1
|
Orabi A, Shameli K, Protzer U, Moeini H. Adenoviral fiber-knob based vaccination elicits efficient neutralizing antibodies and T cell responses against adenovirus infection. Virol J 2024; 21:246. [PMID: 39370512 PMCID: PMC11457358 DOI: 10.1186/s12985-024-02520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Human adenoviruses (HAdVs) frequently cause common respiratory or gastrointestinal infections among children, adults, individuals with immune deficiencies, and other vulnerable populations with varying degree of symptoms, ranging from mild to server, and in some cases, even fatalities. Despite the significant clinical impact of HAdVs, there is currently no approved vaccine available. METHODS This study explores the potential of the adenovirus type 5 fiber knob (Ad5-FK) to stimulate the production of Ad-specific neutralizing antibodies and T-cell responses in mice. Based on structure predictions, we first expressed Ad5-FK in E. coli and confirmed the assembly of FK into its trimeric form. After testing the binding capability of the trimeric FK to susceptible cells, the immunogenicity of the protein in combination with the c-di-AMP adjuvant was assessed in BALB/c mice. RESULTS The purified Ad5-FK exhibited self-trimerization and maintained correct conformation akin to the authentic FK structure. This facilitated effective binding to susceptible HEK293 cells. Notably, the protein demonstrated significant inhibition of HEK293 cells infection by rAd5-GFP. Immunization of BALB/c mice with Ad5-FK, or Ad5-FK mixed with c-di-AMP yielded FK-specific antibodies with potent neutralization capacity. Significantly, Ad5-FK was found to elicit a vigorous CD4+ T-cell response in the immunized mice. CONCLUSION Our findings underscore the efficacy of FK-based vaccine in eliciting anti-Ad humoral immune response and CD4 T-cell immune reactions essential for protection against viral infections.
Collapse
Affiliation(s)
- Ahmed Orabi
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany.
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner Site, Munich, Germany
| | - Hassan Moeini
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany.
- German Center for Infection Research (DZIF), Munich partner Site, Munich, Germany.
| |
Collapse
|
2
|
Abstract
Tumor-selectively replicating "oncolytic" adenoviruses based on serotype 5 are promising tools for the treatment of solid tumors. However, their effective delivery to the tumor by systemic administration remains challenging. Several strategies of molecular retargeting have been pursued to equip adenoviruses with molecular features that facilitate their efficient uptake by tumors and to protect healthy tissue from damage. Transductional retargeting can be conveniently achieved using bispecific molecular adapter proteins based on the ectodomain of the coxsackievirus and adenovirus receptor linked to tumor ligands of choice. In this chapter, we describe methods for their design, purification, and application.
Collapse
Affiliation(s)
- Julia Niemann
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Targeting polysialic acid-abundant cancers using oncolytic adenoviruses with fibers fused to active bacteriophage borne endosialidase. Biomaterials 2017; 158:86-94. [PMID: 29304405 DOI: 10.1016/j.biomaterials.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 11/24/2022]
Abstract
Genetic replacement of adenoviral fiber knobs by ligands that enable tumor specific targeting of oncolytic adenoviruses is challenging because the fiber knob contributes to virus assembly. Here, we present a novel concept by describing stable recombinant adenoviruses with tumor specific infection mode. The fiber knob was replaced by endosialidaseNF (endoNF), the tailspike protein of bacteriophage K1F. EndoNF recognizes polysialic acid, an oncofetal antigen characteristic for high malignant tumors of neuroendocrine origin. An intramolecular chaperone contained in endoNF warrants folding and compensates for the knob function in virus assembly. Obtained recombinant viruses demonstrated polysialic acid dependent infection modes, strong oncolytic capacity with polysialic acid positive cells in culture and a high potential to inhibit tumor growth in a therapeutic mouse model of subcutaneous neuroblastoma. With a single genetic manipulation we achieved ablation of the fiber knob, introduction of a tumor specific ligand, and folding control over the chimeric fiber construct.
