield losses in sweet potato plants co-infected with other viruses. The dsRNA-specific class 1 RNase III-like endoribonuclease (RNase3) encoded by SPCSV suppresses post-transcriptional gene silencing and eliminates antiviral defence in sweet potato plants in an endoribonuclease activity-dependent manner. RNase3 can cleave long dsRNA molecules, synthetic small interfering RNAs (siRNAs), and plant- and virus-derived siRNAs extracted from sweet potato plants. In this study, conditions for efficient expression and purification of enzymically active recombinant RNase3 were established. Similar to bacterial class 1 RNase III enzymes, RNase3-Ala (a dsRNA cleavage-deficient mutant) bound to and processed double-stranded siRNA (ds-siRNA) as a dimer. The results support the classification of SPCSV RNase3 as a class 1 RNase III enzyme. There is little information about the specificity of RNase III enzymes on small dsRNAs. In vitro assays indicated that ds-siRNAs and microRNAs (miRNAs) with a regular A-form conformation were cleaved by RNase3, but asymmetrical bulges, extensive mismatches and 2'-O-methylation of ds-siRNA and miRNA interfered with processing. Whereas Mg(2+) was the cation that best supported the catalytic activity of RNase3, binding of 21 nt small dsRNA molecules was most efficient in the presence of Mn(2+). Processing of long dsRNA by RNase3 was efficient at pH 7.5 and 8.5, whereas ds-siRNA was processed more efficiently at pH 8.5. The results revealed factors that influence binding and processing of small dsRNA substrates by class 1 RNase III in vitro or make them unsuitable for processing by the enzyme.
Collapse
Affiliation(s)
- Isabel Weinheimer
- AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, Neustadt a.d.W., Germany.,Department of Agricultural Sciences, PO Box 27, 00014 University of Helsinki, Helsinki, Finland
| | - Kajohn Boonrod
- AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, Neustadt a.d.W., Germany
| | - Mirko Moser
- AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, Neustadt a.d.W., Germany
| | - Michael Wassenegger
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg, Germany.,AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, Neustadt a.d.W., Germany
| | - Gabi Krczal
- AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, Neustadt a.d.W., Germany
| | - Sarah J Butcher
- Institute of Biotechnology, PO Box 65, 00014 University of Helsinki, Helsinki, Finland
| | - Jari P T Valkonen
- Department of Agricultural Sciences, PO Box 27, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Ponia SS, Arora S, Kumar B, Banerjea AC. Arginine rich short linear motif of HIV-1 regulatory proteins inhibits dicer dependent RNA interference. Retrovirology 2013; 10:97. [PMID: 24025624 PMCID: PMC3848888 DOI: 10.1186/1742-4690-10-97] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 08/09/2013] [Indexed: 12/29/2022] Open
Abstract
Background Arginine Rich Motif (ARM) of HIV-1 Tat and Rev are extensively studied linear motifs (LMs). They are already established as an inefficient bipartite nuclear localisation signal (NLS). The unusual passive diffusion of HIV-1 NLS tagged reporter proteins across the nucleus is due to an unknown competing functionality of ARM. Recent findings about the role of retroviral proteins as a suppressor of RNA interference (RNAi) involving their basic residues hint an interesting answer to this alternate functionality. The present work explores the role of HIV-1 ARM as a uniquely evolved viral motif to combat Dicer dependent RNAi. Results We show that RNA binding ARM of both HIV-1 Tat and Rev is a LM with a pattern RXXRRXRRR unique to viruses. Extending the in silico results to wet lab, we proved both HIV-1 Tat and Rev can suppress Dicer dependent RNA silencing process involving ARM. We show, HIV-1 Tat and Rev and their corresponding ARM can bind the RISC loading complex (RLC) components TRBP and PACT confirming ARM as an independent RNAi suppression motif. Enhancement of RNAi in infection scenario through enoxacin increases HIV-1 replication as indicated by p24 levels. Except Dicer, all other cytoplasmic RNAi components enhance HIV-1 replication, indicating crucial role of Dicer independent (Ago2 dependent) RNAi pathway in HIV-1 infection. Sequence and structural analysis of endo/exo-microRNA precursors known to be regulated in HIV-1 infection highlights differential features of microRNA biogenesis. One such set of miRNA is viral TAR encoded HIV-1-miR-TAR-5p (Tar1) and HIV-1-miR-TAR-3p (Tar2) that are known to be present throughout the HIV-1 life cycle. Our qPCR results showed that enoxacin increases Tar2 miRNA level which is interesting as Tar2 precursor shows Ago2 dependent processing features. Conclusions We establish HIV-1 ARM as a novel viral motif evolved to target the Dicer dependent RNAi pathway. The conservation of such motif in other viral proteins possibly explains the potent suppression of Dicer dependent RNAi. Our model argues that HIV-1 suppress the processing of siRNAs through inhibition of Dicer while at the same time manipulates the RNAi machinery to process miRNA involved in HIV-1 replication from Dicer independent pathways.
