1
|
Nakamura D, Minato N, Furuya M, Komatsu K, Fuji SI. Long-term passages of Plantago asiatica mosaic virus alter virulence and multiplication in Nicotiana benthamiana plants. Arch Virol 2023; 169:9. [PMID: 38092981 DOI: 10.1007/s00705-023-05934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
We demonstrated the infectivity and host adaptation of a viola isolate of Plantago asiatica mosaic virus (PlAMV-Vi) in an asymptomatic host, Nicotiana benthamiana, through long-term serial passages. Serial passaging of a green fluorescent protein-tagged full-length cDNA clone of PlAMV-Vi (PlAMV-ViGFP) in N. benthamiana plants resulted in the appearance of a new virus line inducing leaf-crinkle symptoms, the Leaf Crinkle (LC) line. Virus titers were higher for both in the LC and the 14th passage line(s) of PlAMV-ViGFP compared with the original line. The LC line was found to have seven unique nucleotide mutations that may have contributed to its higher virulence and multiplication rate in N. benthamiana.
Collapse
Affiliation(s)
- Daisuke Nakamura
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Nami Minato
- Graduate School of Science and Technology, Niigata University, Niigata, Japan.
- Institute of Science and Technology, Niigata University, Niigata, Japan.
| | - Minako Furuya
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Tokyo, Japan
| | - Ken Komatsu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Tokyo, Japan
| | - Shin-Ichi Fuji
- Faculty of Bioresource Science, Akita Prefectural University, Akita, Japan
| |
Collapse
|
2
|
Determinants of Virus Variation, Evolution, and Host Adaptation. Pathogens 2022; 11:pathogens11091039. [PMID: 36145471 PMCID: PMC9501407 DOI: 10.3390/pathogens11091039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Virus evolution is the change in the genetic structure of a viral population over time and results in the emergence of new viral variants, strains, and species with novel biological properties, including adaptation to new hosts. There are host, vector, environmental, and viral factors that contribute to virus evolution. To achieve or fine tune compatibility and successfully establish infection, viruses adapt to a particular host species or to a group of species. However, some viruses are better able to adapt to diverse hosts, vectors, and environments. Viruses generate genetic diversity through mutation, reassortment, and recombination. Plant viruses are exposed to genetic drift and selection pressures by host and vector factors, and random variants or those with a competitive advantage are fixed in the population and mediate the emergence of new viral strains or species with novel biological properties. This process creates a footprint in the virus genome evident as the preferential accumulation of substitutions, insertions, or deletions in areas of the genome that function as determinants of host adaptation. Here, with respect to plant viruses, we review the current understanding of the sources of variation, the effect of selection, and its role in virus evolution and host adaptation.
Collapse
|
3
|
Collum TD, Stone AL, Sherman DJ, Damsteegt VD, Schneider WL, Rogers EE. Viral Reservoir Capacity of Wild Prunus Alternative Hosts of Plum Pox Virus Through Multiple Cycles of Transmission and Dormancy. PLANT DISEASE 2022; 106:101-106. [PMID: 34293916 DOI: 10.1094/pdis-04-21-0802-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plum pox virus (PPV) is a significant pathogen of Prunus worldwide and is known for having a broad experimental host range. Many of these hosts represent epidemiological risks as potential wild viral reservoirs. A comparative study of the PPV reservoir capacity of three commonly found native North American species, western choke cherry (Prunus virginiana var. demissa), black cherry (Prunus serotina), and American plum (Prunus americana) was conducted. Pennsylvania isolates of PPV-D were transmitted from the original host peach (Prunus persica cv. GF305) to all three species. Viral accumulation and transmission rates to alternative hosts and peach were monitored over the course of five vegetative growth and cold induced dormancy (CID) cycles. The three alternative host species demonstrated differences in their ability to maintain PPV-D and the likelihood of transmission to additional alternative hosts or back transmission to peach. Western choke cherry had low (5.8%) initial infection levels, PPV-D was not transmissible to additional western choke cherry, and transmission of PPV-D from western choke cherry to peach was only possible before the first CID cycle. Black cherry had intermediate initial infection levels (26.6%) but did not maintain high infection levels after repeated CID cycles. Conversely, American plum had a high level (50%) of initial infection that was not significantly different from initial infection in peach (72.2%) and maintained moderate levels (15 to 25%) of infection and PPV-D transmission to both American plum and peach through all five cycles of CID. Our results indicate that American plum has the greatest potential to act as a reservoir host for Pennsylvania isolates of PPV-D.
Collapse
Affiliation(s)
- Tamara D Collum
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture, Agricultural Research Service, Frederick, MD 21702
| | - Andrew L Stone
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture, Agricultural Research Service, Frederick, MD 21702
| | - Diana J Sherman
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture, Agricultural Research Service, Frederick, MD 21702
| | - Vernon D Damsteegt
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture, Agricultural Research Service, Frederick, MD 21702
| | - William L Schneider
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture, Agricultural Research Service, Frederick, MD 21702
| | - Elizabeth E Rogers
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture, Agricultural Research Service, Frederick, MD 21702
| |
Collapse
|
4
|
Virus Host Jumping Can Be Boosted by Adaptation to a Bridge Plant Species. Microorganisms 2021; 9:microorganisms9040805. [PMID: 33920394 PMCID: PMC8070427 DOI: 10.3390/microorganisms9040805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
Understanding biological mechanisms that regulate emergence of viral diseases, in particular those events engaging cross-species pathogens spillover, is becoming increasingly important in virology. Species barrier jumping has been extensively studied in animal viruses, and the critical role of a suitable intermediate host in animal viruses-generated human pandemics is highly topical. However, studies on host jumping involving plant viruses have been focused on shifting intra-species, leaving aside the putative role of “bridge hosts” in facilitating interspecies crossing. Here, we take advantage of several VPg mutants, derived from a chimeric construct of the potyvirus Plum pox virus (PPV), analyzing its differential behaviour in three herbaceous species. Our results showed that two VPg mutations in a Nicotiana clevelandii-adapted virus, emerged during adaptation to the bridge-host Arabidopsis thaliana, drastically prompted partial adaptation to Chenopodium foetidum. Although both changes are expected to facilitate productive interactions with eIF(iso)4E, polymorphims detected in PPV VPg and the three eIF(iso)4E studied, extrapolated to a recent VPg:eIF4E structural model, suggested that two adaptation ways can be operating. Remarkably, we found that VPg mutations driving host-range expansion in two non-related species, not only are not associated with cost trade-off constraints in the original host, but also improve fitness on it.
Collapse
|
5
|
Sanfaçon H. Modulation of disease severity by plant positive-strand RNA viruses: The complex interplay of multifunctional viral proteins, subviral RNAs and virus-associated RNAs with plant signaling pathways and defense responses. Adv Virus Res 2020; 107:87-131. [PMID: 32711736 DOI: 10.1016/bs.aivir.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses induce a range of symptoms of varying intensity, ranging from severe systemic necrosis to mild or asymptomatic infection. Several evolutionary constraints drive virus virulence, including the dependence of viruses on host factors to complete their infection cycle, the requirement to counteract or evade plant antiviral defense responses and the mode of virus transmission. Viruses have developed an array of strategies to modulate disease severity. Accumulating evidence has highlighted not only the multifunctional role that viral proteins play in disrupting or highjacking plant factors, hormone signaling pathways and intracellular organelles, but also the interaction networks between viral proteins, subviral RNAs and/or other viral-associated RNAs that regulate disease severity. This review focusses on positive-strand RNA viruses, which constitute the majority of characterized plant viruses. Using well-characterized viruses with different genome types as examples, recent advances are discussed as well as knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada.
| |
Collapse
|
6
|
The RNA-Dependent RNA Polymerase NIb of Potyviruses Plays Multifunctional, Contrasting Roles during Viral Infection. Viruses 2020; 12:v12010077. [PMID: 31936267 PMCID: PMC7019339 DOI: 10.3390/v12010077] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Potyviruses represent the largest group of known plant RNA viruses and include many agriculturally important viruses, such as Plum pox virus, Soybean mosaic virus, Turnip mosaic virus, and Potato virus Y. Potyviruses adopt polyprotein processing as their genome expression strategy. Among the 11 known viral proteins, the nuclear inclusion protein b (NIb) is the RNA-dependent RNA polymerase responsible for viral genome replication. Beyond its principal role as an RNA replicase, NIb has been shown to play key roles in diverse virus–host interactions. NIb recruits several host proteins into the viral replication complexes (VRCs), which are essential for the formation of functional VRCs for virus multiplication, and interacts with the sumoylation pathway proteins to suppress NPR1-mediated immunity response. On the other hand, NIb serves as a target of selective autophagy as well as an elicitor of effector-triggered immunity, resulting in attenuated virus infection. These contrasting roles of NIb provide an excellent example of the complex co-evolutionary arms race between plant hosts and potyviruses. This review highlights the current knowledge about the multifunctional roles of NIb in potyvirus infection, and discusses future research directions.
