1
|
Wu CC, Chen MS, Lee TY, Huang TS, Cho DY, Chen JY. Epstein-Barr Virus BRLF1 Induces PD-L1 Expression in Nasopharyngeal Carcinoma Cells. Viral Immunol 2024; 37:115-123. [PMID: 38498796 DOI: 10.1089/vim.2023.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a specific human malignancy with unique geographic distribution and genetic backgrounds. Although early treatment with radio-chemotherapy has been proven effective for NPC therapy, its therapeutic efficacy substantially diminishes in the late stages of this malignancy. In the tumor microenvironment of NPC, PD-L1 has been demonstrated as a critical factor in impairing T cell activation. As an etiological role for NPC development, it is found that Epstein-Barr virus (EBV) latent proteins upregulated PD-L1 expression. However, whether EBV lytic protein affects PD-L1 expression remains unclear. In this study, through monitoring the mRNA expression pattern of lytic genes and PD-L1 in EBV-positive NPC cell line NA, EBV immediately-early gene BRLF1(Rta) was found to have the potential for PD-L1 activation. Furthermore, we identified that Rta expression enhanced PD-L1 expression in mRNA and protein levels through quantitative real-time polymerase chain reaction and western blotting analysis. The luciferase reporter assay revealed that Rta expression enhanced PD-L1 promoter activity. We also demonstrated that Rta-induced PD-L1 expressions could impair interleukin 2 secretion of T cells, and this mechanism may be through ERK activation. These results displayed the importance of EBV Rta in PD-L1 expression in NPC and may give an alternative target for NPC therapy.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung City, Taiwan
| | - Mei-Shu Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Ting-Ying Lee
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung City, Taiwan
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Der-Yang Cho
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung City, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
2
|
Shareena G, Kumar D. Epigenetics of Epstein Barr virus - A review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166838. [PMID: 37544529 DOI: 10.1016/j.bbadis.2023.166838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Epstein Barr is the first-in-human oncogenic virus, closely related to numerous lymphoproliferative and malignant diseases, including HL, BL, NPC, and GC. EBV establishes life-long persistence infection portraying a biphasic viral life cycle: latent period and lytic replication. B-cells serve as critical regions for EBV latent genes, wherein viral gene expression is suppressed, promoting viral genome maintenance and immune recognition evasion. Upon its lytic reactivation, viral gene expression induces its replication, progeny production, and transmission. Dysregulations of epigenetic regulation in expressions of TSGs lead to carcinogenesis. Several studies reveal that EBV is associated with aberrant viral DNA and host genome methylation patterns, promoting immune monitoring, recognition evasiveness and host cell persistence. Among other epigenetic modifications, DNA methylation suppresses the majority of viral latent gene promoters, sparing a few, and acts as a prerequisite for activating EBV's lytic cycle, giving rise to viral progeny. It affects the host's epigenome via reprogramming cells to oncogenic, long-lasting phenotypes, as evident in several malignancies. At each phase of its life cycle, EBV exploits cellular mechanisms of epigenetic regulation, implying its unique host-pathogen relationship. This review summarized the DNA methylation's regulatory roles on several EBV-related promoter regions, along with the host genome in pathological conditions, highlights viral genes involved in a latent, lytic and latent-lytic phase of EBV infection. Moreover, it provides diagrammatic insights into methylation-based pathways in EBV.
Collapse
Affiliation(s)
- Gadde Shareena
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India; UC Davis Comprehensive Cancer Center, Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Santarelli R, Evangelista L, Pompili C, Lo Presti S, Rossi A, Arena A, Gaeta A, Gonnella R, Gilardini Montani MS, Cirone M. EBV infection of primary colonic epithelial cells causes inflammation, DDR and autophagy dysregulation, effects that may predispose to IBD and carcinogenesis. Virus Res 2023; 338:199236. [PMID: 37797746 PMCID: PMC10582763 DOI: 10.1016/j.virusres.2023.199236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
EBV is a gammaherpesvirus strongly associated to human cancer. The virus has been shown to play a role also in inflammatory diseases, including IBD, in the context of which colon cancer more frequently arise. In this study, we show for the first time that EBV infects primary colonic epithelial cells (HCoEpC), promotes pro-inflammatory cytokine secretion and activates molecular pathways bridging inflammation and cancer, such as ERK1/2. These effects, occurring in the course of the lytic phase of the viral life cycle, led to DDR and autophagy dysregulation. Such cellular responses, playing a key role in the maintenance of proteostasis and genome integrity, are essential to prevent carcinogenesis. Interestingly, we found that the use of the demethylating agent 5-AZA could counteract most of the effects induced by EBV infection in HCoEpC, suggesting that DNA hyper-methylation may strongly contribute to viral-driven inflammation and colon cancer predisposition.
Collapse
Affiliation(s)
- Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Lorenzo Evangelista
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Chiara Pompili
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Salvatore Lo Presti
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Alberto Rossi
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Andrea Arena
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Aurelia Gaeta
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Roberta Gonnella
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | | | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
4
|
Murata T. Tegument proteins of Epstein-Barr virus: Diverse functions, complex networks, and oncogenesis. Tumour Virus Res 2023; 15:200260. [PMID: 37169175 DOI: 10.1016/j.tvr.2023.200260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The tegument is the structure between the envelope and nucleocapsid of herpesvirus particles. Viral (and cellular) proteins accumulate to create the layers of the tegument. Some Epstein-Barr virus (EBV) tegument proteins are conserved widely in Herpesviridae, but others are shared only by members of the gamma-herpesvirus subfamily. As the interface to envelope and nucleocapsid, the tegument functions in virion morphogenesis and budding of the nucleocapsid during progeny production. When a virus particle enters a cell, enzymes such as kinase and deubiquitinase, and transcriptional activators are released from the virion to promote virus infection. Moreover, some EBV tegument proteins are involved in oncogenesis. Here, we summarize the roles of EBV tegument proteins, in comparison to those of other herpesviruses.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
5
|
Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: Current therapeutics and emerging technologies. Front Immunol 2022; 13:1059133. [PMID: 36389670 PMCID: PMC9647127 DOI: 10.3389/fimmu.2022.1059133] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
EBV is a prevalent virus, infecting >90% of the world's population. This is an oncogenic virus that causes ~200,000 cancer-related deaths annually. It is, in addition, a significant contributor to the burden of autoimmune diseases. Thus, EBV represents a significant public health burden. Upon infection, EBV remains dormant in host cells for long periods of time. However, the presence or episodic reactivation of the virus increases the risk of transforming healthy cells to malignant cells that routinely escape host immune surveillance or of producing pathogenic autoantibodies. Cancers caused by EBV display distinct molecular behaviors compared to those of the same tissue type that are not caused by EBV, presenting opportunities for targeted treatments. Despite some encouraging results from exploration of vaccines, antiviral agents and immune- and cell-based treatments, the efficacy and safety of most therapeutics remain unclear. Here, we provide an up-to-date review focusing on underlying immune and environmental mechanisms, current therapeutics and vaccines, animal models and emerging technologies to study EBV-associated diseases that may help provide insights for the development of novel effective treatments.