Collapse
Affiliation(s)
- Sanket Singh Ponia
- Virology Lab II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | | | | | | |
Collapse
|
24
|
Wang J, Tuo H, Wang R, Li W, Feng Z, Chen J, Wang D. The expression of human brain vascular smooth muscle cell AT receptor after the UL83 gene of HCMV inhibition by small interfering RNAs. Neurol Res 2013; 30:903-9. [DOI: 10.1179/174313208x310304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Liu X, Houzet L, Jeang KT. Tombusvirus P19 RNA silencing suppressor (RSS) activity in mammalian cells correlates with charged amino acids that contribute to direct RNA-binding. Cell Biosci 2012; 2:41. [PMID: 23216864 PMCID: PMC3533911 DOI: 10.1186/2045-3701-2-41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/21/2012] [Indexed: 12/31/2022] Open
Abstract
Background Tombusvirus P19 is a protein encoded by tomato bushy stunt virus and related tombusviruses. Earlier studies have demonstrated that P19 is an RNA silencing suppressor (RSS) in plant cells. However, it has not been systematically investigated how P19 suppresses RNA interference in various mammalian cell settings. Results We have studied the RSS effect of P19 in mammalian cells, HEK293T, HeLa, and mouse embryonic fibroblasts. We have individually mutated 18 positively charged residues in P19 and found that 6 of these charged residues in P19 reduce its ability to suppress RNA interference. In each case, the reduction of silencing of RNA interference correlated with the reduced ability by these P19 mutants to bind siRNAs (small interfering RNAs). Conclusions Our findings characterize a class of RNA-binding proteins that function as RSS moieties. We find a tight correlation between positively charged residues in P19 accounting for siRNA-binding and their RSS activity. Because P19’s activity is conserved in plant and animal cells, we conclude that its RSS function unlikely requires cell type-specific co-factors and likely arises from direct RNA-binding.
Collapse
Affiliation(s)
- Xiang Liu
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
26
|
Valli A, Busnadiego I, Maliogka V, Ferrero D, Castón JR, Rodríguez JF, García JA. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes. PLoS One 2012; 7:e45957. [PMID: 23049903 PMCID: PMC3458112 DOI: 10.1371/journal.pone.0045957] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/23/2012] [Indexed: 12/23/2022] Open
Abstract
RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV) displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.
Collapse
Affiliation(s)
- Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | | | | | - Diego Ferrero
- Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
27
|
Cullen BR. RNA interference does not function as an innate antiviral response in mammalian somatic cells. Future Virol 2011. [DOI: 10.2217/fvl.11.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Bryan R Cullen
- Department of Molecular Genetics & Microbiology & the Center for Virology, Duke University, Durham, NC, USA
| |
Collapse
|
28
|
Whitley DS, Sample RC, Sinning AR, Henegar J, Chinchar VG. Antisense approaches for elucidating ranavirus gene function in an infected fish cell line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:937-948. [PMID: 21147160 DOI: 10.1016/j.dci.2010.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/04/2010] [Indexed: 05/30/2023]
Abstract
Viral virulence/immune evasion strategies and host anti-viral responses represent different sides of the continuing struggle between virus and host survival. To identify virus-encoding molecules whose function is to subvert or blunt host immune responses, we have adapted anti-sense approaches to knock down the expression of specific viral gene products. Our intention is to correlate knock down with loss of function and thus infer the role of a given viral gene. As a starting point in this process we have targeted several structural and catalytic genes using antisense morpholino oligonucleotides (asMO) and small, interfering RNAs (siRNA). In proof of concept experiments we show the feasibility of this approach and describe recent work targeting five frog virus 3 genes. Our results indicate that both 46K and 32R, two immediate-early viral proteins, are essential for replication in vitro, and confirm earlier findings that the major capsid protein, the largest subunit of the viral homolog of RNA polymerase II, and the viral DNA methyltransferase are also essential for replication in cell culture.