Collapse
|
4
|
|
5
|
Shah MS, Ashraf A, Khan MI, Rahman M, Habib M, Chughtai MI, Qureshi JA. Fowl adenovirus: history, emergence, biology and development of a vaccine against hydropericardium syndrome. Arch Virol 2017; 162:1833-1843. [PMID: 28283816 DOI: 10.1007/s00705-017-3313-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/05/2017] [Indexed: 12/16/2022]
Abstract
The poultry industry has emerged as one of the largest and fastest growing public sectors in the developed and developing countries. Unfortunately, this industry is under a major threat from diseases that are viral (Newcastle disease, infectious bursal disease, influenza, hydropericardium syndrome), bacterial (colibacillosis, pasteurellosis, salmonellosis, mycoplasmosis), parasitic (coccidiosis, histoplasmosis) or nutritional (dyschondroplasia, osteoporosis). Among these diseases, hydropericardium syndrome (HPS) is one of the important emerging diseases occurring in the specific areas of the world where broilers (chickens) are reared under intensive conditions. HPS was first observed in 1987 at Angara Goth, an area near Karachi, Pakistan, where broilers are raised. Since then, HPS has been reported in many countries of the world. From these reported cases, an adenovirus that was either isolated from or visualized electron microscopically in the liver of affected broilers has been implicated in the syndrome. The syndrome has been reproduced by inoculation of isolated fowl adenovirus (FAdV) strains, and hence, the syndrome is also called infectious hydropericardium syndrome. To our knowledge, HPS has not been observed in humans, so it is not considered a zoonotic disease, but it is of economic importance and causes huge losses to the poultry industry. Efforts have been made to develop conventional vaccines against this disease, which were formulated from infected liver homogenate. Formalin-inactivated liver organ vaccines have failed to protect the poultry industry. Hence, there is a dire need to develop a suitable vaccine to combat this disease. Currently, recombinant vaccine candidates are being developed by using molecular biology and biotechnological approaches for the prevention and control of infectious diseases, including HPS. Therefore, it is suggested that the immunogenicity of these recombinant proteins should be evaluated for their use as subunit vaccines.
Collapse
Affiliation(s)
- M S Shah
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, USA.
- National Institute of Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| | - A Ashraf
- Department of Zoology, G.C University, Faisalabad, Pakistan
| | - M I Khan
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, USA
| | - M Rahman
- National Institute of Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - M Habib
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - M I Chughtai
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - J A Qureshi
- National Institute of Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- University of Lahore, Defense Road, Lahore, Pakistan
| |
Collapse
|
6
|
Bofill-De Ros X, Villanueva E, Fillat C. Late-phase miRNA-controlled oncolytic adenovirus for selective killing of cancer cells. Oncotarget 2016; 6:6179-90. [PMID: 25714032 PMCID: PMC4467430 DOI: 10.18632/oncotarget.3350] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/12/2015] [Indexed: 01/13/2023] Open
Abstract
Tissue-specific detargeting by miRNAs has been demonstrated to be a potent strategy to restrict adenoviral replication to cancer cells. These studies have generated adenoviruses with miRNA target sites placed in the 3′UTR of early gene products. In this work, we have studied the feasibility of providing tissue-specific selectivity to replication-competent adenoviruses through the regulation of the late structural protein fiber (L5 gene). We have engineered a 3′UTR containing eight miR-148a binding sites downstream the L5 coding sequence (Ad-L5-8miR148aT). We present in vitro and in vivo evidences of Ad-L5-8miR148aT miRNA-dependent regulation. In vitro data show that at 72 hours post-infection miR-148a-regulation impaired fiber expression leading to a 70% reduction of viral release. The application of seven consecutive rounds of infection in miR-148a cells resulted in 10.000-fold reduction of viral genomes released. In vivo, liver production of infective viral particles was highly impaired, similarly to that triggered by an adenovirus with miRNA target sites regulating the early E1A gene. Noticeably, mice treated with Ad-L5-8miR148aT showed an attenuation of adenoviral-induced hepatotoxicity but retained full lytic activity in cancer cells and exhibited robust antitumoral responses in patient-derived xenografts. Thus, miRNA-control of late proteins constitutes a novel strategy to provide selectivity to adenoviruses.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Eneko Villanueva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
7
|