Collapse
|
7
|
Rodamilans B, Valli A, García JA. Molecular Plant-Plum Pox Virus Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:6-17. [PMID: 31454296 DOI: 10.1094/mpmi-07-19-0189-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plum pox virus, the agent that causes sharka disease, is among the most important plant viral pathogens, affecting Prunus trees across the globe. The fabric of interactions that the virus is able to establish with the plant regulates its life cycle, including RNA uncoating, translation, replication, virion assembly, and movement. In addition, plant-virus interactions are strongly conditioned by host specificities, which determine infection outcomes, including resistance. This review attempts to summarize the latest knowledge regarding Plum pox virus-host interactions, giving a comprehensive overview of their relevance for viral infection and plant survival, including the latest advances in genetic engineering of resistant species.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adrián Valli
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
8
|
Li Y, Xia F, Wang Y, Yan C, Jia A, Zhang Y. Characterization of a highly divergent Sugarcane mosaic virus from Canna indica L. by deep sequencing. BMC Microbiol 2019; 19:260. [PMID: 31752686 PMCID: PMC6873528 DOI: 10.1186/s12866-019-1636-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Cannas are popular ornamental plants and widely planted for the beautiful foliage and flower. Viral disease is a major threaten to canna horticulture industry. In the city of Beijing, mosaic disease in canna was frequently observed, but the associated causal agent and its biological characterization is still unknown. Results After small RNA deep sequencing, 36,776 contigs were assembled and 16 of them shared high sequence identities with the different proteins of Sugarcane mosaic virus (SCMV) of the size ranging from 86 to 1911 nt. The complete genome of SCMV isolate (canna) was reconstructed by sequencing all cDNA clones obtained from RT-PCR and 5′\3′ RACE amplifications. SCMV-canna isolate showed to have a full RNA genome of 9579 nt in length and to share 78% nt and 85% aa sequence identities with SCMV isolates from other hosts. The phylogenetic tree constructed based on the full genome sequence of SCMV isolates allocated separately the canna-isolate in a distinct clade, indicating a new strain. Recombination analyses demonstrated that SCMV-canna isolate was a recombinant originating from a sugarcane-infecting isolate (major parent, acc. no. AJ310103) and a maize-infecting isolate (minor parent, acc. no. AJ297628). Pathogenicity test showed SCMV-canna could cause typical symptoms of mosaic and necrosis in some tested plants with varying levels of severity but was less virulent than the isolate SCMV-BJ. Field survey showed that the virus was widely distributed. Conclusions This study identified SCMV as the major agent causing the prevalent mosaic symptom in canna plants in Beijing and its genomic and biological characterizations were further explored. All these data enriched the knowledge of the viruses infecting canna and would be helpful in effective disease management in canna.
Collapse
Affiliation(s)
- Yongqiang Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China. .,Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China.
| | - Fei Xia
- Beijing Institute of Landscape Architecture, Beijing, China
| | - Yixuan Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China
| | - Chenge Yan
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China.,Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China.,Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Anning Jia
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China.,Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China.
| |
Collapse
|
9
|
Hajizadeh M, Gibbs AJ, Amirnia F, Glasa M. The global phylogeny o f Plum pox virus is emerging. J Gen Virol 2019; 100:1457-1468. [PMID: 31418674 DOI: 10.1099/jgv.0.001308] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The 206 complete genomic sequences of Plum pox virus in GenBank (January 2019) were downloaded. Their main open reading frames (ORF)s were compared by phylogenetic and population genetic methods. All fell into the nine previously recognized strain clusters; the PPV-Rec and PPV-T strain ORFs were all recombinants, whereas most of those in the PPV-C, PPV-CR, PPV-CV, PPV-D, PPV-EA, PPV-M and PPV-W strain clusters were not. The strain clusters ranged in size from 2 (PPV-CV and PPV-EA) to 74 (PPV-D). The isolates of eight of the nine strains came solely from Europe and the Levant (with an exception resulting from a quarantine breach), but many PPV-D strain isolates also came from east and south Asia and the Americas. The estimated time to the most recent common ancestor (TMRCA) of all 134 non-recombinant ORFs was 820 (865-775) BCE. Most strain populations were only a few decades old, and had small intra-strain, but large inter-strain, differences; strain PPV-W was the oldest. Eurasia is clearly the 'centre of emergence' of PPV and the several PPV-D strain populations found elsewhere only show evidence of gene flow with Europe, so have come from separate introductions from Europe. All ORFs and their individual genes show evidence of strong negative selection, except the positively selected pipo gene of the recently migrant populations. The possible ancient origins of PPV are discussed.
Collapse
Affiliation(s)
- Mohammad Hajizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Adrian J Gibbs
- Emeritus Faculty Australian National University, Canberra, Australia
| | - Fahimeh Amirnia
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Miroslav Glasa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
10
|
Vijayan V, López-González S, Sánchez F, Ponz F, Pagán I. Virulence evolution of a sterilizing plant virus: Tuning multiplication and resource exploitation. Virus Evol 2017; 3:vex033. [PMID: 29250431 PMCID: PMC5724401 DOI: 10.1093/ve/vex033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Virulence evolution may have far-reaching consequences for virus epidemiology and emergence, and virologists have devoted increasing effort to understand the modulators of this process. However, still little is known on the mechanisms and determinants of virulence evolution in sterilizing viruses that, as they prevent host reproduction, may have devastating effects on host populations. Theory predicts that sterilizing parasites, including viruses, would evolve towards lower virulence and absolute host sterilization to optimize the exploitation of host resources and maximize fitness. However, this hypothesis has seldom been analyzed experimentally. We investigated the evolution of virulence of the sterilizing plant virus Turnip mosaic virus (TuMV) in its natural host Arabidopsis thaliana by serial passage experiments. After passaging, we quantified virus accumulation and infectivity, the effect of infection on plant growth and development, and virulence of the ancestral and passaged viral genotypes in A. thaliana. Results indicated that serial passaging increased the proportion of infected plants showing absolute sterility, reduced TuMV virulence, and increased virus multiplication and infectivity. Genomic comparison of the ancestral and passaged TuMV genotypes identified significant mutation clustering in the P1, P3, and 6K2 proteins, suggesting a role of these viral proteins in the observed phenotypic changes. Our results support theoretical predictions on the evolution of virulence of sterilizing parasites and contribute to better understand the phenotypic and genetic changes associated with this process.
Collapse
Affiliation(s)
- Viji Vijayan
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Autopista M-40, km 38, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Silvia López-González
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Autopista M-40, km 38, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Autopista M-40, km 38, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Autopista M-40, km 38, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Autopista M-40, km 38, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
11
|
Liu L, Peng B, Zhang Z, Wu Y, Miras M, Aranda MA, Gu Q. Exploring Different Mutations at a Single Amino Acid Position of Cucumber green mottle mosaic virus Replicase to Attain Stable Symptom Attenuation. PHYTOPATHOLOGY 2017; 107:1080-1086. [PMID: 28545349 DOI: 10.1094/phyto-03-17-0107-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cucumber green mottle mosaic virus (CGMMV) is a member of the genus Tobamovirus (family Virgaviridae) that causes serious economic losses in cucurbit crops. A possibility for CGMMV control is the use of cross-protection, for which stable attenuated isolates are required. In this study, an infectious clone was constructed for the hn isolate of CGMMV. Unexpectedly, this clone carried a nonconserved mutation involving a single nucleotide change resulting in the replacement of Arg by Cys at residue 284 of the replicase protein; this mutation correlated with delayed symptom induction and RNA accumulation, as shown in time-course experiments. Sequencing of the viral progeny showed that restoration of wild-type symptoms and increased RNA accumulation correlated with reversion of the mutation to the wild-type sequence, a phenomenon that occurred at approximately 7 to 10 days postinoculation. Thus, Arg284 seems to be crucial but not strictly necessary for virus infection. Subsequently, four other mutants in the triplet encoding Arg284 were constructed and assayed. Results showed that symptoms and their timing were diverse for the different mutants, with enhanced pathogenicity and RNA accumulation always correlating with reversion to Arg284. Therefore, the nature of the mutation strongly influenced the genetic stability of the mutant. At least two mutants were identified for which reversion did not occur by 30 days postinoculation, and these were defined as good candidates to attain stable symptom attenuation that could be useful in cross-protection.