Collapse
Affiliation(s)
- D S Whitley
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | | | | | | | | |
Collapse
|
29
|
MicroRNAs and human retroviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:686-93. [PMID: 21640212 PMCID: PMC3177989 DOI: 10.1016/j.bbagrm.2011.05.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control a multitude of critical processes in mammalian cells. Increasing evidence has emerged that host miRNAs serve in animal cells to restrict viral infections. In turn, many viruses encode RNA silencing suppressors (RSS) which are employed to moderate the potency of the cell's miRNA selection against viral replication. Some viruses also encode viral miRNAs. In this review, we summarize findings from human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1) that illustrate examples of host cell miRNAs that target the viruses, of RSS encoded by viruses, and of host cell miRNA profile changes that are seen in infected cells. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
|
30
|
Kiyota E, Okada R, Kondo N, Hiraguri A, Moriyama H, Fukuhara T. An Arabidopsis RNase III-like protein, AtRTL2, cleaves double-stranded RNA in vitro. JOURNAL OF PLANT RESEARCH 2011; 124:405-14. [PMID: 20978817 DOI: 10.1007/s10265-010-0382-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 09/16/2010] [Indexed: 05/30/2023]
Abstract
Class 1 ribonuclease III (RNase III), found in bacteria and yeast, is involved in processing functional RNA molecules such as ribosomal RNAs (rRNAs). However, in Arabidopsis thaliana, the lack of an obvious phenotype or quantitative change in mature rRNAs in class 1 RNase III (AtRTL2) mutants and overexpressing plants suggests that AtRTL2 is not involved in rRNA maturation. We characterized the in vitro activity of AtRTL2 to consider its in vivo function. AtRTL2 cleaved double-stranded RNA (dsRNA) specifically in vitro, yielding products of approximately 25 nt or longer in length, in contrast to 10-20 nt long products in bacteria and yeasts. Although dsRNA-binding activity was not detected, the dsRNA-binding domains in AtRTL2 were essential for its dsRNA-cleaving activity. Accumulation of small RNAs derived from transgene dsRNAs was increased when AtRTL2 was transiently expressed in Nicotiana benthamiana leaves by agroinfiltration. These results raise the possibility that AtRTL2 has functions distinct from those of other class 1 RNase IIIs in vivo.
Collapse
Affiliation(s)
- Eri Kiyota
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Dalakouras A, Tzanopoulou M, Tsagris M, Wassenegger M, Kalantidis K. Hairpin transcription does not necessarily lead to efficient triggering of the RNAi pathway. Transgenic Res 2011; 20:293-304. [PMID: 20582569 DOI: 10.1007/s11248-010-9416-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 06/04/2010] [Indexed: 11/30/2022]
Abstract
Previously, we had shown that stable expression of a hairpin RNA sharing homology with the coat protein (CP) of the Cucumber mosaic virus (CMV) (hpRNA(CMV)) produced CMV resistant Nicotiana tabacum plants. However, only 17% of the hpRNA(CMV)-expressing plants generated substantial amounts of siRNAs that mediated CMV resistance (siRNAs(CMV)). Here, we demonstrate that the transcription of a hpRNA(CMV) per se is not sufficient to trigger cytoplasmic and nuclear RNAi. A multiple-transgene copy line showed a strong resistance phenotype. Segregation of individual copies revealed that in one locus, the transgene-produced hpRNA(CMV) transcript was processed into 21-nt and 24-nt siRNAs(CMV) and lines containing this locus were resistant. At a second locus, where the transgene was shown to be transcribed, no siRNAs(CMV) were produced and lines harbouring only this locus were susceptible. In addition, the second locus failed to trigger de novo RNA-directed DNA methylation (RdDM) in cis, of its cognate sequence. However, after being induced in trans, methylation in the transcribed region of the transgene was maintained in both CG and CHG residues. Sequence-specific maintenance of methylation in transcribed regions, as well as diverse RNA degradation pathways in plants are discussed in view of our observations.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, 67435, Neustadt, Germany
| | | | | | | | | |
Collapse
|
32
|
Sanghvi VR, Steel LF. A re-examination of global suppression of RNA interference by HIV-1. PLoS One 2011; 6:e17246. [PMID: 21386885 PMCID: PMC3046114 DOI: 10.1371/journal.pone.0017246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/23/2011] [Indexed: 12/30/2022] Open
Abstract
The nature of the interaction between replicating HIV-1 and the cellular RNAi pathway has been controversial, but it is clear that it can be complex and multifaceted. It has been proposed that the interaction is bi-directional, whereby cellular silencing pathways can restrict HIV-1 replication, and in turn, HIV-1 can suppress silencing pathways. Overall suppression of RNAi has been suggested to occur via direct binding and inhibition of Dicer by the HIV-1 Tat protein or through sequestration of TRBP, a Dicer co-factor, by the structured TAR element of HIV-1 transcripts. The role of Tat as an inhibitor of Dicer has been questioned and our results support and extend the conclusion that Tat does not inhibit RNAi that is mediated by either exogenous or endogenous miRNAs. Similarly, we find no suppression of silencing pathways in cells with replicating virus, suggesting that viral products such as the TAR RNA elements also do not reduce the efficacy of cellular RNA silencing. However, knockdown of Dicer does allow increased viral replication and this occurs at a post-transcriptional level. These results support the idea that although individual miRNAs can act to restrict HIV-1 replication, the virus does not counter these effects through a global suppression of RNAi synthesis or processing.