Kupgan G, Hentges DC, Muschinske NJ, Picking WD, Picking WL, Ramsey JD. The effect of fiber truncations on the stability of adenovirus type 5. Mol Biotechnol 2015; 56:979-91. [PMID: 24981329 DOI: 10.1007/s12033-014-9777-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While fiberless adenovirus has the potential for use as a vaccine or gene delivery vector, some groups have observed instability issues associated with the modified virus. To investigate the effect of fiber modification on adenovirus stability, we produced mutant adenovirus particles that contained the tail and a portion of the shaft domain without the knob. The shaft domain was either completely removed (i.e., fiberless) or truncated to 7-, 14-, or 21-repeats. The mutants were evaluated by biophysical characterization techniques to determine their relative stabilities based on temperature-induced changes to the secondary, tertiary, and quaternary structures of the virus and its constituent proteins. Data acquired using circular dichroism, intrinsic/extrinsic fluorescence, and static/dynamic light scattering were compiled into a comprehensive empirical phase diagram, which showed that native adenovirus was the most stable followed by fiberless adenovirus and then the mutants with truncated fiber protein. In summary, the individual biophysical measurements and the empirical phase diagram showed that providing several repeats of shaft protein negatively impacted the structural stability of the virus more so than completely removing the fiber protein.
Collapse
Affiliation(s)
- Grit Kupgan
- Department of Chemical Engineering, Oklahoma State University, 423 Engineering North, Stillwater, OK, 74078, USA
| | | | | | | | | | | |
Collapse
|
8
|
Lin S, Yan H, Li L, Yang M, Peng B, Chen S, Li W, Chen PR. Site-Specific Engineering of Chemical Functionalities on the Surface of Live Hepatitis D Virus. Angew Chem Int Ed Engl 2013; 52:13970-4. [DOI: 10.1002/anie.201305787] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/25/2013] [Indexed: 12/11/2022]
|
9
|
Lin S, Yan H, Li L, Yang M, Peng B, Chen S, Li W, Chen PR. Site-Specific Engineering of Chemical Functionalities on the Surface of Live Hepatitis D Virus. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Song JD, Liu XL, Chen DL, Zou XH, Wang M, Qu JG, Lu ZZ, Hung T. Human adenovirus type 41 possesses different amount of short and long fibers in the virion. Virology 2012; 432:336-42. [DOI: 10.1016/j.virol.2012.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
|
11
|
Rubino FA, Oum YH, Rajaram L, Chu Y, Carrico IS. Chemoselective modification of viral surfaces via bioorthogonal click chemistry. J Vis Exp 2012:e4246. [PMID: 22929552 DOI: 10.3791/4246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The modification of virus particles has received a significant amount of attention for its tremendous potential for impacting gene therapy, oncolytic applications and vaccine development. Current approaches to modifying viral surfaces, which are mostly genetics-based, often suffer from attenuation of virus production, infectivity and cellular transduction. Using chemoselective click chemistry, we have developed a straightforward alternative approach which sidesteps these issues while remaining both highly flexible and accessible. The goal of this protocol is to demonstrate the effectiveness of using bioorthogonal click chemistry to modify the surface of adenovirus type 5 particles. This two-step process can be used both therapeutically or analytically, as it allows for chemoselective ligation of targeting molecules, dyes or other molecules of interest onto proteins pre-labeled with azide tags. The three major advantages of this method are that (1) metabolic labeling demonstrates little to no impact on viral fitness, (2) a wide array of effector ligands can be utilized, and (3) it is remarkably fast, reliable and easy to access. In the first step of this procedure, adenovirus particles are produced bearing either azidohomoalanine (Aha, a methionine surrogate) or the unnatural sugar O-linked N-azidoacetylglucosamine (O-GlcNAz), both of which contain the azide (-N3) functional group. After purification of the azide-modified virus particles, an alkyne probe containing the fluorescent TAMRA moiety is ligated in a chemoselective manner to the pre-labeled proteins or glycoproteins. Finally, an SDS-PAGE analysis is performed to demonstrate the successful ligation of the probe onto the viral capsid proteins. Aha incorporation is shown to label all viral capsid proteins (Hexon, Penton and Fiber), while O-GlcNAz incorporation results in labeling of Fiber only. In this evolving field, multiple methods for azide-alkyne ligation have been successfully developed; however only the two we have found to be most convenient are demonstrated herein - strain-promoted azide-alkyne cycloaddition (SPAAC) and copper-catalyzed azide-alkyne cycloaddition (CuAAC) under deoxygenated atmosphere.