Collapse
Affiliation(s)
- Liming Liu
- First, second, third, fourth, and seventh authors: Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; and fifth and sixth authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Bin Peng
- First, second, third, fourth, and seventh authors: Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; and fifth and sixth authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Zhenwei Zhang
- First, second, third, fourth, and seventh authors: Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; and fifth and sixth authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Yang Wu
- First, second, third, fourth, and seventh authors: Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; and fifth and sixth authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Manuel Miras
- First, second, third, fourth, and seventh authors: Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; and fifth and sixth authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Miguel A Aranda
- First, second, third, fourth, and seventh authors: Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; and fifth and sixth authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Qinsheng Gu
- First, second, third, fourth, and seventh authors: Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; and fifth and sixth authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
12
|
Pinel-Galzi A, Dubreuil-Tranchant C, Hébrard E, Mariac C, Ghesquière A, Albar L. Mutations in Rice yellow mottle virus Polyprotein P2a Involved in RYMV2 Gene Resistance Breakdown. FRONTIERS IN PLANT SCIENCE 2016; 7:1779. [PMID: 27965688 PMCID: PMC5125353 DOI: 10.3389/fpls.2016.01779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/11/2016] [Indexed: 05/09/2023]
Abstract
Rice yellow mottle virus (RYMV) is one of the major diseases of rice in Africa. The high resistance of the Oryza glaberrima Tog7291 accession involves a null allele of the RYMV2 gene, whose ortholog in Arabidopsis, CPR5, is a transmembrane nucleoporin involved in effector-triggered immunity. To optimize field deployment of the RYMV2 gene and improve its durability, which is often a weak point in varietal resistance, we analyzed its efficiency toward RYMV isolates representing the genetic diversity of the virus and the molecular basis of resistance breakdown. Tog7291 resistance efficiency was highly variable depending on the isolate used, with infection rates ranging from 0 to 98% of plants. Back-inoculation experiments indicated that infection cases were not due to an incomplete resistance phenotype but to the emergence of resistance-breaking (RB) variants. Interestingly, the capacity of the virus to overcome Tog7291 resistance is associated with a polymorphism at amino-acid 49 of the VPg protein which also affects capacity to overcome the previously studied RYMV1 resistance gene. This polymorphism appeared to be a main determinant of the emergence of RB variants. It acts independently of the resistance gene and rather reflects inter-species adaptation with potential consequences for the durability of resistance. RB mutations were identified by full-length or partial sequencing of the RYMV genome in infected Tog7291 plants and were validated by directed mutagenesis of an infectious viral clone. We found that Tog7291 resistance breakdown involved mutations in the putative membrane anchor domain of the polyprotein P2a. Although the precise effect of these mutations on rice/RYMV interaction is still unknown, our results offer a new perspective for the understanding of RYMV2 mediated resistance mechanisms. Interestingly, in the susceptible IR64 variety, RB variants showed low infectivity and frequent reversion to the wild-type genotype, suggesting that Tog7291 resistance breakdown is associated with a major loss of viral fitness in normally susceptible O. sativa varieties. Despite the high frequency of resistance breakdown in controlled conditions, this loss of fitness is an encouraging element with regards to RYMV2 resistance durability.
Collapse
Affiliation(s)
- Agnès Pinel-Galzi
- Interactions Plantes Microorganismes Environnement, Institut de Recherche pour le Développement – Centre de Coopération Internationale en Recherche Agronomique pour le Développement – Université de MontpellierMontpellier, France
| | - Christine Dubreuil-Tranchant
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| | - Eugénie Hébrard
- Interactions Plantes Microorganismes Environnement, Institut de Recherche pour le Développement – Centre de Coopération Internationale en Recherche Agronomique pour le Développement – Université de MontpellierMontpellier, France
| | - Cédric Mariac
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| | - Alain Ghesquière
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| | - Laurence Albar
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| |
Collapse
|
13
|
Moreno-Pérez MG, García-Luque I, Fraile A, García-Arenal F. Mutations That Determine Resistance Breaking in a Plant RNA Virus Have Pleiotropic Effects on Its Fitness That Depend on the Host Environment and on the Type, Single or Mixed, of Infection. J Virol 2016; 90:9128-37. [PMID: 27489266 PMCID: PMC5044817 DOI: 10.1128/jvi.00737-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Overcoming host resistance in gene-for-gene host-virus interactions is an important instance of host range expansion, which can be hindered by across-host fitness trade-offs. Trade-offs are generated by negative effects of host range mutations on the virus fitness in the original host, i.e., by antagonistic pleiotropy. It has been reported that different mutations in Pepper mild mottle virus (PMMoV) coat protein result in overcoming L-gene resistance in pepper. To analyze if resistance-breaking mutations in PMMoV result in antagonistic pleiotropy, all reported mutations determining the overcoming of L(3) and L(4) alleles were introduced in biologically active cDNA clones. Then, the parental and mutant virus genotypes were assayed in susceptible pepper genotypes with an L(+), L(1), or L(2) allele, in single and in mixed infections. Resistance-breaking mutations had pleiotropic effects on the virus fitness that, according to the specific mutation, the host genotype, and the type of infection, single or mixed with other virus genotypes, were antagonistic or positive. Thus, resistance-breaking mutations can generate fitness trade-offs both across hosts and across types of infection, and the frequency of host range mutants will depend on the genetic structure of the host population and on the frequency of mixed infections by different virus genotypes. Also, resistance-breaking mutations variously affected virulence, which may further influence the evolution of host range expansion. IMPORTANCE A major cause of virus emergence is host range expansion, which may be hindered by across-host fitness trade-offs caused by negative pleiotropy of host range mutations. An important instance of host range expansion is overcoming host resistance in gene-for-gene plant-virus interactions. We analyze here if mutations in the coat protein of Pepper mild mottle virus determining L-gene resistance-breaking in pepper have associated fitness penalties in susceptible host genotypes. Results show that pleiotropic effects of resistance-breaking mutations on virus fitness depend on the specific mutation, the susceptible host genotype, and the type of infection, single or mixed, with other virus genotypes. Accordingly, resistance-breaking mutations can have negative, positive, or no pleiotropic effects on virus fitness. These results underscore the complexity of host range expansion evolution and, specifically, the difficulty of predicting the overcoming of resistance factors in crops.
Collapse
Affiliation(s)
- Manuel G Moreno-Pérez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | | | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
14
|
Elena SF. Local adaptation of plant viruses: lessons from experimental evolution. Mol Ecol 2016; 26:1711-1719. [PMID: 27612225 DOI: 10.1111/mec.13836] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023]
Abstract
For multihost pathogens, adaptation to multiple hosts has important implications for both applied and basic research. At the applied level, it is one of the main factors determining the probability and severity of emerging disease outbreaks. At the basic level, it is thought to be a key mechanism for the maintenance of genetic diversity both in host and pathogen species. In recent years, a number of evolution experiments have assessed the fate of plant virus populations replicating within and adapting to one single or to multiple hosts species. A first group of these experiments tackled the existence of trade-offs in fitness and virulence for viruses evolving either within a single hosts species or alternating between two different host species. A second set of experiments explored the role of genetic variability in susceptibility and resistance to infection among individuals from the same host species in the extent of virus local adaptation and of virulence. In general, when a single host species or genotype is available, these experiments show that local adaptation takes place, often but not always associated with a fitness trade-off. However, alternating between different host species or infecting resistant host genotypes may select for generalist viruses that experience no fitness cost. Therefore, the expected cost of generalism, arising from antagonistic pleiotropy and other genetic mechanisms generating fitness trade-offs between hosts, could not be generalized and strongly depend on the characteristics of each particular pathosystem. At the genomic level, these studies show pervasive convergent molecular evolution, suggesting that the number of accessible molecular pathways leading to adaptation to novel hosts is limited.