Collapse
Affiliation(s)
- Viraj R. Sanghvi
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Laura F. Steel
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Song Y, Dong MM, Yang HF. Effects of RNA interference targeting four different genes on the growth and proliferation of nasopharyngeal carcinoma CNE-2Z cells. Cancer Gene Ther 2011; 18:297-304. [DOI: 10.1038/cgt.2010.80] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Abstract
Double-stranded RNA (dsRNA) is the trigger of RNA interference (RNAi)-mediated gene regulation. Dicer processes dsRNAs into short interfering RNAs (siRNAs), which are incorporated into the effector RNA-induced silencing complex (RISC) and direct degradation of homologous target mRNAs. In plants and invertebrates, the RNAi machinery also acts as an antiviral mechanism through production of viral siRNAs by Dicer and silencing of replicating viruses. Viral suppressors of RNAi (VSRs) are encoded by some viruses and serve as a strategy to counteract the RNAi-based antiviral immunity. In this chapter, we describe a Dicer activity assay in extracts prepared from Drosophila melanogaster S2 cells. We also introduce a simple procedure to study VSR activity in the in vitro Dicer assay.
Collapse
Affiliation(s)
- Baojun Yang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI, USA
| | | |
Collapse
|
35
|
van Cleef KWR, van Mierlo JT, van den Beek M, van Rij RP. Identification of viral suppressors of RNAi by a reporter assay in Drosophila S2 cell culture. Methods Mol Biol 2011; 721:201-13. [PMID: 21431687 DOI: 10.1007/978-1-61779-037-9_12] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The RNA interference (RNAi) pathway plays an important role in antiviral immunity in insects. To -counteract the RNAi-mediated immune response of their hosts, several insect viruses, such as Flock house virus, Drosophila C virus, and Cricket paralysis virus, encode potent viral suppressors of RNAi (VSRs). Because of the importance of RNAi in antiviral defense in insects, other insect viruses are likely to encode VSRs as well. In this chapter, we describe a detailed protocol for an RNAi reporter assay in Drosophila S2 cells for the identification of VSR activity.
Collapse
Affiliation(s)
- Koen W R van Cleef
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
36
|
Zhai Y, Attoui H, Mohd Jaafar F, Wang HQ, Cao YX, Fan SP, Sun YX, Liu LD, Mertens PPC, Meng WS, Wang D, Liang G. Isolation and full-length sequence analysis of Armigeres subalbatus totivirus, the first totivirus isolate from mosquitoes representing a proposed novel genus (Artivirus) of the family Totiviridae. J Gen Virol 2010; 91:2836-45. [DOI: 10.1099/vir.0.024794-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
37
|
Giner A, Lakatos L, García-Chapa M, López-Moya JJ, Burgyán J. Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs. PLoS Pathog 2010; 6:e1000996. [PMID: 20657820 PMCID: PMC2904775 DOI: 10.1371/journal.ppat.1000996] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/11/2010] [Indexed: 11/24/2022] Open
Abstract
RNA silencing is an evolutionarily conserved sequence-specific gene-inactivation system that also functions as an antiviral mechanism in higher plants and insects. To overcome antiviral RNA silencing, viruses express silencing-suppressor proteins. These viral proteins can target one or more key points in the silencing machinery. Here we show that in Sweet potato mild mottle virus (SPMMV, type member of the Ipomovirus genus, family Potyviridae), the role of silencing suppressor is played by the P1 protein (the largest serine protease among all known potyvirids) despite the presence in its genome of an HC-Pro protein, which, in potyviruses, acts as the suppressor. Using in vivo studies we have demonstrated that SPMMV P1 inhibits si/miRNA-programmed RISC activity. Inhibition of RISC activity occurs by binding P1 to mature high molecular weight RISC, as we have shown by immunoprecipitation. Our results revealed that P1 targets Argonaute1 (AGO1), the catalytic unit of RISC, and that suppressor/binding activities are localized at the N-terminal half of P1. In this region three WG/GW motifs were found resembling the AGO-binding linear peptide motif conserved in metazoans and plants. Site-directed mutagenesis proved that these three motifs are absolutely required for both binding and suppression of AGO1 function. In contrast to other viral silencing suppressors analyzed so far P1 inhibits both existing and de novo formed AGO1 containing RISC complexes. Thus P1 represents a novel RNA silencing suppressor mechanism. The discovery of the molecular bases of P1 mediated silencing suppression may help to get better insight into the function and assembly of the poorly explored multiprotein containing RISC. RNA silencing is an evolutionarily conserved sequence-specific gene-inactivation system that also functions as a major antiviral mechanism in higher plants and insects. Viral RNAs are processed by Dicer-like proteins into small interfering (si) RNAs, which trigger the RNA-induced silencing complex (RISC) assembly. Then siRNA loaded RISC inactivates cognate viral RNA. However, viral silencing suppressors evolved to counteract with RNA silencing targeting one or more key points in the silencing machinery. Here we show that in Sweet potato mild mottle virus, the role of silencing suppressor is played by P1 protein and it works by inhibiting si/miRNA-loaded RISC through targeting Argonaute 1 (AGO1). We confirmed using immunoprecipitation and in vitro binding assays that the interaction between P1 and small RNA loaded AGO1 is specific and direct. The suppression activity mapped to the N-terminal part of P1 containing three WG/GW motifs that resemble the AGO-binding linear peptide motif conserved in metazoans and plants. Site-directed mutagenesis proved that these three motifs are essential for both binding and suppression of AGO1 function. P1 protein is the only silencing suppressor identified so far that inhibits active RISC and this is the first demonstration of a WG/GW protein having negative effect on RNA silencing.