Collapse
|
12
|
Oum YH, Carrico IS. Altering adenoviral tropism via click modification with ErbB specific ligands. Bioconjug Chem 2012; 23:1370-6. [PMID: 22681483 DOI: 10.1021/bc200477z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Methods for targeting oncolytic viruses can increase efficacy and accelerate development. Genetic engineering, the predominant method for changing vector tropism, is limited in scope and often represents the bottleneck for vector development. Metabolic incorporation of an unnatural azido sugar, O-GlcNAz, at a specific site on the adenoviral surface allows chemoselective attachment of affibodies for Her2 or EGF receptors. Modification with these high-affinity, high-selectivity proteins is straightforward and readily generalizable, demonstrates minimal impact on virus physiology, and affords significant increases in gene delivery to cancer cells. As a result, this method has significant potential to increase the efficacy of next-generation viral vectors.
Collapse
Affiliation(s)
- Yoon Hyeun Oum
- Department of Chemistry, State University of New York at Stony Brook , Stony Brook, NY 11794-3400, USA
| | | |
Collapse
|
13
|
Corjon S, Gonzalez G, Henning P, Grichine A, Lindholm L, Boulanger P, Fender P, Hong SS. Cell entry and trafficking of human adenovirus bound to blood factor X is determined by the fiber serotype and not hexon:heparan sulfate interaction. PLoS One 2011; 6:e18205. [PMID: 21637339 PMCID: PMC3102659 DOI: 10.1371/journal.pone.0018205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/28/2011] [Indexed: 01/29/2023] Open
Abstract
Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon:FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors.
Collapse
Affiliation(s)
- Stéphanie Corjon
- University Lyon 1, INRA UMR 754, Retrovirus
and Comparative Pathology, Lyon, France
| | - Gaëlle Gonzalez
- University Lyon 1, INRA UMR 754, Retrovirus
and Comparative Pathology, Lyon, France
| | - Petra Henning
- Department of Microbiology and Immunology,
University of Göteborg, Institute for Biomedicine, Göteborg,
Sweden
| | - Alexei Grichine
- Institut Albert Bonniot, CRI INSERM-UJF U-823,
La Tronche, France
| | | | - Pierre Boulanger
- University Lyon 1, INRA UMR 754, Retrovirus
and Comparative Pathology, Lyon, France
| | - Pascal Fender
- Unit for Virus-Host Interaction, UMI-3265,
CNRS-EMBL-UJF, Grenoble, France
| | - Saw-See Hong
- University Lyon 1, INRA UMR 754, Retrovirus
and Comparative Pathology, Lyon, France
| |
Collapse
|
14
|
Unnatural amino acid incorporation onto adenoviral (Ad) coat proteins facilitates chemoselective modification and retargeting of Ad type 5 vectors. J Virol 2011; 85:7546-54. [PMID: 21613404 DOI: 10.1128/jvi.00118-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Surface modification of adenovirus vectors can improve tissue-selective targeting, attenuate immunogenicity, and enable imaging of particle biodistribution, thus significantly improving therapeutic potential. Currently, surface engineering is constrained by a combination of factors, including impact on viral fitness, limited access to functionality, or incomplete control over the site of modification. Here, we report a two-step labeling process involving an initial metabolic placement of a uniquely reactive unnatural amino acid, azidohomoalanine (Aha), followed by highly specific chemical modification. As genetic modification of adenovirus is unnecessary, vector production is exceedingly straightforward. Aha incorporation demonstrated no discernible impact on either virus production or infectivity of the resultant particles. "Click" chemical modification of surface-exposed azides was highly selective, allowing for the attachment of a wide range of functionality. Decoration of human adenovirus type 5 (hAd5) with folate, a known cancer-targeting moiety, provided an ∼20-fold increase in infection of murine breast cancer cells (4T1) in a folate receptor-dependent manner. This study demonstrates that incorporation of unnatural amino acids can provide a flexible, straightforward route for the selective chemical modification of adenoviral vectors.
