1
|
Liu XB, Yu GW, Gao XY, Huang JL, Qin LT, Ni HB, Lyu C. Intranasal delivery of plasmids expressing bovine herpesvirus 1 gB/gC/gD proteins by polyethyleneimine magnetic beads activates long-term immune responses in mice. Virol J 2021; 18:60. [PMID: 33743745 PMCID: PMC7981393 DOI: 10.1186/s12985-021-01536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background DNA vaccine is one of the research hotspots in veterinary vaccine development. Several advantages, such as cost-effectiveness, ease of design and production, good biocompatibility of plasmid DNA, attractive biosafety, and DNA stability, are found in DNA vaccines. Methods In this study, the plasmids expressing bovine herpesvirus 1 (BoHV-1) gB, gC, and gD proteins were mixed at the same mass ratio and adsorbed polyethyleneimine (PEI) magnetic beads with a diameter of 50 nm. Further, the plasmid and PEI magnetic bead polymers were packaged into double carboxyl polyethylene glycol (PEG) 600 to use as a DNA vaccine. The prepared DNA vaccine was employed to vaccinate mice via the intranasal route. The immune responses were evaluated in mice after vaccination. Results The expression of viral proteins could be largely detected in the lung and rarely in the spleen of mice subjected to a vaccination. The examination of biochemical indicators, anal temperature, and histology indicated that the DNA vaccine was safe in vivo. However, short-time toxicity was observed. The total antibody detected with ELISA in vaccinated mice showed a higher level than PBS, DNA, PEI + DNA, and PBS groups. The antibody level was significantly elevated at the 15th week and started to decrease since the 17th week. The neutralizing antibody titer was significantly higher in DNA vaccine than naked DNA vaccinated animals. The total IgA level was much greater in the DNA vaccine group compared to other component vaccinated groups. The examination of cellular cytokines and the percentage of CD4/CD8 indicated that the prepared DNA vaccine induced a strong cellular immunity. Conclusion The mixed application of plasmids expressing BoHV-1 gB/gC/gD proteins by nano-carrier through intranasal route could effectively activate long-term humoral, cellular, and mucosal immune responses at high levels in mice. These data indicate PEI magnetic beads combining with PEG600 are an efficient vector for plasmid DNA to deliver intranasally as a DNA vaccine candidate. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01536-w.
Collapse
Affiliation(s)
- Xing-Bo Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Guo-Wei Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Xin-Yu Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Jin-Long Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Li-Ting Qin
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, China.,Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao, 266100, China
| | - Hong-Bo Ni
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China. .,College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| | - Chuang Lyu
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, China. .,Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao, 266100, China.
| |
Collapse
|
2
|
Langellotti CA, Gammella M, Soria I, Bellusci C, Quattrocchi V, Vermeulen M, Mongini C, Zamorano PI. An Improved DNA Vaccine Against Bovine Herpesvirus-1 Using CD40L and a Chemical Adjuvant Induces Specific Cytotoxicity in Mice. Viral Immunol 2020; 34:68-78. [PMID: 33146595 DOI: 10.1089/vim.2020.0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bovine herpesvirus-1 (BoHV-1) uses many mechanisms to elude the immune system; one of them is spreading intracellularly, even in the presence of specific antiviral antibodies. Cytotoxic T lymphocytes (CTLs) are necessary to eliminate the virus. The main preventive strategy is vaccination based on inactivated virus. These vaccines are poor inducers of cellular immune responses, and complicate serological diagnosis and determination of the real prevalence of infection. DNA vaccines are a good option because of the capacity of Differentiating Infected from Vaccinated Animals-(DIVA vaccine)-and may be the best way to induce cytotoxic responses. Although this type of vaccines leads to only weak "in vivo" expression and poor immune responses, incorporation of molecular and/or chemical adjuvants can improve the latter, both in magnitude and in direction. In this study, we have investigated the specific immune responses elicited in mice by DNA vaccines based on the BoHV-1 glycoprotein D (pCIgD) with and without two different adjuvants: a plasmid encoding for murine CD40L (pCD40L) or Montanide™ 1113101PR (101). Mice vaccinated with pCIgD+CD40L, pCIgD+101, and pCIgD+CD40L+101 developed significantly higher specific antibody titers against BoHV-1 than the pCIgD group (p < 0.01). The animals vaccinated with pCgD+pCD40L+101 raised significantly higher levels of IgG2a and IgG2b (p < 0.01 and p < 0.001, respectively) than mice vaccinated with pCIgD alone. On the contrary, when the activity of CTL against cells infected with BoHV-1 was measured, the vaccine pCgD+pCD40L+101 induced significantly higher levels of cytotoxicity activity (p < 0.001) than pCIgD alone. A significant increase in the CD4+ populations in the group receiving pCIgD+CD40L+101 in comparison with the pCIgD group was observed and, also, interferon gamma, interleukin (IL)-6, and IL-17A levels were higher. Considering the results obtained from this study for humoral and cellular responses in mice, the inclusion of pCD40L and 101 as adjuvants in a BoHV-1 DNA vaccine for cattle is highly recommendable.