Collapse
Affiliation(s)
- Ana Giner
- Centre for Research in Agricultural Genomics, CRAG, CSIC-IRTA-UAB, Barcelona, Spain
| | - Lóránt Lakatos
- Agricultural Biotechnology Centre, Gödöllő, Hungary
- * E-mail: (LL); (JJLM); or (JB)
| | | | - Juan José López-Moya
- Centre for Research in Agricultural Genomics, CRAG, CSIC-IRTA-UAB, Barcelona, Spain
- * E-mail: (LL); (JJLM); or (JB)
| | - József Burgyán
- Agricultural Biotechnology Centre, Gödöllő, Hungary
- Instituto di Virologia Vegetale, Torino, Italy
- * E-mail: (LL); (JJLM); or (JB)
| |
Collapse
|
38
|
The 7a accessory protein of severe acute respiratory syndrome coronavirus acts as an RNA silencing suppressor. J Virol 2010; 84:10395-401. [PMID: 20631126 DOI: 10.1128/jvi.00748-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RNA silencing suppressors (RSSs) are well studied for plant viruses but are not well defined to date for animal viruses. Here, we have identified an RSS from a medically important positive-sense mammalian virus, Severe acute respiratory syndrome coronavirus. The viral 7a accessory protein suppressed both transgene and virus-induced gene silencing by reducing the levels of small interfering RNA (siRNA). The suppression of silencing was analyzed by two independent assays, and the middle region (amino acids [aa] 32 to 89) of 7a was responsible for suppression. Finally, the RNA suppression property and the enhancement of heterologous replicon activity by the 7a protein were confirmed for animal cell lines.
Collapse
|
39
|
Himeno M, Maejima K, Komatsu K, Ozeki J, Hashimoto M, Kagiwada S, Yamaji Y, Namba S. Significantly low level of small RNA accumulation derived from an encapsidated mycovirus with dsRNA genome. Virology 2009; 396:69-75. [PMID: 19878965 DOI: 10.1016/j.virol.2009.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/30/2009] [Accepted: 10/04/2009] [Indexed: 01/16/2023]
Abstract
The role of RNA silencing as an antiviral defence has been well elucidated in plants and invertebrates, but not in filamentous fungi. We have previously determined the complete genome sequence of Magnaporthe oryzae virus 2 (MoV2), a dsRNA virus that infects the rice blast fungus Magnaporthe oryzae. In this study, we detected small interfering RNAs (siRNAs) from both positive- and negative-strand MoV2 viral RNA, suggesting that the RNA silencing machinery in M. oryzae functions against the mycovirus. Cloning and characterisation of MoV2 siRNAs indicated that, in MoV2, the ratio of virus-derived siRNAs to total small RNA is significantly lower than that in either plant viruses or Cryphonectria hypovirus 1 (CHV1), another mycovirus. Nevertheless, any MoV2-encoded proteins did not exhibit RNA silencing suppressor activity in both the plant and fungal systems. Our study suggests the existence of a novel viral strategy employed to evade host RNA silencing.