Collapse
|
15
|
Banerjee PS, Carrico IS. Chemoselective modification of viral proteins bearing metabolically introduced "clickable" amino acids and sugars. Methods Mol Biol 2011; 751:55-66. [PMID: 21674325 DOI: 10.1007/978-1-61779-151-2_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The inherent difficulty of performing chemical modifications of proteins in a truly site-specific fashion is often compounded by the need to work within complex biological settings. In order to alleviate this complication, targets can be "prelabeled" metabolically with unnatural residues, which allow access to highly selective bioorthogonal reactions. Due to their small size, permissibility within biosynthetic pathways and access to reactions with high specificity, azides provide excellent bioorthogonal handles. This two-step labeling process is emerging as a highly effective means to modify therapeutic proteins. In this chapter, we take this strategy a step further and apply chemoselective ligation to remodel the surfaces of adenoviruses. Despite the large number of ongoing clinical trials involving these complex mammalian viruses, new methods for their facile, flexible surface modification are necessary to drive the development of next-generation therapeutics. Here we demonstrate the modification of azides on adenoviral surfaces via a straightforward chemoselective protocol based on copper-assisted "click" chemistry. This method provides access to a wide array of effector functionalities without sacrificing infectivity.
Collapse
|
16
|
Tropism-modification strategies for targeted gene delivery using adenoviral vectors. Viruses 2010; 2:2290-2355. [PMID: 21994621 PMCID: PMC3185574 DOI: 10.3390/v2102290] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/07/2010] [Indexed: 02/08/2023] Open
Abstract
Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs). These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad) have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon), pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR) substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies), can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX), or alternatively, through the use of polymer-coated “stealth” vectors which avoid these interactions. Simultaneous retargeting and detargeting can be achieved by combining multiple genetic and/or chemical modifications.
Collapse
|
17
|
Banerjee PS, Ostapachuk P, Hearing P, Carrico I. Chemoselective attachment of small molecule effector functionality to human adenoviruses facilitates gene delivery to cancer cells. J Am Chem Soc 2010; 132:13615-7. [PMID: 20831164 PMCID: PMC4086407 DOI: 10.1021/ja104547x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate here a novel two-step "click" labeling process in which adenoviral particles are first metabolically labeled during production with unnatural azido sugars. Subsequent chemoselective modification allows access to viruses decorated with a broad array of effector functionality. Adenoviruses modified with folate, a known cancer-targeting motif, demonstrated a marked increase in gene delivery to a murine cancer cell line.
Collapse
Affiliation(s)
- Partha Sarathi Banerjee
- Department of Chemistry, State University of New York Stony Brook, NY 11790
- Institute of Chemical Biology and Drug Discovery, State University of New York Stony Brook, NY 11790
| | - Philomena Ostapachuk
- Department of Molecular Genetics and Microbiology, State University of New York Stony Brook, NY 11790
| | - Patrick Hearing
- Department of Molecular Genetics and Microbiology, State University of New York Stony Brook, NY 11790
| | - Isaac Carrico
- Department of Chemistry, State University of New York Stony Brook, NY 11790
- Institute of Chemical Biology and Drug Discovery, State University of New York Stony Brook, NY 11790
| |
Collapse
|
18
|
Granio O, Ashbourne Excoffon KJD, Henning P, Melin P, Norez C, Gonzalez G, Karp PH, Magnusson MK, Habib N, Lindholm L, Becq F, Boulanger P, Zabner J, Hong SS. Adenovirus 5-fiber 35 chimeric vector mediates efficient apical correction of the cystic fibrosis transmembrane conductance regulator defect in cystic fibrosis primary airway epithelia. Hum Gene Ther 2010; 21:251-69. [PMID: 19788389 DOI: 10.1089/hum.2009.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In vivo gene transfer to the human respiratory tract by adenovirus serotype 5 (Ad5) vectors has revealed their limitations related to inefficient gene transfer, host antiviral response, and innate adenoviral toxicity. In the present work, we compared the cytotoxicity and efficiency of Ad5 and a chimeric Ad5F35 vector with respect to CFTR gene transfer to cystic fibrosis (CF) and non-CF human airway epithelial cells. We found that high doses of Ad5 vector had an adverse effect on the function of exogenous and endogenous CFTR. Results obtained with Ad5 capsid mutants suggested that the RGD motifs on the penton base capsomers were responsible for the negative effect on CFTR function. This negative interference