Collapse
Affiliation(s)
| | - Mariela Gammella
- Instituto de Virología-IVIT (INTA-CONICET), Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología-IVIT (INTA-CONICET), Buenos Aires, Argentina
| | - Carolina Bellusci
- Universidad Nacional de Rio Negro, Sede Atlántica, Viedma, Río Negro, Argentina
| | | | - Monica Vermeulen
- Laboratorio de células presentadoras de antígeno y respuesta inflamatoria. Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Claudia Mongini
- Instituto de Virología-IVIT (INTA-CONICET), Buenos Aires, Argentina
| | - Patricia I Zamorano
- Cátedra de Inmunología Aplicada, Universidad del Salvador, Buenos Aires, Argentina
| |
Collapse
|
3
|
Kornuta CA, Bidart JE, Soria I, Gammella M, Quattrocchi V, Pappalardo JS, Salmaso S, Torchilin VP, Cheuquepán Valenzuela F, Hecker YP, Moore DP, Zamorano PI, Langellotti CA. MANα1-2MAN decorated liposomes enhance the immunogenicity induced by a DNA vaccine against BoHV-1. Transbound Emerg Dis 2020; 68:587-597. [PMID: 32643286 DOI: 10.1111/tbed.13718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/13/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022]
Abstract
New technologies in the field of vaccinology arise as a necessity for the treatment and control of many diseases. Whole virus inactivated vaccines and modified live virus ones used against Bovine Herpesvirus-1 (BoHV-1) infection have several disadvantages. Previous works on DNA vaccines against BoHV-1 have demonstrated the capability to induce humoral and cellular immune responses. Nevertheless, 'naked' DNA induces low immunogenic response. Thus, loading of antigen encoding DNA sequences in liposomal formulations targeting dendritic cell receptors could be a promising strategy to better activate these antigen-presenting cells (APC). In this work, a DNA-based vaccine encoding the truncated version of BoHV-1 glycoprotein D (pCIgD) was evaluated alone and encapsulated in a liposomal formulation containing LPS and decorated with MANα1-2MAN-PEG-DOPE (pCIgD-Man-L). The vaccinations were performed in mice and bovines. The results showed that the use of pCIgD-Man-L enhanced the immune response in both animal models. For humoral immunity, significant differences were achieved when total antibody titres and isotypes were assayed in sera. Regarding cellular immunity, a significant increase in the proliferative response against BoHV-1 was detected in animals vaccinated with pCIgD-Man-L when compared to the response induced in animals vaccinated with pCIgD. In addition, upregulation of CD40 molecules on the surface of bovine dendritic cells (DCs) was observed when cells were stimulated and activated with the vaccine formulations. When viral challenge was performed, bovines vaccinated with MANα1-2MAN-PEG-DOPE elicited better protection which was evidenced by a lower viral excretion. These results demonstrate that the dendritic cell targeting using MANα1-2MAN decorated liposomes can boost the immunogenicity resulting in a long-lasting immunity. Liposomes decorated with MANα1-2MAN-PEG-DOPE were tested for the first time as a DNA vaccine nanovehicle in cattle as a preventive treatment against BoHV-1. These results open new perspectives for the design of vaccines for the control of bovine rhinotracheitis.
Collapse
Affiliation(s)
- Claudia A Kornuta
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan E Bidart
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Mariela Gammella
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Juan S Pappalardo
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA-CONICET), Río Negro, Argentina
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, Universita degli Studi di Padova, Padova PD, Italy
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Felipe Cheuquepán Valenzuela
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,EEA Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Buenos Aires, Argentina
| | - Yanina P Hecker
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,EEA Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Buenos Aires, Argentina
| | - Dadin P Moore
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Balcarce, Argentina
| | - Patricia I Zamorano
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Universidad del Salvador, Buenos Aires, Argentina
| | - Cecilia A Langellotti
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
4
|
Jones C. Bovine Herpesvirus 1 Counteracts Immune Responses and Immune-Surveillance to Enhance Pathogenesis and Virus Transmission. Front Immunol 2019; 10:1008. [PMID: 31134079 PMCID: PMC6514135 DOI: 10.3389/fimmu.2019.01008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Infection of cattle by bovine herpesvirus 1 (BoHV-1) can culminate in upper respiratory tract disorders, conjunctivitis, or genital disorders. Infection also consistently leads to transient immune-suppression. BoHV-1 is the number one infectious agent in cattle that is associated with abortions in cattle. BoHV-1, as other α-herpesvirinae subfamily members, establishes latency in sensory neurons. Stressful stimuli, mimicked by the synthetic corticosteroid dexamethasone, consistently induce reactivation from latency in latently infected calves and rabbits. Increased corticosteroid levels due to stress have a two-pronged effect on reactivation from latency by: (1) directly stimulating viral gene expression and replication, and (2) impairing antiviral immune responses, thus enhancing virus spread and transmission. BoHV-1 encodes several proteins, bICP0, bICP27, gG, UL49.5, and VP8, which interfere with key antiviral innate immune responses in the absence of other viral genes. Furthermore, the ability of BoHV-1 to infect lymphocytes and induce apoptosis, in particular CD4+ T cells, has negative impacts on immune responses during acute infection. BoHV-1 induced immune-suppression can initiate the poly-microbial disorder known as bovine respiratory disease complex, which costs the US cattle industry more than one billion dollars annually. Furthermore, interfering with antiviral responses may promote viral spread to ovaries and the developing fetus, thus enhancing reproductive issues associated with BoHV-1 infection of cows or pregnant cows. The focus of this review is to describe the known mechanisms, direct and indirect, by which BoHV-1 interferes with antiviral immune responses during the course of infection.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