Collapse
Affiliation(s)
- Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, 46022, Spain.,Instituto de Biología Integrativa y de Sistemas, Consejo Superior de Investigaciones Científicas-Universitat de València, Valencia, 46980, Spain.,The Santa Fe Institute, Santa Fe, NM, 87501, USA
| |
Collapse
|
15
|
Hillung J, García-García F, Dopazo J, Cuevas JM, Elena SF. The transcriptomics of an experimentally evolved plant-virus interaction. Sci Rep 2016; 6:24901. [PMID: 27113435 PMCID: PMC4845063 DOI: 10.1038/srep24901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/07/2016] [Indexed: 01/14/2023] Open
Abstract
Models of plant-virus interaction assume that the ability of a virus to infect a host genotype depends on the matching between virulence and resistance genes. Recently, we evolved tobacco etch potyvirus (TEV) lineages on different ecotypes of Arabidopsis thaliana, and found that some ecotypes selected for specialist viruses whereas others selected for generalists. Here we sought to evaluate the transcriptomic basis of such relationships. We have characterized the transcriptomic responses of five ecotypes infected with the ancestral and evolved viruses. Genes and functional categories differentially expressed by plants infected with local TEV isolates were identified, showing heterogeneous responses among ecotypes, although significant parallelism existed among lineages evolved in the same ecotype. Although genes involved in immune responses were altered upon infection, other functional groups were also pervasively over-represented, suggesting that plant resistance genes were not the only drivers of viral adaptation. Finally, the transcriptomic consequences of infection with the generalist and specialist lineages were compared. Whilst the generalist induced very similar perturbations in the transcriptomes of the different ecotypes, the perturbations induced by the specialist were divergent. Plant defense mechanisms were activated when the infecting virus was specialist but they were down-regulated when infecting with generalist.
Collapse
Affiliation(s)
- Julia Hillung
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | - Francisco García-García
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012 València, Spain
| | - Joaquín Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012 València, Spain
- Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), 46012 València, Spain
- Functional Genomics Node, INB at CIPF, 46012 València, Spain
| | - José M. Cuevas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA
| |
Collapse
|
16
|
Gallet R, Fontaine C, Bonnot F, Milazzo J, Tertois C, Adreit H, Ravigné V, Fournier E, Tharreau D. Evolution of Compatibility Range in the Rice-Magnaporthe oryzae System: An Uneven Distribution of R Genes Between Rice Subspecies. PHYTOPATHOLOGY 2016; 106:348-354. [PMID: 26667186 DOI: 10.1094/phyto-07-15-0169-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Efficient strategies for limiting the impact of pathogens on crops require a good understanding of the factors underlying the evolution of compatibility range for the pathogens and host plants, i.e., the set of host genotypes that a particular pathogen genotype can infect and the set of pathogen genotypes that can infect a particular host genotype. Until now, little is known about the evolutionary and ecological factors driving compatibility ranges in systems implicating crop plants. We studied the evolution of host and pathogen compatibility ranges for rice blast disease, which is caused by the ascomycete Magnaporthe oryzae. We challenged 61 rice varieties from three rice subspecies with 31 strains of M. oryzae collected worldwide from all major known genetic groups. We determined the compatibility range of each plant variety and pathogen genotype and the severity of each plant-pathogen interaction. Compatibility ranges differed between rice subspecies, with the most resistant subspecies selecting for pathogens with broader compatibility ranges and the least resistant subspecies selecting for pathogens with narrower compatibility ranges. These results are consistent with a nested distribution of R genes between rice subspecies.
Collapse
Affiliation(s)
- Romain Gallet
- First and eighth authors: INRA, UMR BGPI, F-34398 Montpellier, France; second author: Centre d'Ecologie et des Sciences de la Conservation-UMR 7204, Muséum national d'Histoire naturelle, Paris, France; third, fourth, fifth, sixth, seventh, and ninth authors: CIRAD, UMR BGPI, F-34398 Montpellier, France; and seventh author: CIRAD, UMR PVBMT, F-97410 Saint-Pierre, France
| | - Colin Fontaine
- First and eighth authors: INRA, UMR BGPI, F-34398 Montpellier, France; second author: Centre d'Ecologie et des Sciences de la Conservation-UMR 7204, Muséum national d'Histoire naturelle, Paris, France; third, fourth, fifth, sixth, seventh, and ninth authors: CIRAD, UMR BGPI, F-34398 Montpellier, France; and seventh author: CIRAD, UMR PVBMT, F-97410 Saint-Pierre, France
| | - François Bonnot
- First and eighth authors: INRA, UMR BGPI, F-34398 Montpellier, France; second author: Centre d'Ecologie et des Sciences de la Conservation-UMR 7204, Muséum national d'Histoire naturelle, Paris, France; third, fourth, fifth, sixth, seventh, and ninth authors: CIRAD, UMR BGPI, F-34398 Montpellier, France; and seventh author: CIRAD, UMR PVBMT, F-97410 Saint-Pierre, France
| | - Joëlle Milazzo
- First and eighth authors: INRA, UMR BGPI, F-34398 Montpellier, France; second author: Centre d'Ecologie et des Sciences de la Conservation-UMR 7204, Muséum national d'Histoire naturelle, Paris, France; third, fourth, fifth, sixth, seventh, and ninth authors: CIRAD, UMR BGPI, F-34398 Montpellier, France; and seventh author: CIRAD, UMR PVBMT, F-97410 Saint-Pierre, France
| | - Christophe Tertois
- First and eighth authors: INRA, UMR BGPI, F-34398 Montpellier, France; second author: Centre d'Ecologie et des Sciences de la Conservation-UMR 7204, Muséum national d'Histoire naturelle, Paris, France; third, fourth, fifth, sixth, seventh, and ninth authors: CIRAD, UMR BGPI, F-34398 Montpellier, France; and seventh author: CIRAD, UMR PVBMT, F-97410 Saint-Pierre, France
| | - Henri Adreit
- First and eighth authors: INRA, UMR BGPI, F-34398 Montpellier, France; second author: Centre d'Ecologie et des Sciences de la Conservation-UMR 7204, Muséum national d'Histoire naturelle, Paris, France; third, fourth, fifth, sixth, seventh, and ninth authors: CIRAD, UMR BGPI, F-34398 Montpellier, France; and seventh author: CIRAD, UMR PVBMT, F-97410 Saint-Pierre, France
| | - Virginie Ravigné
- First and eighth authors: INRA, UMR BGPI, F-34398 Montpellier, France; second author: Centre d'Ecologie et des Sciences de la Conservation-UMR 7204, Muséum national d'Histoire naturelle, Paris, France; third, fourth, fifth, sixth, seventh, and ninth authors: CIRAD, UMR BGPI, F-34398 Montpellier, France; and seventh author: CIRAD, UMR PVBMT, F-97410 Saint-Pierre, France
| | - Elisabeth Fournier
- First and eighth authors: INRA, UMR BGPI, F-34398 Montpellier, France; second author: Centre d'Ecologie et des Sciences de la Conservation-UMR 7204, Muséum national d'Histoire naturelle, Paris, France; third, fourth, fifth, sixth, seventh, and ninth authors: CIRAD, UMR BGPI, F-34398 Montpellier, France; and seventh author: CIRAD, UMR PVBMT, F-97410 Saint-Pierre, France
| | - Didier Tharreau
- First and eighth authors: INRA, UMR BGPI, F-34398 Montpellier, France; second author: Centre d'Ecologie et des Sciences de la Conservation-UMR 7204, Muséum national d'Histoire naturelle, Paris, France; third, fourth, fifth, sixth, seventh, and ninth authors: CIRAD, UMR BGPI, F-34398 Montpellier, France; and seventh author: CIRAD, UMR PVBMT, F-97410 Saint-Pierre, France
| |
Collapse
|
17
|
Bartels M, French R, Graybosch RA, Tatineni S. Triticum mosaic virus exhibits limited population variation yet shows evidence of parallel evolution after replicated serial passage in wheat. Virology 2016; 492:92-100. [PMID: 26914507 DOI: 10.1016/j.virol.2016.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 10/22/2022]
Abstract
An infectious cDNA clone of Triticum mosaic virus (TriMV) (genus Poacevirus; family Potyviridae) was used to establish three independent lineages in wheat to examine intra-host population diversity levels within protein 1 (P1) and coat protein (CP) cistrons over time. Genetic variation was assessed at passages 9, 18 and 24 by single-strand conformation polymorphism, followed by nucleotide sequencing. The founding P1 region genotype was retained at high frequencies in most lineage/passage populations, while the founding CP genotype disappeared after passage 18 in two lineages. We found that rare TriMV genotypes were present only transiently and lineages followed independent evolutionary trajectories, suggesting that genetic drift dominates TriMV evolution. These results further suggest that experimental populations of TriMV exhibit lower mutant frequencies than that of Wheat streak mosaic virus (genus Tritimovirus; family Potyviridae) in wheat. Nevertheless, there was evidence for parallel evolution at a synonymous site in the TriMV CP cistron.