Collapse
Affiliation(s)
- Srishti Chakravorty
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette IN, United States
| |
Collapse
|
6
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
7
|
Expression of Rta in B Lymphocytes during Epstein-Barr Virus Latency. J Mol Biol 2020; 432:5227-5243. [PMID: 32710985 DOI: 10.1016/j.jmb.2020.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022]
Abstract
Rta of Epstein-Barr virus (EBV) is thought to be expressed only during the lytic cycle to promote the transcription of lytic genes. However, we found that Rta is expressed in EBV-infected B cells during viral latency, at levels detectable by immunoblot analysis. Latent Rta expression cannot be attributed to spontaneous lytic activation, as we observed that more than 90% of Akata, P3HR1, and 721 cells latently infected by EBV express Rta. We further found that Rta is sequestered in the nucleolus during EBV latency through its interaction with MCRS2, a nucleolar protein. When Rta is sequestered in the nucleolus, it no longer activates RNA polymerase II-driven transcription, thus explaining why Rta expression during latency does not transactivate EBV lytic genes. Additional experiments showed that Rta can bind to 18S rRNA and become incorporated into ribosomes, and a transient transfection experiment showed that Rta promotes translation from an mRNA reporter. These findings reveal that Rta has novel functions beyond transcriptional activation during EBV latency and may have interesting implications for the concept of EBV latency.
Collapse
|
8
|
Huang HH, Wang WH, Feng TH, Chang LK. Rta is an Epstein-Barr virus tegument protein that improves the stability of capsid protein BORF1. Biochem Biophys Res Commun 2020; 523:773-779. [PMID: 31948747 DOI: 10.1016/j.bbrc.2020.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/05/2020] [Indexed: 11/30/2022]
Abstract
Rta, a key transcription factor expressed by Epstein-Barr virus (EBV), primarily acts to induce activation of the EBV lytic cycle. Interestingly, we observed from an immunogold assay that Rta is also present on the EBV capsid in the host cell nucleus, and a centrifugation study further revealed that Rta cofractionates with EBV virions. Importantly, cofractionated Rta showed similar properties as the EBV tegument protein, BGLF4. Glutathione S-transferase (GST)-pulldown and coimmunoprecipitation assays subsequently demonstrated that Rta directly interacts with the EBV capsid protein, BORF1. Rta was observed to colocalize with BORF1 in the nucleus during EBV lytic induction, and this interaction appears to influence BORF1 stability. Moreover, we found that BORF1 is modified by ubiquitin, and Rta reduces this ubiquitination. These results indicate that Rta may act as an inner tegument protein to improve EBV capsid stability and critical to viral infection.
Collapse
Affiliation(s)
- Hsiang-Hung Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Hui Feng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Gao L, Han H, Wang H, Cao L, Feng WH. IL-10 knockdown with siRNA enhances the efficacy of Doxorubicin chemotherapy in EBV-positive tumors by inducing lytic cycle via PI3K/p38 MAPK/NF-kB pathway. Cancer Lett 2019; 462:12-22. [PMID: 31352079 DOI: 10.1016/j.canlet.2019.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
High levels of IL-10 expression in Epstein-Barr virus (EBV) associated tumors have been reported and it is likely to be important for maintaining EBV latency and EBV-associated tumors. The switch from the latent form of EBV to the lytic form in tumor cells can lead to tumor cell lysis. Here, we found that knockdown of IL-10 induced EBV lytic replication. Subsequently, we demonstrated that IL-10 knockdown activated BZLF1 promoter through PI3K-p38 MAPK-NF-κB signaling pathway. Interestingly, we verified that VEGF-A was required for IL-10 knockdown to activate PI3K signaling and the accompanying EBV lytic induction. Exogenous recombinant human VEGF-A induced PI3K activation and EBV lytic infection, and inhibition of VEGF-A signaling prevented the PI3K/AKT phosphorylation and EBV reactivation responded to IL-10 knockdown. Most importantly, IL-10 knockdown synergized with chemotherapeutic agent Doxorubicin to kill EBV associated tumor cells in vitro and repress EBV-positive tumor growth in vivo. Our results suggest that inhibition of IL-10 has the potential to serve as a new supplemental strategy for the treatment of EBV-associated tumors.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; China Academy of Medicine Sciences, Peking Union Medical College, Institute of Medicinal Plant Development, Beijing, 100193, China
| | - Haige Han
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Honglei Wang
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Cao
- China Academy of Medicine Sciences, Peking Union Medical College, Institute of Medicinal Plant Development, Beijing, 100193, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
EBV and KSHV Infection Dysregulates Autophagy to Optimize Viral Replication, Prevent Immune Recognition and Promote Tumorigenesis. Viruses 2018; 10:v10110599. [PMID: 30384495 PMCID: PMC6266050 DOI: 10.3390/v10110599] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic process strongly involved in the immune response, and its dysregulation contributes to the onset of several diseases including cancer. The human oncogenic gammaherpesviruses, Epstein—Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), manipulate autophagy, either during the de novo infection or during the lytic reactivation, in naturally latently-infected lymphoma cells. In particular, the gammaherpesvirus infection reduces autophagy in immune cells, such as monocytes, resulting in the impairment of cell survival and cell differentiation into dendritic cells (DCs), which are essential for initiating and regulating the immune response. In the case of EBV, the reduction of autophagy in these cells, leading to p62 accumulation, activated the p62-NRF2-antioxidant response, reducing ROS, and further inhibiting autophagy. KSHV inhibits autophagy in monocytes by de-phosphorylating JNK2, altering the calpains–calpastatin balance and increasing the calpain activity responsible for the cleavage of ATG5. To further impair the immune response, KSHV also inhibits autophagy in differentiated DCs by hyper-phosphorylating STAT3. Conversely, when the lytic cycle is induced in vitro in latently-infected lymphoma B cells, both EBV and KSHV promote autophagy to enhance their replication, although the final autophagic steps are blocked through the down-regulation of Rab7. This strategy allows viruses to avoid the destructive environment of lysosomes, and to exploit the autophagic machinery for intracellular transportation. EBV and KSHV encode for proteins that may either inhibit or promote autophagy and, in addition, they can modulate the cellular pathways that control this process. In this review we will discuss the findings that indicate that autophagy is dysregulated by gammaherpesvirus to promote immune suppression, facilitate viral replication and contribute to the onset and maintenance of gammaherpesvirus-associated malignancies.