5
|
Osman RA, Griebel PJ. CD335 (NKp46) + T-Cell Recruitment to the Bovine Upper Respiratory Tract during a Primary Bovine Herpesvirus-1 Infection. Front Immunol 2017; 8:1393. [PMID: 29114252 PMCID: PMC5660870 DOI: 10.3389/fimmu.2017.01393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/09/2017] [Indexed: 01/30/2023] Open
Abstract
Bovine natural killer (NK) cells were originally defined by the NK activation receptor CD335 [natural killer cell p46-related protein (NKp46)], but following the discovery of NKp46 expression on human T-cells, the definition of conventional bovine NK cells was modified to CD335+CD3− cells. Recently, a bovine T-cell population co-expressing CD335 was identified and these non-conventional T-cells were shown to produce interferon (IFN)-γ and share functional properties with both conventional NK cells and T-cells. It is not known, however, if CD335+ bovine T-cells are recruited to mucosal surfaces and what chemokines play a role in recruiting this unique T-cell subpopulation. In this study, bovine herpesvirus-1 (BHV-1), which is closely related to herpes simplex virus-1, was used to investigate bovine lymphocyte cell populations recruited to the upper respiratory tract following a primary respiratory infection. Immunohistochemical staining with individual monoclonal antibodies revealed significant (P < 0.05) recruitment of CD335+, CD3+, and CD8+ lymphocyte populations to the nasal turbinates on day 5 following primary BHV-1 infection. Dual-color immunofluorescence revealed that cells recruited to nasal turbinates were primarily T-cells that co-expressed both CD335 and CD8. This non-conventional T-cell population represented 77.5% of CD355+ cells and 89.5% of CD8+ cells recruited to nasal turbinates on day 5 post-BHV-1 infection. However, due to diffuse IFN-γ staining of nasal turbinate tissue, it was not possible to directly link increased IFN-γ production following BHV-1 infection with the recruitment of non-conventional T-cells. Transcriptional analysis revealed CCL4, CCL5, and CXCL9 gene expression was significantly (P < 0.05) upregulated in nasal turbinate tissue following BHV-1 infection. Therefore, no single chemokine was associated with recruitment of non-conventional T-cells. In conclusion, the specific recruitment of CD335+ and CD8+ non-conventional T-cells to viral-infected tissue suggests that these cells may play an important role in either the clearance of a primary BHV-1 infection or regulating host responses during viral infection. The early recruitment of non-conventional T-cells following a primary viral infection may enable the host to recognize viral-infected cells through NKp46 while retaining the possibility of establishing T-cell immune memory.
Collapse
Affiliation(s)
- Rahwa A Osman
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.,Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-Intervac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Philip John Griebel
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.,Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-Intervac), University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Hart J, MacHugh ND, Sheldrake T, Nielsen M, Morrison WI. Identification of immediate early gene products of bovine herpes virus 1 (BHV-1) as dominant antigens recognized by CD8 T cells in immune cattle. J Gen Virol 2017; 98:1843-1854. [PMID: 28671533 DOI: 10.1099/jgv.0.000823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In common with other herpes viruses, bovine herpes virus 1 (BHV-1) induces strong virus-specific CD8 T-cell responses. However, there is a paucity of information on the antigenic specificity of the responding T-cells. The development of a system to generate virus-specific CD8 T-cell lines from BHV-1-immune cattle, employing Theileria-transformed cell lines for antigen presentation, has enabled us to address this issue. Use of this system allowed the study to screen for CD8 T-cell antigens that are efficiently presented on the surface of virus-infected cells. Screening of a panel of 16 candidate viral gene products with CD8 T-cell lines from 3 BHV-1-immune cattle of defined MHC genotypes identified 4 antigens, including 3 immediate early (IE) gene products (ICP4, ICP22 and Circ) and a tegument protein (UL49). Identification of the MHC restriction specificities revealed that the antigens were presented by two or three class I MHC alleles in each animal. Six CD8 T-cell epitopes were identified in the three IE proteins by screening of synthetic peptides. Use of an algorithm (NetMHCpan) that predicts the peptide-binding characteristics of restricting MHC alleles confirmed and, in some cases refined, the identity of the epitopes. Analyses of the epitope specificity of the CD8 T-cell lines showed that a large component of the response is directed against these IE epitopes. The results indicate that these IE gene products are dominant targets of the CD8 T-cell response in BHV-I-immune cattle and hence are prime-candidate antigens for the generation of a subunit vaccine.