Collapse
Affiliation(s)
- Melissa Bartels
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Roy French
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Robert A Graybosch
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
18
|
Chirkov S, Ivanov P, Sheveleva A, Kudryavtseva A, Prikhodko Y, Mitrofanova I. Occurrence and characterization of plum pox virus strain D isolates from European Russia and Crimea. Arch Virol 2015; 161:425-30. [PMID: 26530833 DOI: 10.1007/s00705-015-2658-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
Numerous plum pox virus (PPV) strain D isolates have been found in geographically distant regions of European Russia and the Crimean peninsula on different stone fruit hosts. Phylogenetic analysis of their partial and complete genomes suggests multiple introductions of PPV-D into Russia. Distinct natural isolates from Prunus tomentosa were found to bear unique amino acid substitutions in the N-terminus of the coat protein (CP) that may contribute to the adaptation of PPV-D to this host. Serological analysis using the PPV-D-specific monoclonal antibody 4DG5 provided further evidence that mutations at positions 58 and 59 of the CP are crucial for antibody binding.
Collapse
Affiliation(s)
| | - Peter Ivanov
- Lomonosov Moscow State University, Moscow, Russia
| | | | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
19
|
Vassilakos N, Simon V, Tzima A, Johansen E, Moury B. Genetic Determinism and Evolutionary Reconstruction of a Host Jump in a Plant Virus. Mol Biol Evol 2015; 33:541-53. [PMID: 26503941 DOI: 10.1093/molbev/msv222] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In spite of their widespread occurrence, only few host jumps by plant viruses have been evidenced and the molecular bases of even fewer have been determined. A combination of three independent approaches, 1) experimental evolution followed by reverse genetics analysis, 2) positive selection analysis, and 3) locus-by-locus analysis of molecular variance (AMOVA) allowed reconstructing the Potato virus Y (PVY; genus Potyvirus, family Potyviridae) jump to pepper (Capsicum annuum), probably from other solanaceous plants. Synthetic chimeras between infectious cDNA clones of two PVY isolates with contrasted levels of adaptation to C. annuum showed that the P3 and, to a lower extent, the CI cistron played important roles in infectivity toward C. annuum. The three analytical approaches pinpointed a single nonsynonymous substitution in the P3 and P3N-PIPO cistrons that evolved several times independently and conferred adaptation to C. annuum. In addition to increasing our knowledge of host jumps in plant viruses, this study illustrates also the efficiency of locus-by-locus AMOVA and combined approaches to identify adaptive mutations in the genome of RNA viruses.
Collapse
Affiliation(s)
- Nikon Vassilakos
- Laboratory of Virology, Benaki Phytopathological Institute, Kifissia, Greece
| | | | - Aliki Tzima
- Laboratory of Virology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Elisabeth Johansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, Frederiksberg C, Denmark
| | - Benoît Moury
- INRA, UR407 Pathologie Végétale, Montfavet, France
| |
Collapse
|
20
|
Viral factors involved in plant pathogenesis. Curr Opin Virol 2015; 11:21-30. [DOI: 10.1016/j.coviro.2015.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022]
|
21
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
22
|
Bedhomme S, Hillung J, Elena SF. Emerging viruses: why they are not jacks of all trades? Curr Opin Virol 2014; 10:1-6. [PMID: 25467278 DOI: 10.1016/j.coviro.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022]
Abstract
In order to limit the impact of the recent pandemics ignited by viral host jumps, it is necessary to better understand the ecological and evolutionary factors influencing the early steps of emergence and the interactions between them. Antagonistic pleiotropy, that is, the negative fitness effect in the primary host of mutations allowing the infection of and the multiplication in a new host, has long been thought to be the main limitation to the evolution of generalist viruses and thus to emergence. However, the accumulation of experimental examples contradicting the hypothesis of antagonistic pleiotropy has highlighted the importance of other factors such as the epistasis between mutations increasing the adaptation to a new host. Epistasis is pervasive in viruses, affects the shape of the adaptive landscape and consequently the accessibility of evolutionary pathways. Finally, recent studies have gone steps further in the complexity of viral fitness determinism and stressed the potential importance of the epistatic pleiotropy and of the impact of host living conditions.
Collapse
Affiliation(s)
- Stéphanie Bedhomme
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain.
| | - Julia Hillung
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain; The Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
23
|
Abstract
Emerging viral diseases are often the product of a host shift, where a pathogen jumps from its original host into a novel species. Phylogenetic studies show that host shifts are a frequent event in the evolution of most pathogens, but why pathogens successfully jump between some host species but not others is only just becoming clear. The susceptibility of potential new hosts can vary enormously, with close relatives of the natural host typically being the most susceptible. Often, pathogens must adapt to successfully infect a novel host, for example by evolving to use different cell surface receptors, to escape the immune response, or to ensure they are transmitted by the new host. In viruses there are often limited molecular solutions to achieve this, and the same sequence changes are often seen each time a virus infects a particular host. These changes may come at a cost to other aspects of the pathogen's fitness, and this may sometimes prevent host shifts from occurring. Here we examine how these evolutionary factors affect patterns of host shifts and disease emergence.
Collapse
Affiliation(s)
- Ben Longdon
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | | | - Colin A. Russell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John J. Welch
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Stobbe AH, Schneider WL, Hoyt PR, Melcher U. Screening metagenomic data for viruses using the e-probe diagnostic nucleic acid assay. PHYTOPATHOLOGY 2014; 104:1125-1129. [PMID: 25207481 DOI: 10.1094/phyto-11-13-0310-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Next generation sequencing (NGS) is not used commonly in diagnostics, in part due to the large amount of time and computational power needed to identify the taxonomic origin of each sequence in a NGS data set. By using the unassembled NGS data sets as the target for searches, pathogen-specific sequences, termed e-probes, could be used as queries to enable detection of specific viruses or organisms in plant sample metagenomes. This method, designated e-probe diagnostic nucleic acid assay, first tested with mock sequence databases, was tested with NGS data sets generated from plants infected with a DNA (Bean golden yellow mosaic virus, BGYMV) or an RNA (Plum pox virus, PPV) virus. In addition, the ability to detect and differentiate among strains of a single virus species, PPV, was examined by using probe sets that were specific to strains. The use of probe sets for multiple viruses determined that one sample was dually infected with BGYMV and Bean golden mosaic virus.
Collapse
|
25
|
Hillung J, Cuevas JM, Valverde S, Elena SF. Experimental evolution of an emerging plant virus in host genotypes that differ in their susceptibility to infection. Evolution 2014; 68:2467-80. [PMID: 24889935 DOI: 10.1111/evo.12458] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/16/2014] [Indexed: 01/02/2023]
Abstract
This study evaluates the extent to which genetic differences among host individuals from the same species condition the evolution of a plant RNA virus. We performed a threefold replicated evolution experiment in which Tobacco etch potyvirus isolate At17b (TEV-At17b), adapted to Arabidopsis thaliana ecotype Ler-0, was serially passaged in five genetically heterogeneous ecotypes of A. thaliana. After 15 passages we found that evolved viruses improved their fitness, showed higher infectivity and stronger virulence in their local host ecotypes. The genome of evolved lineages was sequenced and putative adaptive mutations identified. Host-driven convergent mutations have been identified. Evidences supported selection for increased translational efficiency. Next, we sought for the specificity of virus adaptation by infecting all five ecotypes with all 15 evolved virus populations. We found that some ecotypes were more permissive to infection than others, and that some evolved virus isolates were more specialist/generalist than others. The bipartite network linking ecotypes with evolved viruses was significantly nested but not modular, suggesting that hard-to-infect ecotypes were infected by generalist viruses whereas easy-to-infect ecotypes were infected by all viruses, as predicted by a gene-for-gene model of infection.
Collapse
Affiliation(s)
- Julia Hillung
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Campus UPV CPI 8E, C/Ingeniero Fausto Elio s/n, 46022, València, Spain
| | | | | | | |
Collapse
|
26
|
Adaptation to fluctuating temperatures in an RNA virus is driven by the most stringent selective pressure. PLoS One 2014; 9:e100940. [PMID: 24963780 PMCID: PMC4071030 DOI: 10.1371/journal.pone.0100940] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/01/2014] [Indexed: 02/05/2023] Open
Abstract
The frequency of change in the selective pressures is one of the main factors driving evolution. It is generally accepted that constant environments select specialist organisms whereas changing environments favour generalists. The particular outcome achieved in either case also depends on the relative strength of the selective pressures and on the fitness costs of mutations across environments. RNA viruses are characterized by their high genetic diversity, which provides fast adaptation to environmental changes and helps them evade most antiviral treatments. Therefore, the study of the adaptive possibilities of RNA viruses is highly relevant for both basic and applied research. In this study we have evolved an RNA virus, the bacteriophage Qβ, under three different temperatures that either were kept constant or alternated periodically. The populations obtained were analyzed at the phenotypic and the genotypic level to characterize the evolutionary process followed by the virus in each case and the amount of convergent genetic changes attained. Finally, we also investigated the influence of the pre-existent genetic diversity on adaptation to high temperature. The main conclusions that arise from our results are: i) under periodically changing temperature conditions, evolution of bacteriophage Qβ is driven by the most stringent selective pressure, ii) there is a high degree of evolutionary convergence between replicated populations and also among populations evolved at different temperatures, iii) there are mutations specific of a particular condition, and iv) adaptation to high temperatures in populations differing in their pre-existent genetic diversity takes place through the selection of a common set of mutations.