Collapse
|
11
|
Lan YY, Chang FH, Tsai JH, Chang Y. Epstein-Barr virus Rta promotes invasion of bystander tumor cells through paracrine of matrix metalloproteinase 9. Biochem Biophys Res Commun 2018; 503:2160-2166. [PMID: 30082032 DOI: 10.1016/j.bbrc.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
Clinical studies suggest a positive association between malignant progression of nasopharyngeal carcinoma (NPC) and Rta, a transcription factor of Epstein-Barr virus (EBV). However, Rta induces cellular senescence in vitro. To provide an underlying mechanism integrating these clues, we adapted a concept of senescence-associated secretory phenotype (SASP), based on which senescent cells facilitate tumor progression through paracrine. First, Rta-expressing NPC cells themselves show reduced invasiveness but promote invasion of Rta-negative tumor cells through secreted factors. Secretion of matrix metalloproteinase 9 (MMP9), an SASP protein, is increased by Rta, which requires the C-terminus of Rta and Rta-induced activation of E2F. Furthermore, the Rta-induced, paracrine-mediated pro-invasive effect is blocked upon knockdown of MMP9 expression or treatment with an MMP9 inhibitor. This study not only indicates that Rta can contribute to NPC progression through paracrine but also supports that MMP9 is a potential therapeutic target to prevent NPC metastasis.
Collapse
Affiliation(s)
- Yu-Yan Lan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, 704, Taiwan
| | - Fang-Hsin Chang
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan, 701, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, 704, Taiwan
| | - Jen-Hao Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, 704, Taiwan
| | - Yao Chang
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan, 701, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, 704, Taiwan.
| |
Collapse
|
12
|
BGLF2 Increases Infectivity of Epstein-Barr Virus by Activating AP-1 upon De Novo Infection. mSphere 2018; 3:3/2/e00138-18. [PMID: 29695622 PMCID: PMC5917423 DOI: 10.1128/msphere.00138-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human gammaherpesvirus that causes infectious mononucleosis and several malignancies, such as endemic Burkitt lymphoma and nasopharyngeal carcinoma. Herpesviruses carry genes that can modify cell functions, including transcription and ubiquitination, thereby facilitating viral growth and survival in infected cells. Using a reporter screening system, we revealed the involvement of several EBV gene products in such processes. Of these, BGLF2 activated the AP-1 signaling pathway through phosphorylation of p38 and c-Jun N-terminal kinase (JNK). Knockout of the BGLF2 gene did not affect viral gene expression and viral genome DNA replication, but resulted in marked reduction of progeny titer. We also found that the BGLF2 disruption resulted in significant loss of infectivity upon de novo infection. Interestingly, expression of a binding partner, BKRF4, repressed the activation of AP-1 by BGLF2. These results shed light on the physiological role of the tegument protein BGLF2.IMPORTANCE Epstein-Barr virus (EBV), an oncogenic gammaherpesvirus, carries ~80 genes. While several genes have been investigated extensively, most lytic genes remain largely unexplored. Therefore, we cloned 71 EBV lytic genes into an expression vector and used reporter assays to screen for factors that activate signal transduction pathways, viral and cellular promoters. BGLF2 activated the AP-1 signaling pathway, likely by interacting with p38 and c-Jun N-terminal kinase (JNK), and increased infectivity of the virus. We also revealed that BKRF4 can negatively regulate AP-1 activity. Therefore, it is suggested that EBV exploits and modifies the AP-1 signaling pathway for its replication and survival.
Collapse
|
13
|
Chang TH, Wang SS, Chen LW, Shih YJ, Chang LK, Liu ST, Chang PJ. Regulation of the Abundance of Kaposi's Sarcoma-Associated Herpesvirus ORF50 Protein by Oncoprotein MDM2. PLoS Pathog 2016; 12:e1005918. [PMID: 27698494 PMCID: PMC5047794 DOI: 10.1371/journal.ppat.1005918] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/06/2016] [Indexed: 01/10/2023] Open
Abstract
The switch between latency and the lytic cycle of Kaposi's sarcoma-associated herpesvirus (KSHV) is controlled by the expression of virally encoded ORF50 protein. Thus far, the regulatory mechanism underlying the protein stability of ORF50 is unknown. Our earlier studies have demonstrated that a protein abundance regulatory signal (PARS) at the ORF50 C-terminal region modulates its protein abundance. The PARS region consists of PARS-I (aa 490-535) and PARS-II (aa 590-650), and mutations in either component result in abundant expression of ORF50. Here, we show that ORF50 protein is polyubiquitinated and its abundance is controlled through the proteasomal degradation pathway. The PARS-I motif mainly functions as a nuclear localization signal in the control of ORF50 abundance, whereas the PARS-II motif is required for the binding of ubiquitin enzymes in the nucleus. We find that human oncoprotein MDM2, an ubiquitin E3 ligase, is capable of interacting with ORF50 and promoting ORF50 degradation in cells. The interaction domains between both proteins are mapped to the PARS region of ORF50 and the N-terminal 220-aa region of MDM2. Additionally, we identify lysine residues at positions 152 and 154 in the N-terminal domain of ORF50 critically involved in MDM2-mediated downregulation of ORF50 levels. Within KSHV-infected cells, the levels of MDM2 were greatly reduced during viral lytic cycle and genetic knockdown of MDM2 in these cells favored the enhancement of ORF50 expression, supporting that MDM2 is a negative regulator of ORF50 expression. Collectively, the study elucidates the regulatory mechanism of ORF50 stability and implicates that MDM2 may have a significant role in the maintenance of viral latency by lowering basal level of ORF50.
Collapse
Affiliation(s)
- Tzu-Hsuan Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | - Lee-Wen Chen
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi, Taiwan
| | - Ying-Ju Shih
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Tung Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- * E-mail: (STL); (PJC)
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi, Taiwan
- * E-mail: (STL); (PJC)
| |
Collapse
|
14
|
Torres AA, Albarnaz JD, Bonjardim CA, Smith GL. Multiple Bcl-2 family immunomodulators from vaccinia virus regulate MAPK/AP-1 activation. J Gen Virol 2016; 97:2346-2351. [PMID: 27312213 PMCID: PMC5042131 DOI: 10.1099/jgv.0.000525] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccinia virus (VACV) is a poxvirus and encodes many proteins that modify the host cell metabolism or inhibit the host response to infection. For instance, it is known that VACV infection can activate the mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) pathway and inhibit activation of the pro-inflammatory transcription factor NF-κB. Since NF-κB and MAPK/AP-1 share common upstream activators we investigated whether six different VACV Bcl-2-like NF-κB inhibitors can also influence MAPK/AP-1 activation. Data presented show that proteins A52, B14 and K7 each contribute to AP-1 activation during VACV infection, and when expressed individually outwith infection. B14 induced the greatest stimulation of AP-1 and further investigation showed B14 activated mainly the MAPKs ERK (extracellular signal-regulated kinase) and JNK (Jun N-terminal kinase), and their substrate c-Jun (a component of AP-1). These data indicate that the same viral protein can have different effects on distinct signalling pathways, in blocking NF-κB activation whilst leading to MAPK/AP-1 activation.