Collapse
Affiliation(s)
- Jane Hart
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Niall D MacHugh
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Tara Sheldrake
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Morten Nielsen
- Department of Bio and Health Informatics, Centre for Biological Science Sequence Analysis, The Technical University, Lyngby, Denmark
| | - W Ivan Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK.,Biotechnological Research Institute, National University of San Martin, San Martin, Buenos Aires, Argentina
| |
Collapse
|
7
|
Di Giacomo S, Quattrocchi V, Zamorano P. Use of Adjuvants to Enhance the Immune Response Induced by a DNA Vaccine Against Bovine Herpesvirus-1. Viral Immunol 2015; 28:343-6. [PMID: 26133047 DOI: 10.1089/vim.2014.0113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the induction of humoral and cellular immune response by a DNA vaccine based on the bovine herpesvirus-1 (BoHV-1) glycoprotein D with commercial adjuvants (SEPPIC), in the murine model and in a preliminary assay in cattle, in order to select vaccines candidates that can improve cellular response. A DNA vaccine with most of the adjuvants used in this study was able to elicit a gD and viral-specific humoral immune response in vaccinated mice. Nevertheless, only a DNA vaccine with Montanide GEL 01 PR and Montanide Essai 903110 induced viral-specific proliferation and the highest levels of IFN-γ secretion. Since a cellular response is important to deal with BoHV-1 infection, both adjuvants were tested in a small trial using bovines to corroborate improvement of a cellular response in the natural host. It was observed that a DNA vaccine with Montanide Essai 903110 induced the highest BoHV-1 specific IFN-γ production in cattle. So, this adjuvant is proposed as a suitable candidate to be tested in a BoHV-1 DNA vaccine for protection against viral challenge in bovines.
Collapse
Affiliation(s)
| | | | - Patricia Zamorano
- 1 Instituto de Virología , INTA, Hurlingham, Argentina .,2 CONICET , Buenos Aires, Argentina .,3 Universidad del Salvador Buenos Aires , Argentina
| |
Collapse
|
8
|
Vaccines and Vaccination. THE ROLE OF BIOTECHNOLOGY IN IMPROVEMENT OF LIVESTOCK 2015. [PMCID: PMC7122016 DOI: 10.1007/978-3-662-46789-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Livestock vaccines aim to increase livestock product and improve the health and welfare of livestock animals in a cost-efficient manner and prevent disease transmission. Successful livestock vaccines have been generated for pathogens including bacterial, viral, protozoan, and multicellular pathogens. These livestock vaccines have a significant effect on animal health and products and on human health through growing safe food procurement and preventing zoonotic diseases. There are successful production of biotechnological-based animal vaccines licensed for use that include virus-like particle vaccines, gene-deleted marker vaccines, subunit vaccines, DIVA vaccines, and DNA vaccines.
Collapse
|
9
|
Inclusion of the bovine neutrophil beta-defensin 3 with glycoprotein D of bovine herpesvirus 1 in a DNA vaccine modulates immune responses of mice and cattle. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:463-77. [PMID: 24451331 DOI: 10.1128/cvi.00696-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) causes recurrent respiratory and genital infections in cattle and predisposes them to lethal secondary infections. While modified live and killed BoHV-1 vaccines exist, these are not without problems. Development of an effective DNA vaccine for BoHV-1 has the potential to address these issues. As a strategy to enhance DNA vaccine immunity, a plasmid encoding the bovine neutrophil beta-defensin 3 (BNBD3) as a fusion with truncated glycoprotein D (tgD) and a mix of two plasmids encoding BNBD3 and tgD were tested in mice and cattle. In mice, coadministration of BNBD3 on the separate plasmid enhanced the tgD-induced gamma interferon (IFN-γ) response but not the antibody response. BNBD3 fused to tgD did not affect the antibody levels or the number of IFN-γ-secreting cells but increased the induction of tgD-specific cytotoxic T lymphocytes (CTLs). In cattle, the addition of BNBD3 as a fusion construct also modified the immune response. While the IgG and virus-neutralizing antibody levels were not affected, the number of IFN-γ-secreting cells was increased after BoHV-1 challenge, specifically the CD8(+) IFN-γ(+) T cells, including CD8(+) IFN-γ(+) CD25(+) CTLs. While reduced virus shedding, rectal temperature, and weight loss were observed, the level of protection was comparable to that observed in pMASIA-tgD-vaccinated animals. These data show that coadministration of BNBD3 with a protective antigen as a fusion in a DNA vaccine strengthened the Th1 bias and increased cell-mediated immune responses but did not enhance protection from BoHV-1 infection.