Collapse
Affiliation(s)
- Misako Himeno
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cuellar WJ, Kreuze JF, Rajamäki ML, Cruzado KR, Untiveros M, Valkonen JPT. Elimination of antiviral defense by viral RNase III. Proc Natl Acad Sci U S A 2009; 106:10354-8. [PMID: 19515815 PMCID: PMC2694682 DOI: 10.1073/pnas.0806042106] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Indexed: 01/06/2023] Open
Abstract
Sweet potato (Ipomoea batatas) is an important subsistence and famine reserve crop grown in developing countries where Sweet potato chlorotic stunt virus (SPCSV; Closteroviridae), a single-stranded RNA (ssRNA) crinivirus, synergizes unrelated viruses in co-infected sweet potato plants. The most severe disease and yield losses are caused by co-infection with SPCSV and a potyvirus, Sweet potato feathery mottle virus (SPFMV; Potyviridae). Potyviruses synergize unrelated viruses by suppression of RNA silencing with the P1/HC-Pro polyprotein; however, the SPCSV-SPFMV synergism is unusual in that the potyvirus is the beneficiary. Our data show that transformation of an SPFMV-resistant sweet potato variety with the double-stranded RNA (dsRNA)-specific class 1 RNA endoribonuclease III (RNase3) of SPCSV broke down resistance to SPFMV, leading to high accumulation of SPFMV antigen and severe disease symptoms similar to the synergism in plants co-infected with SPCSV and SPFMV. RNase3-transgenic sweet potatoes also accumulated higher concentrations of 2 other unrelated viruses and developed more severe symptoms than non-transgenic plants. In leaves, RNase3 suppressed ssRNA-induced gene silencing (RNAi) in an endonuclease activity-dependent manner. It cleaved synthetic double-stranded small interfering RNAs (siRNAs) of 21, 22, and 24 bp in vitro to products of approximately 14 bp that are inactive in RNAi. It also affected total siRNA isolated from SPFMV-infected sweet potato plants, suggesting a viral mechanism for suppression of RNAi by cleavage of siRNA. Results implicate RNase3 in suppression of antiviral defense in sweet potato plants and reveal RNase3 as a protein that mediates viral synergism with several unrelated viruses, a function previously described only for P1/HC-Pro.
Collapse
Affiliation(s)
- Wilmer J. Cuellar
- Department of Applied Biology, University of Helsinki, P.O. Box 27, FIN-00014, Helsinki, Finland
| | - Jan F. Kreuze
- Integrated Crop Management Division and Germplasm Enhancement and Crop Improvement Division, International Potato Center, Apartado 1558, Lima 12, Peru; and
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden
| | - Minna-Liisa Rajamäki
- Department of Applied Biology, University of Helsinki, P.O. Box 27, FIN-00014, Helsinki, Finland
| | - Karin R. Cruzado
- Integrated Crop Management Division and Germplasm Enhancement and Crop Improvement Division, International Potato Center, Apartado 1558, Lima 12, Peru; and
| | - Milton Untiveros
- Integrated Crop Management Division and Germplasm Enhancement and Crop Improvement Division, International Potato Center, Apartado 1558, Lima 12, Peru; and
| | - Jari P. T. Valkonen
- Department of Applied Biology, University of Helsinki, P.O. Box 27, FIN-00014, Helsinki, Finland
| |
Collapse
|
41
|
Umbach JL, Cullen BR. The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 2009; 23:1151-64. [PMID: 19451215 DOI: 10.1101/gad.1793309] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The closely related microRNA (miRNA) and RNAi pathways have emerged as important regulators of virus-host cell interactions. Although both pathways are relatively well conserved all the way from plants to invertebrates to mammals, there are important differences between these systems. A more complete understanding of these differences will be required to fully appreciate the relationship between these diverse host organisms and the various viruses that infect them. Insights derived from this research will facilitate a better understanding of viral pathogenesis and the host innate immune response to viral infection.
Collapse
Affiliation(s)
- Jennifer L Umbach
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
42
|
van Rij RP. Virus meets RNAi. Symposium on antiviral applications of RNA interference. EMBO Rep 2008; 9:725-9. [PMID: 18636088 DOI: 10.1038/embor.2008.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 06/17/2008] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen Centre for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
43
|
Ji WT, Chulu JL, Lin FL, Li SK, Lee LH, Liu HJ. Suppression of protein expression of three avian reovirus S-class genome segments by RNA interference. Vet Microbiol 2008; 129:252-61. [DOI: 10.1016/j.vetmic.2007.11.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/10/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
|
44
|
HCV core protein interacts with Dicer to antagonize RNA silencing. Virus Res 2008; 133:250-8. [PMID: 18325616 DOI: 10.1016/j.virusres.2008.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/16/2008] [Accepted: 01/21/2008] [Indexed: 01/03/2023]
Abstract
RNA silencing is a form of nucleic acid-based immunity against viruses in plants and invertebrate animals. Successful viral infection requires evasion or suppression of gene silencing. Here, we report that the core protein of Hepatitis C virus (HCV) acts as a potent suppressor of RNA silencing (SRS). We have found that the HCV core protein inhibits RNA silencing induced by short hairpin RNAs (shRNAs) but not by synthetic small interfering RNAs (siRNAs) in various mammalian cells. We have further demonstrated that HCV core protein directly interacts with Dicer, an RNase enzyme that generates siRNA in host cells. The HCV core protein has been shown to inhibit the function of Dicer to process double-stranded RNAs (dsRNAs) into siRNAs. Through deletion analysis, we have found that the N-terminal domain is required for core protein to antagonize RNA silencing activity of Dicer enzyme. Thus, our results suggest that HCV core protein may abrogate host cell RNA silencing defense by suppressing the ability of Dicer to process precursor dsRNAs into siRNAs. This anti-Dicer ability of core protein may contribute to the persistent viral infection and pathogenesis of HCV.