Collapse
|
27
|
Svanella-Dumas L, Verdin E, Faure C, German-Retana S, Gognalons P, Danet JL, Marais A, Candresse T. Adaptation of lettuce mosaic virus to Catharanthus roseus involves mutations in the central domain of the VPg. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:491-7. [PMID: 24400938 DOI: 10.1094/mpmi-10-13-0320-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An isolate of Lettuce mosaic virus (LMV, a Potyvirus) infecting Madagascar periwinckle (Catharanthus roseus) was identified and characterized by Illumina deep sequencing. LMV-Cr has no close affinities to previously sequenced LMV isolates and represents a novel, divergent LMV clade. Inoculation experiments with other representative LMV isolates showed that they are unable to infect C. roseus, which was not known to be a host for LMV. However, three C. roseus variants of one of these isolates, LMV-AF199, could be selected and partially or completely sequenced. These variants are characterized by the accumulation of mutations affecting the C-terminal part of the cylindrical inclusion (CI) helicase and the central part of the VPg. In particular, a serine to proline mutation at amino acid 143 of the VPg was observed in all three independently selected variants and is also present in the LMV-Cr isolate, making it a prime candidate as a host-range determinant. Other mutations at VPg positions 65 and 144 could also contribute to the ability to infect C. roseus. Inoculation experiments involving a recombinant LMV expressing a permissive lettuce eukaryotic translation initiation factor 4E (eIF4E) suggest that eIF4E does not contribute to the interaction of most LMV isolates with C. roseus.
Collapse
|
28
|
García JA, Glasa M, Cambra M, Candresse T. Plum pox virus and sharka: a model potyvirus and a major disease. MOLECULAR PLANT PATHOLOGY 2014; 15:226-41. [PMID: 24102673 PMCID: PMC6638681 DOI: 10.1111/mpp.12083] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
TAXONOMIC RELATIONSHIPS Plum pox virus (PPV) is a member of the genus Potyvirus in the family Potyviridae. PPV diversity is structured into at least eight monophyletic strains. GEOGRAPHICAL DISTRIBUTION First discovered in Bulgaria, PPV is nowadays present in most of continental Europe (with an endemic status in many central and southern European countries) and has progressively spread to many countries on other continents. GENOMIC STRUCTURE Typical of potyviruses, the PPV genome is a positive-sense single-stranded RNA (ssRNA), with a protein linked to its 5' end and a 3'-terminal poly A tail. It is encapsidated by a single type of capsid protein (CP) in flexuous rod particles and is translated into a large polyprotein which is proteolytically processed in at least 10 final products: P1, HCPro, P3, 6K1, CI, 6K2, VPg, NIapro, NIb and CP. In addition, P3N-PIPO is predicted to be produced by a translational frameshift. PATHOGENICITY FEATURES PPV causes sharka, the most damaging viral disease of stone fruit trees. It also infects wild and ornamental Prunus trees and has a large experimental host range in herbaceous species. PPV spreads over long distances by uncontrolled movement of plant material, and many species of aphid transmit the virus locally in a nonpersistent manner. SOURCES OF RESISTANCE A few natural sources of resistance to PPV have been found so far in Prunus species, which are being used in classical breeding programmes. Different genetic engineering approaches are being used to generate resistance to PPV, and a transgenic plum, 'HoneySweet', transformed with the viral CP gene, has demonstrated high resistance to PPV in field tests in several countries and has obtained regulatory approval in the USA.
Collapse
Affiliation(s)
- Juan Antonio García
- Departmento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Moreno-Pérez MG, Pagán I, Aragón-Caballero L, Cáceres F, Fraile A, García-Arenal F. Ecological and genetic determinants of Pepino Mosaic Virus emergence. J Virol 2014; 88:3359-68. [PMID: 24390328 PMCID: PMC3957916 DOI: 10.1128/jvi.02980-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/29/2013] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Virus emergence is a complex phenomenon, which generally involves spread to a new host from a wild host, followed by adaptation to the new host. Although viruses account for the largest fraction of emerging crop pathogens, knowledge about their emergence is incomplete. We address here the question of whether Pepino Mosaic Virus (PepMV) emergence as a major tomato pathogen worldwide could have involved spread from wild to cultivated plant species and host adaptation. For this, we surveyed natural populations of wild tomatoes in southern Peru for PepMV infection. PepMV incidence, genetic variation, population structure, and accumulation in various hosts were analyzed. PepMV incidence in wild tomatoes was high, and a strain not yet reported in domestic tomato was characterized. This strain had a wide host range within the Solanaceae, multiplying efficiently in most assayed Solanum species and being adapted to wild tomato hosts. Conversely, PepMV isolates from tomato crops showed evidence of adaptation to domestic tomato, possibly traded against adaptation to wild tomatoes. Phylogenetic reconstructions indicated that the most probable ancestral sequence came from a wild Solanum species. A high incidence of PepMV in wild tomato relatives would favor virus spread to crops and its efficient multiplication in different Solanum species, including tomato, allowing its establishment as an epidemic pathogen. Later, adaptation to tomato, traded off against adaptation to other Solanum species, would isolate tomato populations from those in other hosts. IMPORTANCE Virus emergence is a complex phenomenon involving multiple ecological and genetic factors and is considered to involve three phases: virus encounter with the new host, virus adaptation to the new host, and changes in the epidemiological dynamics. We analyze here if this was the case in the recent emergence of Pepino Mosaic Virus (PepMV) in tomato crops worldwide. We characterized a new strain of PepMV infecting wild tomato populations in Peru. Comparison of this strain with PepMV isolates from tomato crops, plus phylogenetic reconstructions, supports a scenario in which PepMV would have spread to crops from wild tomato relatives, followed by adaptation to the new host and eventually leading to population isolation. Our data, which derive from the analysis of field isolates rather than from experimental evolution approaches, significantly contribute to understanding of plant virus emergence, which is necessary for its anticipation and prevention.
Collapse
Affiliation(s)
- Manuel G. Moreno-Pérez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Fátima Cáceres
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Nacional de San Agustín, Arequipa, Peru
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
30
|
Calvo M, Malinowski T, García JA. Single amino acid changes in the 6K1-CI region can promote the alternative adaptation of Prunus- and Nicotiana-propagated Plum pox virus C isolates to either host. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:136-49. [PMID: 24200075 DOI: 10.1094/mpmi-08-13-0242-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plum pox virus (PPV) C is one of the less common PPV strains and specifically infects cherry trees in nature. Making use of two PPV-C isolates that display different pathogenicity features, i.e., SwCMp, which had been adapted to Nicotiana species, and BY101, which had been isolated from cherry rootstock L2 (Prunus lannesiana) and propagated only in cherry species, we have generated two infective full-length cDNA clones in order to determine which viral factors are involved in the adaptation to each host. According to our results, the C-P3(PIPO)/6K1/N-CI (cylindrical inclusion) region contains overlapping but not coincident viral determinants involved in symptoms development, local viral amplification, and systemic movement capacity. Amino acid changes in this region promoting the adaptation to N. benthamiana or P. avium have trade-off effects in the alternative host. In both cases, adaptation can be achieved through single amino acid changes in the NIapro protease recognition motif between 6K1 and CI or in nearby sequences. Thus, we hypothesize that the potyvirus polyprotein processing could depend on specific host factors and the adaptation of PPV-C isolates to particular hosts relies on a fine regulation of the proteolytic cleavage of the 6K1-CI junction.