Collapse
|
10
|
Abstract
Bovine herpesvirus 1 (BHV-1) infection is widespread and causes a variety of diseases. Although similar in many respects to the human immune response to human herpesvirus 1, the differences in the bovine virus proteins, immune system components and strategies, physiology, and lifestyle mean the bovine immune response to BHV-1 is unique. The innate immune system initially responds to infection, and primes a balanced adaptive immune response. Cell-mediated immunity, including cytotoxic T lymphocyte killing of infected cells, is critical to recovery from infection. Humoral immunity, including neutralizing antibody and antibody-dependent cell-mediated cytotoxicity, is important to prevention or control of (re-)infection. BHV-1 immune evasion strategies include suppression of major histocompatibility complex presentation of viral antigen, helper T-cell killing, and latency. Immune suppression caused by the virus potentiates secondary infections and contributes to the costly bovine respiratory disease complex. Vaccination against BHV-1 is widely practiced. The many vaccines reported include replicating and non-replicating, conventional and genetically engineered, as well as marker and non-marker preparations. Current development focuses on delivery of major BHV-1 glycoproteins to elicit a balanced, protective immune response, while excluding serologic markers and virulence or other undesirable factors. In North America, vaccines are used to prevent or reduce clinical signs, whereas in some European Union countries marker vaccines have been employed in the eradication of BHV-1 disease.
Collapse
|
11
|
van Drunen Littel-van den Hurk S. Cell-mediated immune responses induced by BHV-1: rational vaccine design. Expert Rev Vaccines 2014; 6:369-80. [PMID: 17542752 DOI: 10.1586/14760584.6.3.369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bovine herpesvirus-1 (BHV-1) is one of the major respiratory pathogens in cattle worldwide. Although antibodies have been correlated with protection and recovery from BHV-1 infection, the cell-mediated immune response is also a critical defense mechanism because cell-to-cell spread occurs before hematogenous spread. Furthermore, induction of robust T-cell memory is critical for the long-term duration of immunity. Among current commercial vaccines, the attenuated conventional vaccines induce a balanced immune response and long-term memory but may result in viral shedding. By contrast, inactivated vaccines primarily elicit a humoral immune response and relative short-term memory. These vaccines do not allow differentiation of vaccinated from infected cattle. Recent efforts are focusing on the development of vaccines that induce a balanced immune response and long-term memory, as well as having differentiation markers. This includes well-defined genetically engineered gene-deleted, subunit and vectored vaccines.
Collapse
|
12
|
Theileria annulata-transformed cell lines are efficient antigen-presenting cells for in vitro analysis of CD8 T cell responses to bovine herpesvirus-1. Vet Res 2011; 42:119. [PMID: 22182243 PMCID: PMC3284437 DOI: 10.1186/1297-9716-42-119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/19/2011] [Indexed: 02/06/2023] Open
Abstract
Continuously growing cell lines infected with the protozoan parasite Theileria annulata can readily be established by in vitro infection of leukocytes with the sporozoite stage of the parasite. The aim of the current study was to determine whether such transformed cell lines could be used as antigen presenting cells to analyse the antigenic specificity of bovine CD8 T cell responses to viral infections. Bovine herpes virus 1 (BHV-1), which is known to induce CD8 T cell responses, was used as a model. T. annulata- transformed cells were shown to express high levels of CD40 and CD80 and were susceptible to infection with BHV-1, vaccinia and canarypox viruses. The capacity of the cells to generate antigen-specific CD8 T cell lines was initially validated using a recombinant canarypox virus expressing a defined immunodominant T. parva antigen (Tp1). Autologous T. annulata-transformed cells infected with BHV-1 were then used successfully to generate specific CD8 T cell lines and clones from memory T cell populations of BHV-1-immune animals. These lines were BHV-1-specific and class I MHC-restricted. In contrast to previous studies, which reported recognition of the glycoproteins gB and gD, the CD8 T cell lines generated in this study did not recognise these glycoproteins. Given the ease with which T. annulata-transformed cell lines can be established and maintained in vitro and their susceptibility to infection with poxvirus vectors, these cell lines offer a convenient and efficient in vitro system to analyse the fine specificity of virus-specific CD8 T cell responses in cattle.
Collapse
|
13
|
Mackenzie-Dyck S, Attah-Poku S, Juillard V, Babiuk LA, van Drunen Littel-van den Hurk S. The synthetic peptides bovine enteric β-defensin (EBD), bovine neutrophil β-defensin (BNBD) 9 and BNBD 3 are chemotactic for immature bovine dendritic cells. Vet Immunol Immunopathol 2011; 143:87-107. [PMID: 21764462 DOI: 10.1016/j.vetimm.2011.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/11/2011] [Accepted: 06/17/2011] [Indexed: 11/17/2022]
Abstract
Human and murine immature DCs (iDCs) are highly efficient in antigen capture and processing, while as mature cells they present antigen and are potent initiators of cell-mediated immune responses. Consequently, iDCs are logical targets for vaccine antigens. Originally discovered for their antimicrobial activity, and thought of as strictly part of the innate immune system, studies with defensins such as human β (beta)-defensin 2 (hBD2) and murine β-defensin 2 (mBD2) have shown that they can function as chemo-attractant for iDCs and, in vaccination strategies, can enhance antigen-specific adaptive immune responses. Most studies to date have been conducted in mice. In contrast, little is known about defensins in cattle. To expand our understanding of the role of defensins in modulating immune responses in cattle, DCs were generated from bovine monocytes and the immature state of these bovine DCs was characterized phenotypically and through functional assays. By day 3 (DC3), bovine monocyte-derived DCs stained positively for DC-specific receptors CD1, CD80/86, CD205, DC-Lamp and MMR. When compared to conventional 6-day DC cultures or DCs cultured for 10 days with and without maturation factors, these DC3 were functionally at their most immature stage. Fourteen of the 16 known bovine β-defensins were synthesized and the synthetic peptides were screened for their ability to attract bovine iDCs. Bovine DC3 were consistently attracted to BNBD3, an analog of BNBD3 (aBNBD3), BNBD9 and bovine EBD in vitro and to aBNBD3 in vivo. These results are the first to describe chemotactic ability of synthetic bovine β-defensins for immature bovine monocyte-derived DCs.