did not result from a lower level of biosynthesis and/or altered cellular trafficking of the CFTR protein, but rather from an indirect mechanism of functional blockage of CFTR, related to the RGD integrin-mediated endocytic pathway of Ad5. No negative interference with CFTR was observed for Ad5F35, an Ad5-based vector pseudotyped with fibers from Ad35, a serotype that uses another cell entry pathway. In vitro, Ad5F35 vector expressing the GFP-tagged CFTR (Ad5F35-GFP-CFTR) showed a 30-fold higher efficiency of transduction and chloride channel correction in CFTR-deficient cells, compared with Ad5GFP-CFTR. Ex vivo, Ad5F35-GFP-CFTR had the capacity to transduce efficiently reconstituted airway epithelia from patients with CF (CF-HAE) via the apical surface, restored chloride channel function at relatively low vector doses, and showed relatively stable expression of GFP-CFTR for several weeks.
Collapse
Affiliation(s)
- Ophélia Granio
- Université Lyon I, Faculté de Médecine Claude Bernard and IFR Laennec, Laboratoire de Virologie et Pathologie Humaine, CNRS FRE 3011, 69372 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Adenoviruses have been studied intensively for over 50 years as models of virus-cell interactions and latterly as gene vectors. With the advent of more sophisticated structural analysis techniques the disposition of most of the 13 structural proteins have been defined to a reasonable level. This review seeks to describe the functional properties of these proteins and shows that they all have a part to play in deciding the outcome of an infection and act at every level of the virus's path through the host cell. They are primarily involved in the induction of the different arms of the immune system and a better understanding of their overall properties should lead to more effective ways of combating virus infections.
Collapse
Affiliation(s)
- W C Russell
- School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| |
Collapse
|
20
|
Abstract
Adenovirus provides an attractive candidate tool to destroy tumor cells. However, to fulfill the expectations, selective targeting of tumor cells is mandatory. This chapter reviews critical aspects in the design of tumor-targeted adenovirus vectors and oncolytic adenoviruses. The review focuses on genetic modifications of capsid and regulatory genes that can enhance the therapeutic index of these agents after systemic administration. Selectivity will be considered at different levels: biodistribution selectivity of the injected virus particles, transductional selectivity defined as cell receptor interactions and trafficking that lead to virus gene expression, transcriptional selectivity by means of tumor-selective promoters, and mutation-rescue selectivity to achieve selective replication. Proper assays to analyze selectivity at these different levels are discussed. Finally, mutations and transgenes that can enhance the potency and efficacy of tumor-targeted adenoviruses from virocentric or immunocentric points of view will be presented.
Collapse
Affiliation(s)
- Ramon Alemany
- Translational Research Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
21
|
Majhen D, Nemet J, Richardson J, Gabrilovac J, Hajsig M, Osmak M, Eloit M, Ambriović-Ristov A. Differential role of αvβ3 and αvβ5 integrins in internalization and transduction efficacies of wild type and RGD4C fiber-modified adenoviruses. Virus Res 2009; 139:64-73. [PMID: 19013487 DOI: 10.1016/j.virusres.2008.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 11/26/2022]
|
22
|
Re-targeted adenovirus vectors with dual specificity; binding specificities conferred by two different Affibody molecules in the fiber. Gene Ther 2008; 16:252-61. [PMID: 18946496 DOI: 10.1038/gt.2008.160] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vectors based on Adenovirus type 5 (Ad5) are among the most common vectors in cancer gene therapy trials to date. However, for increased efficiency and safety, Ad5 should be de-targeted from its native receptors and re-targeted to a tumor antigen. We have described earlier an Ad5 vector genetically re-targeted to the tumor antigen HER2/neu by a dimeric version of the Affibody molecule ZH inserted in the HI-loop of the fiber knob of a coxsackie and adenovirus receptor-binding ablated fiber. This virus showed almost wild-type growth characteristics and infected cells through HER2/neu. Here we generate vectors with double specificity by incorporating two different Affibody molecules, ZH (HER2/neu-binding) and ZT (Taq polymerase-binding), at different positions relative to one another in the HI-loop. Receptor-binding studies together with viral production and gene transfer assays showed that the recombinant fiber with ZT in the first position and ZH in the second position (ZTZH) bound to both its targets, whereas surprisingly, the fiber with ZHZT was devoid of binding to HER2/neu. Hence, it is possible to construct a recombinant adenovirus with dual specificity after evaluating the best position for each ligand in the fiber knob.