Collapse
|
31
|
Carbonell A, Maliogka VI, Pérez JDJ, Salvador B, León DS, García JA, Simón-Mateo C. Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow Plum pox virus to adapt to new hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1211-24. [PMID: 23745677 DOI: 10.1094/mpmi-04-13-0093-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plum pox virus (PPV)-D and PPV-R are two isolates from strain D of PPV that differ in host specificity. Previous analyses of chimeras originating from PPV-R and PPV-D suggested that the N terminus of the coat protein (CP) includes host-specific pathogenicity determinants. Here, these determinants were mapped precisely by analyzing the infectivity in herbaceous and woody species of chimeras containing a fragment of the 3' region of PPV-D (including the region coding for the CP) in a PPV-R backbone. These chimeras were not infectious in Prunus persica, but systemically infected Nicotiana clevelandii and N. benthamiana when specific amino acids were modified or deleted in a short 30-amino-acid region of the N terminus of the CP. Most of these mutations did not reduce PPV fitness in Prunus spp. although others impaired systemic infection in this host. We propose a model in which the N terminus of the CP, highly relevant for virus systemic movement, is targeted by a host defense mechanism in Nicotiana spp. Mutations in this short region allow PPV to overcome the defense response in this host but can compromise the efficiency of PPV systemic movement in other hosts such as Prunus spp.
Collapse
|
32
|
Damsteegt VD, Stone AL, Smith OP, McDaniel L, Sherman DJ, Dardick C, Hammond J, Jordan R, Schneider WL. A previously undescribed potyvirus isolated and characterized from arborescent Brugmansia. Arch Virol 2013; 158:1235-44. [PMID: 23381392 DOI: 10.1007/s00705-012-1600-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/01/2012] [Indexed: 10/27/2022]
Abstract
A suspected virus disease was identified from an arborescent Brugmansia x candida Pers. (syn. Datura candida Pers.) tree. The causal agent was aphid transmissible at low rates. Viral particles were purified from infected tobacco tissue, analyzed, and purified virions were inoculated into healthy tobacco plants to recreate the symptoms. The virions had a mean length of 720-729 nm, and infected cells contained inclusion bodies typical of potyvirus infections. Analysis of infected tissues and purified virions with a panel of potyvirus-specific antibodies confirmed identification as a potyvirus. Viral host range, dilution end point, thermal tolerance and aphid transmission characteristics were examined. The viral genome (9761 nt) is typical of potyviruses, with the closest related potyvirus being pepper mottle virus, at 72 % nt sequence identity. Based on conventions for naming novel potyviruses, the virus was determined to be a member of a previously undescribed species, tentatively named "Brugmansia mosaic virus" (BruMV).
Collapse
Affiliation(s)
- Vernon D Damsteegt
- USDA-ARS Foreign Disease/Weed Science Research Unit, Fort Detrick, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Barrett LG, Heil M. Unifying concepts and mechanisms in the specificity of plant-enemy interactions. TRENDS IN PLANT SCIENCE 2012; 17:282-92. [PMID: 22465042 DOI: 10.1016/j.tplants.2012.02.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/13/2012] [Accepted: 02/28/2012] [Indexed: 05/08/2023]
Abstract
Host ranges are commonly quantified to classify herbivores and plant pathogens as either generalists or specialists. Here, we summarize patterns and mechanisms in the interactions of plants with these enemies along different axes of specificity. We highlight the many dimensions within which plant enemies can specify and consider the underlying ecological, evolutionary and molecular mechanisms. Host resistance traits and enemy effectors emerge as central players determining host utilization and thus host range. Finally, we review approaches to studying the causes and consequences of variation in the specificity of plant-enemy interactions. Knowledge of the molecular mechanisms that determine host range is required to understand host shifts, and evolutionary transitions among specialist and generalist strategies, and to predict potential host ranges of pathogens and herbivores.
Collapse
Affiliation(s)
- Luke G Barrett
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT, 2601, Australia
| | | |
Collapse
|
34
|
Bedhomme S, Lafforgue G, Elena SF. Multihost Experimental Evolution of a Plant RNA Virus Reveals Local Adaptation and Host-Specific Mutations. Mol Biol Evol 2011; 29:1481-92. [DOI: 10.1093/molbev/msr314] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
35
|
Stobbe AH, Melcher U, Palmer MW, Roossinck MJ, Shen G. Co-divergence and host-switching in the evolution of tobamoviruses. J Gen Virol 2011; 93:408-418. [PMID: 22049092 DOI: 10.1099/vir.0.034280-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The proposed phylogenetic structure of the genus Tobamovirus supports the idea that these viruses have codiverged with their hosts since radiation of the hosts from a common ancestor. The determinations of genome sequence for two strains of Passion fruit mosaic virus (PafMV), a tobamovirus from plants of the family Passifloraceae (order Malpighiales) from which only one other tobamovirus (Maracuja mosaic virus; MarMV) has been characterized, combined with the development of Bayesian analysis methods for phylogenetic inference, provided an opportunity to reassess the co-divergence hypothesis. The sequence of one PafMV strain, PfaMV-TGP, was discovered during a survey of plants of the Tallgrass Prairie Preserve for their virus content. Its nucleotides are only 73 % identical to those of MarMV. A conserved ORF not found in other tobamovirus genomes, and encoding a cysteine-rich protein, was found in MarMV and both PafMV strains. Phylogenetic tree construction, using an alignment of the nucleotide sequences of PafMV-TGP and other tobamoviruses resulted in a major clade containing isolates exclusively from rosid plants. Asterid-derived viruses were exclusively found in a second major clade that also contained an orchid-derived tobamovirus and tobamoviruses infecting plants of the order Brassicales. With a few exceptions, calibrating the virus tree with dates of host divergence at two points resulted in predictions of divergence times of family specific tobamovirus clades that were consistent with the times of divergence of the host plant orders.
Collapse
Affiliation(s)
- Anthony H Stobbe
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ulrich Melcher
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael W Palmer
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA
| | - Marilyn J Roossinck
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Guoan Shen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| |
Collapse
|
36
|
Damsteegt VD, Stone AL, Kuhlmann M, Gildow FE, Domier LL, Sherman DJ, Tian B, Schneider WL. Acquisition and Transmissibility of U.S. Soybean dwarf virus Isolates by the Soybean Aphid, Aphis glycines. PLANT DISEASE 2011; 95:945-950. [PMID: 30732111 DOI: 10.1094/pdis-10-10-0726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soybean dwarf virus (SbDV) exists as several distinct strains based on symptomatology, vector specificity, and host range. Originally characterized Japanese isolates of SbDV were specifically transmitted by Aulacorthum solani. More recently, additional Japanese isolates and endemic U.S. isolates have been shown to be transmitted by several different aphid species. The soybean aphid, Aphis glycines, the only aphid that colonizes soybean, has been shown to be a very inefficient vector of some SbDV isolates from Japan and the United States. Transmission experiments have shown that the soybean aphid can transmit certain isolates of SbDV from soybean to soybean and clover species and from clover to clover and soybean with long acquisition and inoculation access periods. Although transmission of SbDV by the soybean aphid is very inefficient, the large soybean aphid populations that develop on soybean may have epidemiological potential to produce serious SbDV-induced yield losses.
Collapse
Affiliation(s)
- V D Damsteegt
- Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Fort Detrick, MD
| | - A L Stone
- Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Fort Detrick, MD
| | - M Kuhlmann
- Cell Biology & Molecular Genetics, UMD, College Park, MD
| | - F E Gildow
- Department of Plant Pathology, Pennsylvania State University, State College, PA
| | - L L Domier
- USDA-ARS, University of Illinois, Champaign, IL
| | - D J Sherman
- Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Fort Detrick, MD
| | - B Tian
- Department of Plant Pathology, Pennsylvania State University, State College, PA
| | - W L Schneider
- Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Fort Detrick, MD
| |
Collapse
|
37
|
Schneider WL, Damsteegt VD, Gildow FE, Stone AL, Sherman DJ, Levy LE, Mavrodieva V, Richwine N, Welliver R, Luster DG. Molecular, ultrastructural, and biological characterization of Pennsylvania isolates of Plum pox virus. PHYTOPATHOLOGY 2011; 101:627-636. [PMID: 21261466 DOI: 10.1094/phyto-09-10-0256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plum pox virus (PPV) was identified in Pennsylvania in 1999. The outbreak was limited to a four-county region in southern Pennsylvania. Initial serological and molecular characterization indicated that the isolates in Pennsylvania belong to the D strain of PPV. The Pennsylvania isolates were characterized by sequence analysis, electron microscopy, host range, and vector transmission to determine how these isolates related to their previously studied European counterparts. Genetically, Pennsylvania (PPV-Penn) isolates were more closely related to each other than to any other PPV-D strains, and isolates from the United States, Canada, and Chile were more closely related to each other than to European isolates. The PPV-Penn isolates exist as two clades, suggesting the possibility of multiple introductions. Electron microscopy analysis of PPV-Penn isolates, including cytopathological studies, indicated that the virions were similar to other Potyvirus spp. PPV-Penn isolates had a herbaceous host range similar to that of European D isolates. There were distinct differences in the transmission efficiencies of the two PPV-Penn isolates using Myzus persicae and Aphis spiraecola as vectors; however, both PPV-Penn isolates were transmitted by M. persicae more efficiently than a European D isolate but less efficiently than a European M isolate.