Collapse
Affiliation(s)
- Alice A Torres
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil.,Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Cláudio A Bonjardim
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
15
|
Coutermarsh-Ott S, Eden K, Allen IC. Beyond the inflammasome: regulatory NOD-like receptor modulation of the host immune response following virus exposure. J Gen Virol 2016; 97:825-838. [PMID: 26763980 PMCID: PMC4854363 DOI: 10.1099/jgv.0.000401] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A complex interaction exists between elements of the host innate immune system and viral pathogens. It is essential that the host mount a robust immune response during viral infection and effectively resolve inflammation once the pathogen has been eliminated. Members of the nucleotide-binding domain leucine-rich repeat [NBD-LRR; known as NOD-like receptor (NLR)] family of cytosolic pattern-recognition receptors are essential components of these immunological processes and have diverse functions in the host antiviral immune response. NLRs can be subgrouped based on their general function. The inflammasome-forming subgroup of NLRs are the best-characterized family members, and several have been found to modulate the maturation of IL-1β and IL-18 following virus exposure. However, the members of the regulatory NLR subgroups are significantly less characterized. These NLRs uniquely function to modulate signalling pathways initiated by other families of pattern-recognition receptors, such as Toll-like receptors and/or Rig-I-like helicase receptors. Regulatory NLRs that augment pro-inflammatory pathways include nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2, which have been shown to form a multiprotein complex termed the NODosome that significantly modulates IFN and NF-κB signalling following viral infection. Conversely, a second subgroup of regulatory NLRs functions to negatively regulate inflammation. These inhibitory NLRs include NLRX1, NLRP12 and NLRC3, which have been shown to interact with TRAF molecules and various kinases to modulate diverse cellular processes. Targeting NLR signalling following infection with a virus represents a novel and promising therapeutic strategy. However, significant effort is still required to translate the current understanding of NLR biology into effective therapies.
Collapse
Affiliation(s)
| | | | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
16
|
Epstein-Barr Virus (EBV) Tegument Protein BGLF2 Promotes EBV Reactivation through Activation of the p38 Mitogen-Activated Protein Kinase. J Virol 2015; 90:1129-38. [PMID: 26559845 DOI: 10.1128/jvi.01410-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus associated with both B cell and epithelial cell malignancies. EBV infection of B cells triggers activation of several signaling pathways that are critical for cell survival, virus latency, and growth transformation. To identify EBV proteins important for regulating cell signaling, we used a proteomic approach to screen viral proteins for AP-1 and NF-κB promoter activity in AP-1- and NF-κB-luciferase reporter assays. We found that EBV BGLF2 activated AP-1 but not NF-κB reporter activity. Expression of EBV BGLF2 in cells activated p38 and c-Jun N-terminal kinase (JNK), both of which are important for mitogen-activated protein kinase (MAPK) signaling. Deletion of the carboxyl-terminal 66 amino acids of BGLF2 reduced the ability of BGLF2 to activate JNK and p38. Expression of BGLF2 enhanced BZLF1 expression in latently EBV-infected lymphoblastoid cell lines, and knockdown of BGLF2 reduced EBV reactivation induced by IgG cross-linking. Expression of BGLF2 induced BZLF1 expression and virus production in EBV-infected gastric carcinoma cells. BGLF2 enhanced BZLF1 expression and EBV production by activating p38; chemical inhibition of p38 and MAPK/ERK kinases 1 and 2 (MEK1/2) reduced expression of BZLF1 and virus production induced by BGLF2. In summary, the EBV tegument protein BGLF2, which is delivered to the cell at the onset of virus infection, activates the AP-1 pathway and enhances EBV reactivation and virus production. IMPORTANCE Epstein-Barr virus (EBV) is associated with both B cell and epithelial cell malignancies, and the virus activates multiple signaling pathways important for its persistence in latently infected cells. We identified a viral tegument protein, BGLF2, which activates members of the mitogen-activated protein kinase signaling pathway. Expression of BGLF2 increased expression of EBV BZLF1, which activates a switch from latent to lytic virus infection, and increased production of EBV. Inhibition of BGFL2 expression or inhibition of p38/MAPK, which is activated by BGLF2, reduced virus reactivation from latency. These results indicate that a viral tegument protein which is delivered to cells upon infection activates signaling pathways to enhance virus production and facilitate virus reactivation from latency.
Collapse
|
17
|
Yang YC, Feng TH, Chen TY, Huang HH, Hung CC, Liu ST, Chang LK. RanBPM regulates Zta-mediated transcriptional activity in Epstein–Barr virus. J Gen Virol 2015; 96:2336-2348. [DOI: 10.1099/vir.0.000157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tzu-Hui Feng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tse-Yao Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Hsiang-Hung Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Chen-Chia Hung
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| |
Collapse
|
18
|
Hung CC, Kuo CW, Wang WH, Chang TH, Chang PJ, Chang LK, Liu ST. Transcriptional activation of Epstein-Barr virus BRLF1 by USF1 and Rta. J Gen Virol 2015; 96:2855-2866. [PMID: 26297580 DOI: 10.1099/jgv.0.000230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During its lytic cycle, Epstein-Barr virus (EBV) expresses Rta, a factor encoded by BRLF1 that activates the transcription of viral lytic genes. We found that upstream stimulating factor (USF) binds to E1, one of the five E boxes located at - 79 in the BRLF1 promoter (Rp), to activate BRLF1 transcription. Furthermore, Rta was shown to interact with USF1 in coimmunoprecipitation and glutathione S-transferase (GST)-pulldown assays, and confocal laser-scanning microscopy further confirmed that these two proteins colocalize in the nucleus. Rta was also found to bind with the E1 sequence in a biotin-labelled E1 probe, but only in the presence of USF1, suggesting that these two proteins likely form a complex on E1. We subsequently constructed p188mSZ, a reporter plasmid that contained the sequence from - 188 to +5 in Rp, within which the Sp1 site and Zta response element were mutated. In EBV-negative Akata cells cotransfected with p188mSZ and plasmids expressing USF1 and Rta, synergistic activation of Rp transcription was observed. However, after mutating the E1 sequence in p188mSZ, USF1 and Rta were no longer able to transactivate Rp, indicating that Rta autoregulates BRLF1 transcription via its interaction with USF1 on E1. This study showed that pUSF1 transfection after EBV lytic induction in P3HR1 cells increases Rta expression, indicating that USF1 activates Rta expression after the virus enters the lytic cycle. Together, these results reveal a novel mechanism by which USF interacts with Rta to promote viral lytic development, and provide additional insight into the viral-host interactions of EBV.