Collapse
|
45
|
Abstract
RNA silencing is a collective term that refers to diverse RNA-directed processes resulting in sequence-specific degradation of target RNA and repression of gene expression, either at transcriptional or post-transcriptional levels. In animals, fungi and plants, RNA silencing represents a mechanism guided by small RNAs against virus infection. Viruses can be inducers and targets of RNA silencing, and have evolved active and passive strategies to counter the cellular antiviral mechanism. This review discusses various approaches, including protein- and RNA-mediated silencing suppression and viral escape of RNA silencing without suppression, to highlight how viruses could fight back to survive under the universal host surveillance.
Collapse
Affiliation(s)
- Yan Shi
- Warwick HRI, University of Warwick, Warwick, CV35 9EF, UK and, Department of Plant Pathology & State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 10094, China
| | - Mei Gu
- Clinical Sciences Research Institute, University Hospitals Coventry & Warwickshire, University of Warwick, Coventry, CV2 2DX, UK
| | - Zaifeng Fan
- Warwick HRI, University of Warwick, Warwick, CV35 9EF, UK and, Department of Plant Pathology & State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 10094, China
| | - Yiguo Hong
- Warwick HRI, University of Warwick, Warwick, CV35 9EF, UK
| |
Collapse
|
46
|
Liu F, Zhao Q, Ruan X, He Y, Li H. Suppressor of RNA silencing encoded by Rice gall dwarf virus genome segment 11. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11434-008-0095-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Abstract
To counteract the immune system in parasitic hosts, some viruses encode proteins to suppress the RNA interference (RNAi) effect. In this report, we established two RNAi systems to be easily observed with strong and obvious effect. The function of the P19 of tomato bushy stunt virus, which suppresses RNAi in mammal cells, was then studied using these two systems. Short hairpin RNAs targeting green fluorescence protein (pshRNA-GFP) and firefly luciferase (pshRNA-luc) were designed and inserted into a eukaryotic transcriptional vector pTZU6+1, respectively. The shRNA expressing vectors were co-transfected with plasmids containing the target gene with or without P19. The GFP expression level was assayed by fluorescence microscopy, Western blotting and RT-PCR. The luciferase expression level was analyzed by the dual-luciferase assay system. pshRNA designed in this study down-regulated the target gene specifically and efficiently, with a decrease of expression of both genes of about 70%, respectively. When P19 was introduced into the RNAi systems, the expression of both GFP and the luciferase were mostly recovered compared with the control groups. The RNAi systems of GFP and luciferase were constructed successfully, demonstrating that P19 of tomato bushy stunt virus has the ability to counteract the RNAi effect induced by shRNA in mammal cells.