Collapse
Affiliation(s)
- Sarah Mackenzie-Dyck
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
14
|
Langellotti C, Pappalardo J, Quattrocchi V, Mongini C, Zamorano P. Induction of specific cytotoxic activity for bovine herpesvirus-1 by DNA immunization with different adjuvants. Antiviral Res 2011; 90:134-42. [DOI: 10.1016/j.antiviral.2011.03.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/10/2011] [Accepted: 03/22/2011] [Indexed: 11/28/2022]
|
15
|
Reinbold JB, Coetzee JF, Hollis LC, Nickell JS, Riegel CM, Christopher JA, Ganta RR. Comparison of iatrogenic transmission of Anaplasma marginale in Holstein steers via needle and needle-free injection techniques. Am J Vet Res 2010; 71:1178-88. [PMID: 20919904 DOI: 10.2460/ajvr.71.10.1178] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare iatrogenic transmission of Anaplasma marginale during sham vaccination between needle and needle-free injection techniques. ANIMALS 26 Holstein steers confirmed negative for anaplasmosis by use of a competitive ELISA (cELISA) and an A marginale-specific reverse transcription (RT)-PCR assay. PROCEDURES An isolate of A marginale was propagated to a circulating parasitemia of 2.0% in a splenectomized steer. Sham vaccination was performed in the left cervical muscles of the splenectomized parasitemic steer with a hypodermic needle fitted to a multiple-dose syringe. The same needle and syringe were used to sham vaccinate a naïve steer. This 2-step procedure was repeated until 10 naïve steers (group ND) were injected. Similarly, sham vaccination of the left cervical muscles of the splenectomized parasitemic steer and another group of 10 naïve steers (group NF) was performed by use of a needle-free injection system. Five control steers were not injected. Disease status was evaluated twice weekly for 61 days by use of light microscopy, a cELISA, and an A marginale-specific RT-PCR assay. RESULTS Iatrogenic transmission was detected in 6 of 10 steers in group ND. Disease status did not change in the NF or control steers. Sensitivity of light microscopy, cELISA, and RT-PCR assay was 100% on days 41, 41, and 20 after sham vaccination, respectively; however, only cELISA and RT-PCR assay sustained a sensitivity of 100% thereafter. CONCLUSIONS AND CLINICAL RELEVANCE Needle-free injection was superior to needle injection for the control of iatrogenic transmission of A marginale.
Collapse
Affiliation(s)
- James B Reinbold
- Department of Diagnostic Medicine/Pathobiology, Kansas State University Manhattan, KS 66502, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Jones C, Chowdhury S. Bovine herpesvirus type 1 (BHV-1) is an important cofactor in the bovine respiratory disease complex. Vet Clin North Am Food Anim Pract 2010; 26:303-21. [PMID: 20619186 DOI: 10.1016/j.cvfa.2010.04.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BHV-1 is an important pathogen of cattle. Because of its ability to induce immune suppression, BHV-1 is an important agent in the multifactorial disorder, bovine respiratory disease complex (BRDC). BHV-1 encodes several proteins that inhibit various arms of the immune system suggesting that these proteins are important in the development of BRDC.
Collapse
Affiliation(s)
- Clinton Jones
- School of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Lincoln, NE 68583-0905, USA.