Collapse
Affiliation(s)
- Chen-Chia Hung
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Chung-Wen Kuo
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Wen-Hung Wang
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Tzu-Hsuan Chang
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC.,Department of Medical Research, Chang-Gung Memorial Hospital Chiayi Branch, Chiayi 61363, Taiwan, ROC
| |
Collapse
|
19
|
Hung CH, Chen LW, Wang WH, Chang PJ, Chiu YF, Hung CC, Lin YJ, Liou JY, Tsai WJ, Hung CL, Liu ST. Regulation of autophagic activation by Rta of Epstein-Barr virus via the extracellular signal-regulated kinase pathway. J Virol 2014; 88:12133-45. [PMID: 25122800 PMCID: PMC4178756 DOI: 10.1128/jvi.02033-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/04/2014] [Indexed: 12/14/2022] Open
Abstract
Autophagy is an intracellular degradation pathway that provides a host defense mechanism against intracellular pathogens. However, many viruses exploit this mechanism to promote their replication. This study shows that lytic induction of Epstein-Barr virus (EBV) increases the membrane-bound form of LC3 (LC3-II) and LC3-containing punctate structures in EBV-positive cells. Transfecting 293T cells with a plasmid that expresses Rta also induces autophagy, revealing that Rta is responsible for autophagic activation. The activation involves Atg5, a key component of autophagy, but not the mTOR pathway. The expression of Rta also activates the transcription of the genes that participate in the formation of autophagosomes, including LC3A, LC3B, and ATG9B genes, as well as those that are involved in the regulation of autophagy, including the genes TNF, IRGM, and TRAIL. Additionally, treatment with U0126 inhibits the Rta-induced autophagy and the expression of autophagy genes, indicating that the autophagic activation is caused by the activation of extracellular signal-regulated kinase (ERK) signaling by Rta. Finally, the inhibition of autophagic activity by an autophagy inhibitor, 3-methyladenine, or Atg5 small interfering RNA, reduces the expression of EBV lytic proteins and the production of viral particles, revealing that autophagy is critical to EBV lytic progression. This investigation reveals how an EBV-encoded transcription factor promotes autophagy to affect viral lytic development.
Collapse
Affiliation(s)
- Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Lee-Wen Chen
- Department of Respiratory Care, Chung-Gung University of Science and Technology, Chiayi, Taiwan
| | - Wen-Hung Wang
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Ya-Fang Chiu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chen-Chia Hung
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ying-Ju Lin
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Jieh-Yuan Liou
- Department of Medical Research, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | - Wan-Ju Tsai
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Chia-Ling Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
20
|
Adamson AL, Le BT, Siedenburg BD. Inhibition of mTORC1 inhibits lytic replication of Epstein-Barr virus in a cell-type specific manner. Virol J 2014; 11:110. [PMID: 24917448 PMCID: PMC4059732 DOI: 10.1186/1743-422x-11-110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/05/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Epstein-Barr virus is a human herpesvirus that infects a majority of the human population. Primary infection of Epstein-Barr virus (EBV) causes the syndrome infectious mononucleosis. This virus is also associated with several cancers, including Burkitt's lymphoma, post-transplant lymphoproliferative disorder and nasopharyngeal carcinoma. As all herpesvirus family members, EBV initially replicates lytically to produce abundant virus particles, then enters a latent state to remain within the host indefinitely. METHODS Through a genetic screen in Drosophila, we determined that reduction of Drosophila Tor activity altered EBV immediate-early protein function. To further investigate this finding, we inhibited mTOR in EBV-positive cells and investigated subsequent changes to lytic replication via Western blotting, flow cytometry, and quantitative PCR. The student T-test was used to evaluate significance. RESULTS mTOR, the human homolog of Drosophila Tor, is an important protein at the center of a major signaling pathway that controls many aspects of cell biology. As the EBV immediate-early genes are responsible for EBV lytic replication, we examined the effect of inhibition of mTORC1 on EBV lytic replication in human EBV-positive cell lines. We determined that treatment of cells with rapamycin, which is an inhibitor of mTORC1 activity, led to a reduction in the ability of B cell lines to undergo lytic replication. In contrast, EBV-positive epithelial cell lines underwent higher levels of lytic replication when treated with rapamycin. CONCLUSIONS Overall, the responses of EBV-positive cell lines vary when treated with mTOR inhibitors, and this may be important when considering such inhibitors as anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Amy L Adamson
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA.
| | | | | |
Collapse
|
21
|
MCAF1 and Rta-activated BZLF1 transcription in Epstein-Barr virus. PLoS One 2014; 9:e90698. [PMID: 24598729 PMCID: PMC3944714 DOI: 10.1371/journal.pone.0090698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/03/2014] [Indexed: 01/25/2023] Open
Abstract
Epstein-Barr virus (EBV) expresses two transcription factors, Rta and Zta, which are involved in the transcriptional activation of EBV lytic genes. This study sought to elucidate the mechanism by which Rta activates transcription of the Zta-encoding gene, BZLF1, through the ZII element in the gene promoter. In a DNA affinity precipitation assay, ATF2 was found to associate with an Rta-interacting protein, MCAF1, at the ZII element. The interaction between Rta, MCAF1, and ATF2 at the same site in the ZII region was further verified in vivo by chromatin immunoprecipitation assay. The complex appears to be crucial for the activation of BZLF1 transcription, as the overexpression of two ATF2-dominant negative mutants, or the introduction of MCAF1 siRNA into 293T cells, were both found to substantially reduce Rta-mediated transcription levels of BZLF1. Moreover, this study also found that the Rta-MCAF1-ATF2 complex binds to a typical AP-1 binding sequence on the promoter of BMRF2, a key viral gene for EBV infection. Mutation of this sequence decreased Rta-mediated promoter activity significantly. Taken together, these results indicate a critical role for MCAF1 in AP-1-dependent Rta activation of BZLF1 transcription.
Collapse
|
22
|
Epstein-Barr virus utilizes Ikaros in regulating its latent-lytic switch in B cells. J Virol 2014; 88:4811-27. [PMID: 24522918 DOI: 10.1128/jvi.03706-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Ikaros is a zinc finger DNA-binding protein that regulates chromatin remodeling and the expression of genes involved in the cell cycle, apoptosis, and Notch signaling. It is a master regulator of lymphocyte differentiation and functions as a tumor suppressor in acute lymphoblastic leukemia. Nevertheless, no previous reports described effects of Ikaros on the life cycle of any human lymphotropic virus. Here, we demonstrate that full-length Ikaros (IK-1) functions as a major factor in the maintenance of viral latency in Epstein-Barr virus (EBV)-positive Burkitt's lymphoma Sal and MutuI cell lines. Either silencing of Ikaros expression by small hairpin RNA (shRNA) knockdown or ectopic expression of a non-DNA-binding isoform induced lytic gene expression. These effects synergized with other lytic inducers of EBV, including transforming growth factor β (TGF-β) and the hypoxia mimic desferrioxamine. Data from chromatin immunoprecipitation (ChIP)-quantitative PCR (qPCR) and ChIP-sequencing (ChIP-seq) analyses indicated that Ikaros did not bind to either of the EBV immediate early genes BZLF1 and BRLF1. Rather, Ikaros affected the expression of Oct-2 and Bcl-6, other transcription factors that directly inhibit EBV reactivation and plasma cell differentiation, respectively. IK-1 also complexed with the EBV immediate early R protein in coimmunoprecipitation assays and partially colocalized with R within cells. The presence of R alleviated IK-1-mediated transcriptional repression, with IK-1 then cooperating with Z and R to enhance lytic gene expression. Thus, we conclude that Ikaros plays distinct roles at different stages of EBV's life cycle: it contributes to maintaining latency via indirect mechanisms, and it may also synergize with Z and R to enhance lytic replication through direct association with R and/or R-induced alterations in Ikaros' functional activities via cellular signaling pathways. IMPORTANCE This is the first report showing that the cellular protein Ikaros, a known master regulator of hematopoiesis and critical tumor suppressor in acute lymphoblastic leukemia, also plays important roles in the life cycle of Epstein-Barr virus in B cells.