Collapse
|
23
|
Franqueville L, Henning P, Magnusson M, Vigne E, Schoehn G, Blair-Zajdel ME, Habib N, Lindholm L, Blair GE, Hong SS, Boulanger P. Protein crystals in Adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis. PLoS One 2008; 3:e2894. [PMID: 18682854 PMCID: PMC2488365 DOI: 10.1371/journal.pone.0002894] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 07/10/2008] [Indexed: 12/13/2022] Open
Abstract
Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489-492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors.
Collapse
Affiliation(s)
- Laure Franqueville
- Université Lyon I, Faculté de Médecine Laënnec, Laboratoire de Virologie et Pathologie Humaine, CNRS-FRE-3011, Lyon, France
| | - Petra Henning
- Institute for Biomedicine, Department of Microbiology and Immunology, University of Göteborg, Göteborg, Sweden
- Got-A-Gene AB, Östra Kyviksvägen 18, Kullavik, Sweden
| | - Maria Magnusson
- Institute for Biomedicine, Department of Microbiology and Immunology, University of Göteborg, Göteborg, Sweden
- Got-A-Gene AB, Östra Kyviksvägen 18, Kullavik, Sweden
| | - Emmanuelle Vigne
- Sanofi-Avantis, Centre de Recherches de Vitry, Vitry-sur-Seine, France
| | - Guy Schoehn
- Université de Grenoble Joseph Fourier (UJF), Unit for Virus-Host Cell Interactions, UMR-5233 UJF-EMBL-CNRS, and Institut de Biologie Structurale Jean-Pierre Ebel, UMR-5075 CEA-CNRS-UJF, Grenoble, France
| | | | - Nagy Habib
- Department of Surgical Oncology and Technology, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| | - Leif Lindholm
- Got-A-Gene AB, Östra Kyviksvägen 18, Kullavik, Sweden
| | - G. Eric Blair
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Saw See Hong
- Université Lyon I, Faculté de Médecine Laënnec, Laboratoire de Virologie et Pathologie Humaine, CNRS-FRE-3011, Lyon, France
| | - Pierre Boulanger
- Université Lyon I, Faculté de Médecine Laënnec, Laboratoire de Virologie et Pathologie Humaine, CNRS-FRE-3011, Lyon, France
- Laboratoire de Virologie Médicale, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
24
|
Lindholm L, Henning P, Magnusson MK. Novel strategies in tailoring human adenoviruses into therapeutic cancer gene therapy vectors. Future Virol 2008. [DOI: 10.2217/17460794.3.1.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene therapy is a novel approach for the treatment of cancer that has so far not been realized. The scope of this review is to try to define the remaining barriers to the successful use of adenovirus vectors for gene and viral therapy of human tumors and to suggest solutions whereby these barriers can be bypassed. It is the conviction of the authors that too many studies have been performed in animal models that are not sufficiently comprehensive to allow conclusions to be drawn for application in humans. For example, in the case of the murine experimental model, in which most studies have been performed, mice are devoid of circulating antibodies to adenovirus type 5 and adenovirus cannot replicate in mouse cells. While the problems are real enough, as witnessed by the quite limited success in human trials, some of the solutions that will be suggested here are hypothetical and have not as yet been tried, even in animals. The review has no ambition to be exhaustive but is intended as a contribution in order to forward the field of gene therapy vectors for systemic clinical application.