| | | |
Collapse
|
17
|
Detection of Anaplasma marginale and A. phagocytophilum in bovine peripheral blood samples by duplex real-time reverse transcriptase PCR assay. J Clin Microbiol 2010; 48:2424-32. [PMID: 20463162 DOI: 10.1128/jcm.02405-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insufficient diagnostic sensitivity and specificity coupled with the potential for cross-reactivity among closely related Anaplasma species has made the accurate determination of infection status problematic. A method for the development of simplex and duplex real-time quantitative reverse transcriptase PCR (qRT-PCR) assays for the detection of A. marginale and A. phagocytophilum 16S rRNA in plasma-free bovine peripheral blood samples is described. The duplex assay was able to detect as few as 100 copies of 16S rRNA of both A. marginale and A. phagocytophilum in the same reaction. The ratio of 16S rRNA to 16S DNA copies for A. marginale was determined to be 117.9:1 (95% confidence interval [95% CI], 100.7:1, 135.2:1). Therefore, the detection limit is the minimum infective unit of one A. marginale bacterium. The duplex assay detected nonequivalent molar ratios as high as 100-fold. Additionally, the duplex assay and a competitive enzyme-linked immunosorbent assay (cELISA) were used to screen 237 samples collected from herds in which anaplasmosis was endemic. When the cELISA was evaluated by the results of the qRT-PCR, its sensitivity and specificity for the detection of A. marginale infection were found to be 65.2% (95% CI, 55.3%, 75.1%) and 97.3% (95% CI, 94.7%, 99.9%), respectively. A. phagocytophilum infection was not detected in the samples analyzed. One- and two-way receiver operator characteristic curves were constructed in order to recommend the optimum negative cutoff value for the cELISA. Percentages of inhibition of 20 and 15.3% were recommended for the one- and two-way curves, respectively. In conclusion, the duplex real-time qRT-PCR assay is a highly sensitive and specific diagnostic tool for the accurate and precise detection of A. marginale and A. phagocytophilum infections in cattle.
Collapse
|
18
|
Hu XD, Chen ST, Li JY, Yu DH, Yi-zhang, Cai H. An IL-15 adjuvant enhances the efficacy of a combined DNA vaccine against Brucella by increasing the CD8+ cytotoxic T cell response. Vaccine 2010; 28:2408-15. [DOI: 10.1016/j.vaccine.2009.12.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/18/2009] [Accepted: 12/27/2009] [Indexed: 10/20/2022]
|
19
|
Xue T, Xue XP, Huang QS, Wei L, Sun K, Xue T. Monoclonal antibodies against human aspartyl (asparaginyl) beta-hydroxylase developed by DNA immunization. Hybridoma (Larchmt) 2009; 28:251-7. [PMID: 19663697 DOI: 10.1089/hyb.2009.0017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We newly cloned the gene encoding the human aspartyl (asparaginyl) beta-hydroxylase (HAAH) from the surgical tissue of a patient with hepatocellular carcinoma. This study was designed to generate HAAH-specific monoclonal antibody (MAb) for further exploration of its structure and function. Mice were co-immunized with naked plasmid DNA containing N-terminal domain of encoding HAAH gene and recombinant HAAH polypeptide. Hybridomas were developed by the electrofusion of the splenocytes from mice immunized with plasmid DNA to Sp2/0 myeloma cells in vitro. Three hybridoma cell lines (designated G3, G9, and F11, respectively) stably secreting HAAH-specific MAbs were obtained. The specificity and sensitivity of MAbs were assessed by indirect enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Results showed that the three MAbs belong to IgG1 kappa isotype, the titer of MAbs reached was 5 x 10(4) - 1 x 10(5), and the affinity constant (k(aff)) of MAbs ranged between 2.5 x 10(8) - 1.1 x 10(9). MAb G3 was preliminarily applied to detection expression of HAAH for seven tumor tissues, including hepatocellular carcinoma, lung cancer, kidney cancer, cholangiocarcinoma, prostate cancer, breast cancer, and glioblastoma by immunohistochemical stain. Our studies demonstrated that co-immunization of naked DNA containing encoding gene of target antigen and recombinant target protein, and combined with in vitro electrofusion, is an effective and simple method to raise MAbs.
Collapse
Affiliation(s)
- Tao Xue
- Department of Otorhinolaryngology, Head and Neck Surgery, Xijing Hospital, The Fourth Military Medical University, Road, Xi'an, China
| | | | | | | | | | | |
Collapse
|
20
|
Goubier A, Fuhrmann L, Forest L, Cachet N, Evrad-Blanchard M, Juillard V, Fischer L. Superiority of needle-free transdermal plasmid delivery for the induction of antigen-specific IFNγ T cell responses in the dog. Vaccine 2008; 26:2186-90. [DOI: 10.1016/j.vaccine.2008.01.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 12/28/2022]
|
21
|
A review of the biology of bovine herpesvirus type 1 (BHV-1), its role as a cofactor in the bovine respiratory disease complex and development of improved vaccines. Anim Health Res Rev 2008; 8:187-205. [PMID: 18218160 DOI: 10.1017/s146625230700134x] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infection of cattle by bovine herpesvirus type 1 (BHV-1) can lead to upper respiratory tract disorders, conjunctivitis, genital disorders and immune suppression. BHV-1-induced immune suppression initiates bovine respiratory disease complex (BRDC), which costs the US cattle industry approximately 3 billion dollars annually. BHV-1 encodes at least three proteins that can inhibit specific arms of the immune system: (i) bICP0 inhibits interferon-dependent transcription, (ii) the UL41.5 protein inhibits CD8+ T-cell recognition of infected cells by preventing trafficking of viral peptides to the surface of the cells and (iii) glycoprotein G is a chemokine-binding protein that prevents homing of lymphocytes to sights of infection. Following acute infection of calves, BHV-1 can also infect and induce high levels of apoptosis of CD4+ T-cells. Consequently, the ability of BHV-1 to impair the immune response can lead to BRDC. Following acute infection, BHV-1 establishes latency in sensory neurons of trigeminal ganglia (TG) and germinal centers of pharyngeal tonsil. Periodically BHV-1 reactivates from latency, virus is shed, and consequently virus transmission occurs. Two viral genes, the latency related gene and ORF-E are abundantly expressed during latency, suggesting that they regulate the latency-reactivation cycle. The ability of BHV-1 to enter permissive cells, infect sensory neurons and promote virus spread from sensory neurons to mucosal surfaces following reactivation from latency is also regulated by several viral glycoproteins. The focus of this review is to summarize the biology of BHV-1 and how this relates to BRDC.