Collapse
|
23
|
Davies RG, Wagstaff KM, McLaughlin EA, Loveland KL, Jans DA. The BRCA1-binding protein BRAP2 can act as a cytoplasmic retention factor for nuclear and nuclear envelope-localizing testicular proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3436-3444. [DOI: 10.1016/j.bbamcr.2013.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 01/07/2023]
|
24
|
Karlson TDL, Kong YY, Hardy CL, Xiang SD, Plebanski M. The signalling imprints of nanoparticle uptake by bone marrow derived dendritic cells. Methods 2013; 60:275-83. [PMID: 23459257 DOI: 10.1016/j.ymeth.2013.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022] Open
Abstract
Nanoparticles (NP) possess remarkable adjuvant and carrier capacity, therefore are used in the development of various vaccine formulations. Our previous studies demonstrated that inert non-toxic 40-50 nm polystyrene NP (PS-NP) can promote strong CD8 T cell and antibody responses to the antigen, in the absence of observable inflammatory responses. Furthermore, instillation of PS-NP inhibited the development of allergic airway inflammation by induction of an immunological imprint via modulation of dendritic cell (DC) function without inducing oxidative stress in the lungs in mice. This is in contrast to many studies which show that a variety of ambient and man-made NP promote lung immunopathology, raising concerns generally about the safe use of NPs in biomedicine. Most NPs are capable of inducing inflammatory pathways in DC largely mediated by signalling via the extracellular signal-regulated kinase 1/2 (ERK). Herein, we investigate whether PS-NPs also activate ERK in DC in vitro. Our data show that PS-NP do not induce ERK activation in two different types of bone marrow derived (BM) DC cultures (expanded with GM-CSF or with GM-CSF together with IL-4). The absence of such signalling was not due to lack of PS-NP uptake by BM-DC as confirmed by confocal microscopy and flow cytometry. The process of NP uptake by DC usually initiates ERK signalling, suggesting an unusual uptake pathway may be engaged by PS-NPs. Indeed, data herein showns that uptake of PS-NP by BM-DC was substantially inhibited by phorbol myristate acetate (PMA) but not cytochalasin D (CCD), suggesting an uptake pathway utilising caveole for PS-NP. Together these data show that BM-DC take up PS-NP via a caveole-dependent pathway which does not trigger ERK signalling which may explain their efficient uptake by DC, without the concomitant activation of conventional inflammatory pathways.
Collapse
Affiliation(s)
- Tanya De L Karlson
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3004, Australia.
| | | | | | | | | |
Collapse
|
25
|
Yang YC, Chang LK. Role of TAF4 in transcriptional activation by Rta of Epstein-Barr Virus. PLoS One 2013; 8:e54075. [PMID: 23326574 PMCID: PMC3542328 DOI: 10.1371/journal.pone.0054075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/06/2012] [Indexed: 11/23/2022] Open
Abstract
Epstein-Barr virus (EBV) expresses an immediate-early protein, Rta, to activate the transcription of EBV lytic genes. This protein usually binds to Rta-response elements or interacts with Sp1 or Zta via a mediator protein, MCAF1, to activate transcription. Rta is also known to interact with TBP and TFIIB to activate transcription. This study finds that Rta interacts with TAF4, a component of TFIID complex, in vitro and in vivo, and on the TATA sequence in the BcLF1 promoter. Rta also interacts with TAF4 and Sp1 on Sp1-binding sequences on TATA-less promoters, including those of BNLF1, BALF5, and the human androgen receptor. These interactions are important to the transcriptional activation of these genes by Rta since introducing TAF4 shRNA substantially reduces the ability of Rta to activate these promoters. This investigation reveals how Rta interacts with TFIID to stimulate transcription.
Collapse
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Characterization and intracellular trafficking of Epstein-Barr virus BBLF1, a protein involved in virion maturation. J Virol 2012; 86:9647-55. [PMID: 22740416 DOI: 10.1128/jvi.01126-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) BBLF1 shares 13 to 15% amino acid sequence identities with the herpes simplex virus 1 UL11 and cytomegalovirus UL99 tegument proteins, which are involved in the final envelopment during viral maturation. This study demonstrates that BBLF1 is a myristoylated and palmitoylated protein, as are UL11 and UL99. Myristoylation of BBLF1 both facilitates its membrane anchoring and stabilizes it. BBLF1 is shown to localize to the trans-Golgi network (TGN) along with gp350/220, a site where final envelopment of EBV particles takes place. The localization of BBLF1 at the TGN requires myristoylation and two acidic clusters, which interact with PACS-1, a cytosolic protein, to mediate retrograde transport from the endosomes to the TGN. Knockdown of the expression of BBLF1 during EBV lytic replication reduces the production of virus particles, demonstrating the requirement of BBLF1 to achieve optimal production of virus particles. BBLF1 is hypothesized to facilitate the budding of tegumented capsid into glycoprotein-embedded membrane during viral maturation.
Collapse
|
27
|
Abstract
The Epstein-Barr virus (EBV) lytic transactivator Rta activates promoters through direct binding to cognate DNA sites termed Rta response elements (RREs). Rta also activates promoters that apparently lack Rta binding sites, notably Zp and Rp. Chromatin immunoprecipitation (ChIP) of endogenous Rta expressed during early replication in B95-8 cells was performed to identify Rta binding sites in the EBV genome. Quantitative PCR (qPCR) analysis showed strong enrichment for known RREs but little or no enrichment for Rp or Zp, suggesting that the Rta ChIP approach enriches for direct Rta binding sites. Rta ChIP combined with deep sequencing (ChIP-seq) identified most known RREs and several novel Rta binding sites. Rta ChIP-seq peaks were frequently upstream of Rta-responsive genes, indicating that these Rta binding sites are likely functioning as RREs. Unexpectedly, the BALF5 promoter contained an Rta binding peak. To assess whether BALF5 might be activated by an RRE-dependent mechanism, an Rta mutant (Rta K156A), deficient for DNA binding and RRE activation but competent for Zp/Rp activation, was used. Rta K156A failed to activate BALF5p, suggesting this promoter can be activated by an RRE-dependent mechanism. Rta binding to late gene promoters was not seen at early time points but was specifically detected at later times within the Rta-responsive BLRF2 and BFRF3 promoters, even when DNA replication was inhibited. Our results represent the first characterization of Rta binding to the EBV genome during replication, identify previously unknown RREs, such as one in BALF5p, and highlight the complexity of EBV late gene promoter activation by Rta.