Collapse
Affiliation(s)
- Leif Lindholm
- University of Goteborg, Institute for Biomedicine, Department of Microbiology & Immunology, PO Box 435, SE 40530 Goteborg, Sweden, and, Got-A-Gene AB, Östra Kyviksvägen 18, SE 42930 Kullavik, Sweden
| | - Petra Henning
- University of Goteborg, Institute for Biomedicine, Department of Microbiology & Immunology, PO Box 435, SE 40530 Goteborg, Sweden, and, Got-A-Gene AB, Östra Kyviksvägen 18, SE 42930 Kullavik, Sweden
| | - Maria K Magnusson
- University of Goteborg, Institute for Biomedicine, Department of Microbiology & Immunology, PO Box 435, SE 40530 Goteborg, Sweden, and, Got-A-Gene AB, Östra Kyviksvägen 18, SE 42930 Kullavik, Sweden
| |
Collapse
|
25
|
Campos SK, Barry MA. Current advances and future challenges in Adenoviral vector biology and targeting. Curr Gene Ther 2007; 7:189-204. [PMID: 17584037 PMCID: PMC2244792 DOI: 10.2174/156652307780859062] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gene delivery vectors based on Adenoviral (Ad) vectors have enormous potential for the treatment of both hereditary and acquired disease. Detailed structural analysis of the Ad virion, combined with functional studies has broadened our knowledge of the structure/function relationships between Ad vectors and host cells/tissues and substantial achievement has been made towards a thorough understanding of the biology of Ad vectors. The widespread use of Ad vectors for clinical gene therapy is compromised by their inherent immunogenicity. The generation of safer and more effective Ad vectors, targeted to the site of disease, has therefore become a great ambition in the field of Ad vector development. This review provides a synopsis of the structure/function relationships between Ad vectors and host systems and summarizes the many innovative approaches towards achieving Ad vector targeting.
Collapse
Affiliation(s)
- Samuel K. Campos
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Michael A. Barry
- Department of Internal Medicine, Department of Immunology, Division of Infectious Diseases, Translational Immunovirology Program, Molecular Medicine Program, Mayo Clinic, Rochester, MN 55902, USA
- *Address correspondence to this author at the Department of Internal Medicine, Department of Immunology, Division of Infectious Diseases, Translational Immunovirology Program, Molecular Medicine Program, Mayo Clinic, Rochester, MN 55902, USA; E-mail:
| |
Collapse
|
26
|
Magnusson MK, Henning P, Myhre S, Wikman M, Uil TG, Friedman M, Andersson KME, Hong SS, Hoeben RC, Habib NA, Ståhl S, Boulanger P, Lindholm L. Adenovirus 5 vector genetically re-targeted by an Affibody molecule with specificity for tumor antigen HER2/neu. Cancer Gene Ther 2007; 14:468-79. [PMID: 17273181 DOI: 10.1038/sj.cgt.7701027] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to use adenovirus (Ad) type 5 (Ad5) for cancer gene therapy, Ad needs to be de-targeted from its native receptors and re-targeted to a tumor antigen. A limiting factor for this has been to find a ligand that (i) binds a relevant target, (ii) is able to fold correctly in the reducing environment of the cytoplasm and (iii) when incorporated at an optimal position on the virion results in a virus with a low physical particle to plaque-forming units ratio to diminish the viral load to be administered to a future patient. Here, we present a solution to these problems by producing a genetically re-targeted Ad with a tandem repeat of the HER2/neu reactive Affibody molecule (ZH) in the HI-loop of a Coxsackie B virus and Ad receptor (CAR) binding ablated fiber genetically modified to contain sequences for flexible linkers between the ZH and the knob sequences. ZH is an Affibody molecule specific for the extracellular domain of human epidermal growth factor receptor 2 (HER2/neu) that is overexpressed in inter alia breast and ovarian carcinomas. The virus presented here exhibits near wild-type growth characteristics, infects cells via HER2/neu instead of CAR and represents an important step toward the development of genetically re-targeted adenoviruses with clinical relevance.
Collapse
|