Collapse
|
22
|
Jin H, Xiao W, Xiao C, Yu Y, Kang Y, Du X, Wei X, Wang B. Protective Immune Responses against Foot-and-Mouth Disease Virus by Vaccination with a DNA Vaccine Expressing Virus-Like Particles. Viral Immunol 2007; 20:429-40. [DOI: 10.1089/vim.2007.0031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Huali Jin
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Wang Xiao
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Chong Xiao
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yang Yu
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Youmin Kang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Xiaogang Du
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Xuefeng Wei
- Inner Mongolia Factory for Biological Products, Jinyu Group Corporation, Huhhot, Inner Mongolia, China
| | - Bin Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Huang Y, Babiuk LA, van Drunen Littel-van den Hurk S. The cell-mediated immune response induced by plasmid encoding bovine herpesvirus 1 glycoprotein B is enhanced by plasmid encoding IL-12 when delivered intramuscularly or by gene gun, but not after intradermal injection. Vaccine 2006; 24:5349-59. [PMID: 16714071 DOI: 10.1016/j.vaccine.2006.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 04/15/2006] [Accepted: 04/19/2006] [Indexed: 11/20/2022]
Abstract
Bovine herpesvirus 1 (BHV-1) causes respiratory and genital infections in cattle. Previously we demonstrated that a DNA vaccine encoding a truncated, secreted form of BHV-1 glycoprotein B (tgB) induces cytotoxic T lymphocyte (CTL) responses in C3H mice. In this study we investigated the potential of interleukin 12 (IL-12) to further enhance the CTL response. C3H mice were immunized with a plasmid encoding tgB or with plasmids encoding tgB and murine IL-12. When the plasmid encoding tgB was delivered intramuscularly or epidermally by a gene gun, co-administration with IL-12 plasmid stimulated the synthesis of more IgG2a, the production of higher levels of IFN-gamma, and more effective killing by CTLs. In contrast, after intradermal delivery no effect of co-administration of IL-12 encoding plasmid was observed. Further investigation suggested that antigen and IL-12 need to be expressed in the draining lymph nodes, where IL-12 can have a direct effect on T cells.
Collapse
Affiliation(s)
- Y Huang
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, Saskatchewan, Canada S7N 5E3
| | | | | |
Collapse
|
24
|
Cassataro J, Velikovsky CA, de la Barrera S, Estein SM, Bruno L, Bowden R, Pasquevich KA, Fossati CA, Giambartolomei GH. A DNA vaccine coding for the Brucella outer membrane protein 31 confers protection against B. melitensis and B. ovis infection by eliciting a specific cytotoxic response. Infect Immun 2005; 73:6537-46. [PMID: 16177328 PMCID: PMC1230944 DOI: 10.1128/iai.73.10.6537-6546.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of an effective subunit vaccine against brucellosis is a research area of intense interest. The outer membrane proteins (Omps) of Brucella spp. have been extensively characterized as potential immunogenic and protective antigens. This study was conducted to evaluate the immunogenicity and protective efficacy of the B. melitensis Omp31 gene cloned in the pCI plasmid (pCIOmp31). Immunization of BALB/c mice with pCIOmp31 conferred protection against B. ovis and B. melitensis infection. Mice vaccinated with pCIOmp31 developed a very weak humoral response, and in vitro stimulation of their splenocytes with recombinant Omp31 did not induced the secretion of gamma interferon. Splenocytes from Omp31-vaccinated animals induced a specific cytotoxic-T-lymphocyte activity, which leads to the in vitro lysis of Brucella-infected macrophages. pCIOmp31 immunization elicited mainly CD8(+) T cells, which mediate cytotoxicity via perforins, but also CD4(+) T cells, which mediate lysis via the Fas-FasL pathway. In vivo depletion of T-cell subsets showed that the pCIOmp31-induced protection against Brucella infection is mediated predominantly by CD8(+) T cells, although CD4(+)T cells also contribute. Our results demonstrate that the Omp31 DNA vaccine induces cytotoxic responses that have the potential to contribute to protection against Brucella infection. The protective response could be related to the induction of CD8(+) T cells that eliminate Brucella-infected cells via the perforin pathway.
Collapse
Affiliation(s)
- Juliana Cassataro
- Laboratorio de Inmunogenética, Hospital de Clínicas José de San Martín, Facultad de Medicina, Universidad de Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|