Collapse
|
28
|
Huang SY, Hsieh MJ, Chen CY, Chen YJ, Chen JY, Chen MR, Tsai CH, Lin SF, Hsu TY. Epstein-Barr virus Rta-mediated transactivation of p21 and 14-3-3σ arrests cells at the G1/S transition by reducing cyclin E/CDK2 activity. J Gen Virol 2011; 93:139-149. [PMID: 21918011 DOI: 10.1099/vir.0.034405-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many herpesviral immediate-early proteins promote their robust lytic phase replications by hijacking the cell cycle machinery. Previously, lytic replication of Epstein-Barr virus (EBV) was found to be concurrent with host cell cycle arrest. In this study, we showed that ectopic expression of EBV immediate-early protein Rta in HEp-2 cells resulted in increased G1/S population, hypophosphorylation of pRb and decreased incorporation of 5-bromo-2'-deoxyuridine. In addition, EBV Rta transcriptionally upregulates the expressions of p21 and 14-3-3σ in HEp-2 cells, 293 cells and nasopharyngeal carcinoma TW01 cells. Although p21 and 14-3-3σ are known targets for p53, Rta-mediated p21 and 14-3-3σ transactivation can be detected in the absence of p53. In addition, results from luciferase reporter assays indicated that direct binding of Rta to either promoter sequences is not required for activation. On the other hand, a special class of Sp1-responsive elements was involved in Rta-mediated transcriptional activation on both promoters. Finally, Rta-induced p21 expression diminished the activity of CDK2/cyclin E complex, and, Rta-induced 14-3-3σ expression sequestered CDK1 and CDK2 in the cytoplasm. Based on these results, we hypothesize that through the disruption of CDK1 and CDK2 activities, EBV Rta might contribute to cell cycle arrest in EBV-infected epithelial cells during viral reactivation.
Collapse
Affiliation(s)
- Sheng-Yen Huang
- Institute of Biotechnology, Department of Life Sciences, National Tsing Hua University, Hsinchu 300, Taiwan, ROC.,National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC.,Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC.,Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Hsinchu 300, Taiwan, ROC
| | - Min-Jie Hsieh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chu-Ying Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yen-Ju Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC.,Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Hsinchu 300, Taiwan, ROC.,Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Mei-Ru Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Tsuey-Ying Hsu
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| |
Collapse
|
29
|
Tung CP, Chang FR, Wu YC, Chuang DW, Hunyadi A, Liu ST. Inhibition of the Epstein–Barr virus lytic cycle by protoapigenone. J Gen Virol 2011; 92:1760-1768. [DOI: 10.1099/vir.0.031609-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epstein–Barr virus (EBV) expresses two transcription factors, Rta and Zta, during the immediate–early stage of the lytic cycle to activate the transcription of early and late genes. This study finds that 0.31 mM protoapigenone from Thelypteris torresiana (Gaud.) inhibits the expression of EBV lytic proteins, including Rta, Zta, EA-D and VCA, in P3HR1 cells after lytic induction with 12-O-tetradecanoylphorbol-13-acetate and sodium butyrate. The lack of expression of EBV lytic proteins after protoapigenone treatment is attributed to the inhibition of the transactivation function of Zta because protoapigenone reduces the transactivation activity of Zta and Gal4–Zta, which contains the transactivation domain of Zta fused with Gal4. In contrast, protoapigenone does not affect the ability of Rta to activate a promoter that contains an Rta-response element, showing that the inhibition is unrelated to Rta. Furthermore, in a lactate dehydrogenase assay, protoapigenone is not toxic to P3HR1 cells at the concentrations that inhibit the function of Zta, showing that protoapigenone is valuable for studying the function of Zta and preventing EBV lytic proliferation.
Collapse
Affiliation(s)
- Chao-Ping Tung
- Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan 333, Taiwan, ROC
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, ROC
| | - Da-Wei Chuang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, ROC
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, Eotvos str. 6, H-6720 Szeged, Hungary
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, ROC
| | - Shih-Tung Liu
- Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan 333, Taiwan, ROC
| |
Collapse
|
30
|
Cellular transcription factor Oct-1 interacts with the Epstein-Barr virus BRLF1 protein to promote disruption of viral latency. J Virol 2011; 85:8940-53. [PMID: 21697476 DOI: 10.1128/jvi.00569-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Epstein-Barr virus (EBV) latent-to-lytic switch is an essential part of the viral life cycle, but the cellular factors that promote viral reactivation are not well defined. In this report, we demonstrate that the cellular transcription factor Oct-1 cooperates with the EBV immediate-early protein BRLF1 (R, Rta) to induce lytic viral reactivation. We show that cotransfected Oct-1 enhances the ability of BRLF1 to activate lytic gene expression in 293 cells stably infected with a BRLF1-defective EBV mutant (BRLF1-stop) and that Oct-1 increases BRLF1-mediated activation of lytic EBV promoters in reporter gene assays. We find that Oct-1 interacts directly with BRLF1 in vitro and that a mutant BRLF1 protein (the M140A mutant) attenuated for the ability to interact with Oct-1 in vitro is also resistant to Oct-1-mediated transcriptional enhancement in 293 BRLF1-stop cells. Furthermore, we show that cotransfected Oct-1 augments BRLF1 binding to a variety of lytic EBV promoters in chromatin immunoprecipitation (ChIP) assays (including the BZLF1, BMRF1, and SM promoters) and that BRLF1 tethers Oct-1 to lytic EBV promoters. In addition, we demonstrate that an Oct-1 mutant defective in DNA binding (the S335D mutant) still retains the ability to enhance BRLF1 transcriptional effects. Finally, we show that knockdown of endogenous Oct-1 expression reduces the level of constitutive lytic EBV gene expression in both EBV-positive B-cell and EBV-positive epithelial cell lines. These results suggest that Oct-1 acts as a positive regulator of EBV lytic gene expression and that this effect is at least partially mediated through its interaction with the viral protein BRLF1.
Collapse
|
31
|
Kuo CW, Wang WH, Liu ST. Mapping signals that are important for nuclear and nucleolar localization in MCRS2. Mol Cells 2011; 31:547-52. [PMID: 21533551 PMCID: PMC3887618 DOI: 10.1007/s10059-011-1033-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 11/27/2022] Open
Abstract
MCRS2 is an oncoprotein that is sequestered in the nucleolus. When in the nucleolus, it promotes the transcription of the rRNA gene. MCRS2 also brings proteins into the nucleolus to change their function. This study analyzes the sequence of MCRS2 and determines that the nuclear localization signal, which has the sequence KRKK, is situated between amino acids 66 and 69. Meanwhile, MCRS2 contains a bipartite nucleolar localization signal, which comprises a KKSK motif, located between amino acids 133 and 136, and a downstream 152-amino acid region, from amino acid 314 to 465. The results of this study are important to understand the function of MCRS2.