Collapse
|
48
|
Haasnoot J, de Vries W, Geutjes EJ, Prins M, de Haan P, Berkhout B. The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 2007; 3:e86. [PMID: 17590081 PMCID: PMC1894824 DOI: 10.1371/journal.ppat.0030086] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 05/10/2007] [Indexed: 12/30/2022] Open
Abstract
RNA silencing or interference (RNAi) is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is triggered by virus-specific double-stranded RNA molecules (dsRNAs) that are produced during infection. To overcome antiviral RNAi responses, many plant and insect viruses encode RNA silencing suppressors (RSSs) that enable them to replicate at higher titers. Recently, several human viruses were shown to encode RSSs, suggesting that RNAi also serves as an innate defence response in mammals. Here, we demonstrate that the Ebola virus VP35 protein is a suppressor of RNAi in mammalian cells and that its RSS activity is functionally equivalent to that of the HIV-1 Tat protein. We show that VP35 can replace HIV-1 Tat and thereby support the replication of a Tat-minus HIV-1 variant. The VP35 dsRNA-binding domain is required for this RSS activity. Vaccinia virus E3L protein and influenza A virus NS1 protein are also capable of replacing the HIV-1 Tat RSS function. These findings support the hypothesis that RNAi is part of the innate antiviral response in mammalian cells. Moreover, the results indicate that RSSs play a critical role in mammalian virus replication. Cells have evolved mechanisms to protect themselves from virus infection. A well-known antiviral mechanism in mammals is the interferon (IFN) response of the innate immune system. In plants, insects, and worms, RNA silencing or RNA interference (RNAi) is a strong antiviral defence mechanism. It is still debated whether RNAi is also used as an antiviral mechanism in mammals. Many mammalian viruses encode essential factors that suppress the innate antiviral responses of the host. Such innate immunity suppressor proteins, or IFN antagonists, have recently been reported to also suppress RNAi in mammalian cells. We now demonstrate that the Ebola virus VP35 protein, a known IFN antagonist, suppresses RNAi in human cells. In addition, VP35 restores the production of an HIV-1 variant with a defective RNAi suppressor Tat protein. These results indicate that RNAi is part of the innate antiviral defence response in mammals and that viruses need to counteract this response in order to replicate. Whereas RNAi and INF act in concert to prevent the infection of mammalian cells, the invading viruses encode a protein that counteracts both defence mechanisms.
Collapse
Affiliation(s)
- Joost Haasnoot
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center of Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Walter de Vries
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center of Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Ernst-Jan Geutjes
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center of Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Prins
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center of Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Csorba T, Bovi A, Dalmay T, Burgyán J. The p122 subunit of Tobacco Mosaic Virus replicase is a potent silencing suppressor and compromises both small interfering RNA- and microRNA-mediated pathways. J Virol 2007; 81:11768-80. [PMID: 17715232 PMCID: PMC2168790 DOI: 10.1128/jvi.01230-07] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
One of the functions of RNA silencing in plants is to defend against molecular parasites, such as viruses, retrotransposons, and transgenes. Plant viruses are inducers, as well as targets, of RNA silencing-based antiviral defense. Replication intermediates or folded viral RNAs activate RNA silencing, generating small interfering RNAs (siRNAs), which are the key players in the antiviral response. Viruses are able to counteract RNA silencing by expressing silencing-suppressor proteins. It has been shown that many of the identified silencing-suppressor proteins bind long double-stranded RNA or siRNAs and thereby prevent assembly of the silencing effector complexes. In this study, we show that the 122-kDa replicase subunit (p122) of crucifer-infecting Tobacco mosaic virus (cr-TMV) is a potent silencing-suppressor protein. We found that the p122 protein preferentially binds to double-stranded 21-nucleotide (nt) siRNA and microRNA (miRNA) intermediates with 2-nt 3' overhangs inhibiting the incorporation of siRNA and miRNA into silencing-related complexes (e.g., RNA-induced silencing complex [RISC]) both in vitro and in planta but cannot interfere with previously programmed RISCs. In addition, our results also suggest that the virus infection and/or sequestration of the siRNA and miRNA molecules by p122 enhances miRNA accumulation despite preventing its methylation. However, the p122 silencing suppressor does not prevent the methylation of certain miRNAs in hst-15 mutants, in which the nuclear export of miRNAs is compromised.
Collapse
Affiliation(s)
- Tibor Csorba
- Agricultural Biotechnology Center, Plant Biology Institute, H-2101 Gödöllo, Hungary
| | | | | | | |
Collapse
|
50
|
Abstract
Viruses are obligate, intracellular pathogens that must manipulate and exploit host molecular mechanisms to prosper in the hostile cellular environment. Here we review the strategies used by viruses to evade the immunity controlled by 21- to 26-nt small RNAs. Viral suppressors of RNA silencing (VSRs) are encoded by genetically diverse viruses infecting plants, invertebrates, and vertebrates. VSRs target key steps in the small RNA pathways by inhibiting small RNA production, sequestering small RNAs, or preventing short- and long-distance spread of RNA silencing. However, although VSRs are required for infection, explicit data demonstrating a role of silencing suppression in virus infection are available only for a few VSRs. A subset of VSRs bind double-stranded RNA, but a distinct protein fold is revealed for each of the four VSRs examined. We propose that VSR families are evolved independently as a viral adaptation to immunity. Unresolved issues on the role of RNA silencing in virus-host interactions are highlighted.
Collapse
Affiliation(s)
- Feng Li
- Graduate Program for Microbiology, University of California, Riverside, California 92521
| | - Shou-Wei Ding
- Graduate Program for Microbiology, University of California, Riverside, California 92521
- Department of Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521
| |
Collapse
|