Collapse
Affiliation(s)
| | | | - Shih-Tung Liu
- Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| |
Collapse
|
32
|
Traylen CM, Patel HR, Fondaw W, Mahatme S, Williams JF, Walker LR, Dyson OF, Arce S, Akula SM. Virus reactivation: a panoramic view in human infections. Future Virol 2011; 6:451-463. [PMID: 21799704 DOI: 10.2217/fvl.11.21] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viruses are obligate intracellular parasites, relying to a major extent on the host cell for replication. An active replication of the viral genome results in a lytic infection characterized by the release of new progeny virus particles, often upon the lysis of the host cell. Another mode of virus infection is the latent phase, where the virus is 'quiescent' (a state in which the virus is not replicating). A combination of these stages, where virus replication involves stages of both silent and productive infection without rapidly killing or even producing excessive damage to the host cells, falls under the umbrella of a persistent infection. Reactivation is the process by which a latent virus switches to a lytic phase of replication. Reactivation may be provoked by a combination of external and/or internal cellular stimuli. Understanding this mechanism is essential in developing future therapeutic agents against viral infection and subsequent disease. This article examines the published literature and current knowledge regarding the viral and cellular proteins that may play a role in viral reactivation. The focus of the article is on those viruses known to cause latent infections, which include herpes simplex virus, varicella zoster virus, Epstein-Barr virus, human cytomegalovirus, human herpesvirus 6, human herpesvirus 7, Kaposi's sarcoma-associated herpesvirus, JC virus, BK virus, parvovirus and adenovirus.
Collapse
Affiliation(s)
- Christopher M Traylen
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The capsids of herpesviruses, which comprise major and minor capsid proteins, have a common icosahedral structure with 162 capsomers. An electron microscopic study shows that Epstein-Barr virus (EBV) capsids in the nucleus are immunolabeled by anti-BDLF1 and anti-BORF1 antibodies, indicating that BDLF1 and BORF1 are the minor capsid proteins of EBV. Cross-linking and electrophoresis studies of purified BDLF1 and BORF1 revealed that these two proteins form a triplex that is similar to that formed by the minor capsid proteins, VP19C and VP23, of herpes simplex virus type 1 (HSV-1). Although the interaction between VP23, a homolog of BDLF1, and the major capsid protein VP5 could not be verified biochemically in earlier studies, the interaction between BDLF1 and the EBV major capsid protein, viral capsid antigen (VCA), can be confirmed by glutathione S-transferase (GST) pulldown assay and coimmunoprecipitation. Additionally, in HSV-1, VP5 interacts with only the middle region of VP19C; in EBV, VCA interacts with both the N-terminal and middle regions of BORF1, a homolog of VP19C, revealing that the proteins in the EBV triplex interact with the major capsid protein differently from those in HSV-1. A GST pulldown study also identifies the oligomerization domains in VCA and the dimerization domain in BDLF1. The results presented herein reveal how the EBV capsid proteins interact and thereby improve our understanding of the capsid structure of the virus.
Collapse
|
34
|
Cellular immediate-early gene expression occurs kinetically upstream of Epstein-Barr virus bzlf1 and brlf1 following cross-linking of the B cell antigen receptor in the Akata Burkitt lymphoma cell line. J Virol 2010; 84:12405-18. [PMID: 20861250 DOI: 10.1128/jvi.01415-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Epstein-Barr virus (EBV) lytic activator genes bzlf1 and brlf1 are conventionally referred to as immediate-early (IE) genes. However, previous studies showed that the earliest expression of these genes was blocked by cycloheximide when the EBV lytic cycle was induced by histone deacetylase (HDAC) inhibitors and protein kinase C agonists. Anti-IgG activates a complex signal transduction pathway that leads to EBV lytic activation in the Akata cell line. Here we demonstrate that in Akata cells, where lytic cycle activation occurs very rapidly after anti-IgG treatment, de novo protein synthesis is also required for induction of bzlf1 and brlf1 expression. New protein synthesis is required up to 1.25 h after application of anti-IgG; bzlf1 and brlf1 mRNAs can be detected 1.5 h after anti-IgG. Five cellular IE genes were shown to be expressed by 1 h after addition of anti-IgG, and their expression preceded that of bzlf1 and brlf1. These include early growth response genes (egr1, egr2, and egr3) and nuclear orphan receptors (nr4a1 and nr4a3). These genes were activated by anti-IgG treatment of Akata cells with and without the EBV genome; therefore, their expression was not dependent on expression of any EBV gene product. EGR1, EGR2, and EGR3 proteins were kinetically upstream of ZEBRA and Rta proteins. Expression of EGR1, ZEBRA, and Rta proteins were inhibited by bisindolylmaleimide X, a selective inhibitor of PKC. The findings suggest a revised model in which the signal transduction cascade activated by cross-linking of the B cell receptor induces expression of cellular IE genes, such as early growth response and nuclear orphan receptor genes, whose products, in turn, regulate bzlf1 and brlf1 expression.
Collapse
|
35
|
Epstein-Barr virus LF2 protein regulates viral replication by altering Rta subcellular localization. J Virol 2010; 84:9920-31. [PMID: 20631124 DOI: 10.1128/jvi.00573-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The switch from Epstein-Barr virus (EBV) latent infection to lytic replication is governed by two viral transactivators, Zta and Rta. We previously reported that the EBV protein LF2 binds Rta, inhibits Rta promoter activation, and blocks EBV replication in cells. In addition, LF2 induces SUMO2/3 modification of Rta. We now show that this modification occurs at four lysines within the Rta activation domain (426, 446, 517, and 530) and that sumoylation of Rta is not essential for its repression. Coexpression studies demonstrated that Rta is sequestered to the extranuclear cytoskeleton in the presence of LF2. We mapped the LF2 binding site to Rta amino acids (aa) 476 to 519 and showed that LF2 binding is critical for Rta relocalization and repression. The core of this binding site, Rta aa 500 to 526, confers LF2-mediated relocalization and repression onto the artificial transcription factor GAL4-VP16. Mutational analysis of LF2 provided further evidence that Rta redistribution is essential for repression. Rta localization changes during replication of the LF2-positive P3HR1 genome, but not during replication of the LF2-negative B95-8 genome. BLRF2 protein expression was decreased and delayed in P3HR1 cells compared with B95-8 cells, consistent with reduced Rta activity. By contrast, BMRF1 expression, regulated primarily by Zta, did not differ significantly between the two cell lines. Our results support a model in which LF2 regulates EBV replication by binding to Rta and redistributing it out of the nucleus.
Collapse
|