Collapse
Affiliation(s)
- William L Schneider
- United States Department of Agriculture, Agricultural Research Service, Ft. Detrick, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rödig J, Rapp E, Djeljadini S, Lohr V, Genzel Y, Jordan I, Sandig V, Reichl U. Impact of Influenza Virus Adaptation Status on HAN-Glycosylation Patterns in Cell Culture-Based Vaccine Production. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.604454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Desbiez C, Moury B, Lecoq H. The hallmarks of "green" viruses: do plant viruses evolve differently from the others? INFECTION GENETICS AND EVOLUTION 2011; 11:812-24. [PMID: 21382520 DOI: 10.1016/j.meegid.2011.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 12/13/2022]
Abstract
All viruses are obligatory parasites that must develop tight interactions with their hosts to complete their infectious cycle. Viruses infecting plants share many structural and functional similarities with those infecting other organisms, particularly animals and fungi. Quantitative data regarding their evolutionary mechanisms--generation of variability by mutation and recombination, changes in populations by selection and genetic drift have been obtained only recently, and appear rather similar to those measured for animal viruses.This review presents an update of our knowledge of the phylogenetic and evolutionary characteristics of plant viruses and their relation to their plant hosts, in comparison with viruses infecting other organisms.
Collapse
Affiliation(s)
- C Desbiez
- INRA, Unité de Pathologie Végétale UR407, F-84140 Montfavet, France.
| | | | | |
Collapse
|
40
|
Elena SF, Bedhomme S, Carrasco P, Cuevas JM, de la Iglesia F, Lafforgue G, Lalić J, Pròsper A, Tromas N, Zwart MP. The evolutionary genetics of emerging plant RNA viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:287-93. [PMID: 21294624 DOI: 10.1094/mpmi-09-10-0214] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the years, agriculture across the world has been compromised by a succession of devastating epidemics caused by new viruses that spilled over from reservoir species or by new variants of classic viruses that acquired new virulence factors or changed their epidemiological patterns. Viral emergence is usually associated with ecological change or with agronomical practices bringing together reservoirs and crop species. The complete picture is, however, much more complex, and results from an evolutionary process in which the main players are ecological factors, viruses' genetic plasticity, and host factors required for virus replication, all mixed with a good measure of stochasticity. The present review puts emergence of plant RNA viruses into the framework of evolutionary genetics, stressing that viral emergence begins with a stochastic process that involves the transmission of a preexisting viral strain into a new host species, followed by adaptation to the new host.
Collapse
Affiliation(s)
- Santiago F Elena
- Instituto de Biologia Molecular, Consejo Superior de Investigaciones Cientificas, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tugume AK, Cuéllar WJ, Mukasa SB, Valkonen JPT. Molecular genetic analysis of virus isolates from wild and cultivated plants demonstrates that East Africa is a hotspot for the evolution and diversification of sweet potato feathery mottle virus. Mol Ecol 2010; 19:3139-56. [PMID: 20609081 DOI: 10.1111/j.1365-294x.2010.04682.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) is globally the most common pathogen of cultivated sweet potatoes (Ipomoea batatas; Convolvulaceae). Although more than 150 SPFMV isolates have been sequence-characterized from cultivated sweet potatos across the world, little is known about SPFMV isolates from wild hosts and the evolutionary forces shaping SPFMV population structures. In this study, 46 SPFMV isolates from 14 wild species of genera Ipomoea, Hewittia and Lepistemon (barcoded for the matK gene in this study) and 13 isolates from cultivated sweet potatoes were partially sequenced. Wild plants were infected with the EA, C or O strain, or co-infected with the EA and C strains of SPFMV. In East Africa, SPFMV populations in wild species and sweet potato were genetically undifferentiated, suggesting inter-host transmission of SPFMV. Globally, spatial diversification of the 178 isolates analysed was observed, strain EA being largely geographically restricted to East Africa. Recombination was frequently detected in the 6K2-VPg-NIaPro region of the EA strain, demonstrating a recombination 'hotspot'. Recombination between strains EA and C was rare, despite their frequent co-infections in wild plants, suggesting purifying selection against strain EA/C recombinants. Positive selection was predicted on 17 amino acids distributed over the entire coat protein in the globally distributed strain C, as compared to only four amino acids in the coat protein N-terminus of the EA strain. This selection implies a more recent introduction of the C strain and a higher adaptation of the EA strain to the local ecosystem. Thus, East Africa appears as a hotspot for evolution and diversification of SPFMV.
Collapse
Affiliation(s)
- Arthur K Tugume
- Department of Agricultural Sciences, PO Box 27, University of Helsinki, Helsinki FIN-00014, Finland
| | | | | | | |
Collapse
|
42
|
Genzel Y, Dietzsch C, Rapp E, Schwarzer J, Reichl U. MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation. Appl Microbiol Biotechnol 2010; 88:461-75. [PMID: 20617311 PMCID: PMC7080112 DOI: 10.1007/s00253-010-2742-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 11/23/2022]
Abstract
Over the last decade, adherent MDCK (Madin Darby canine kidney) and Vero cells have attracted considerable attention for production of cell culture-derived influenza vaccines. While numerous publications deal with the design and the optimization of corresponding upstream processes, one-to-one comparisons of these cell lines under comparable cultivation conditions have largely been neglected. Therefore, a direct comparison of influenza virus production with adherent MDCK and Vero cells in T-flasks, roller bottles, and lab-scale bioreactors was performed in this study. First, virus seeds had to be adapted to Vero cells by multiple passages. Glycan analysis of the hemagglutinin (HA) protein showed that for influenza A/PR/8/34 H1N1, three passages were sufficient to achieve a stable new N-glycan fingerprint, higher yields, and a faster increase to maximum HA titers. Compared to MDCK cells, virus production in serum-free medium with Vero cells was highly sensitive to trypsin concentration. Virus stability at 37 degrees C for different virus strains showed differences depending on medium, virus strain, and cell line. After careful adjustment of corresponding parameters, comparable productivity was obtained with both host cell lines in small-scale cultivation systems. However, using these cultivation conditions in lab-scale bioreactors (stirred tank, wave bioreactor) resulted in lower productivities for Vero cells.
Collapse
Affiliation(s)
- Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
43
|
Ohshima K, Akaishi S, Kajiyama H, Koga R, Gibbs AJ. Evolutionary trajectory of turnip mosaic virus populations adapting to a new host. J Gen Virol 2010; 91:788-801. [PMID: 19906944 DOI: 10.1099/vir.0.016055-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Little is known about how some plant viruses establish successful cross-species transmission whilst others do not; the genetic basis for adaptation is largely unknown. This study investigated the genetic changes that occurred using the progeny of an infectious clone, p35Tunos, derived from the turnip mosaic virus (TuMV) UK 1 isolate, which has a Brassica host type, but rarely infects Raphanus systemically and then only asymptomatically. The genetic trajectory leading to viral adaptation was studied in a TuMV isolate passaged in Nicotiana benthamiana (parental), Brassica rapa, the old (susceptible) host and Raphanus sativus, the new (almost insusceptible) host. Almost-complete consensus genomic sequences were obtained by RT-PCR of viral populations passaged up to 35 times together with 59 full sequences of 578,200 nt. There were significant differences in the nucleotide and encoded amino acid changes in the consensus genomes from the old and new hosts. Furthermore, a 3264 nt region corresponding to nt 3222-6485 of the UK 1 genome was cloned, and 269 clones from 23 populations were sequenced; this region covered 33 % of the genome and represented a total of 878,016 nt. The results showed that the nucleotide diversity and the non-synonymous/synonymous ratio of the populations from the new host were higher than those from the old host. An analysis of molecular variance showed significant differences among the populations from the old and new hosts. As far as is known, this is the first report comparing the evolutionary trajectory dynamics of plant virus populations in old and new hosts.
Collapse
Affiliation(s)
- Kazusato Ohshima
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The potyviruses are one of the two most speciose taxa of plant viruses. Our expanded knowledge of the breadth and depth of their diversity and its origins has depended greatly on the use of computing and the Internet in biological research and is reviewed here. We report a fully supported phylogeny based on gene sequence data for approximately half the named species. The phylogeny shows that the genus probably originated from a virus of monocotyledonous plants and that it first diverged approximately 7250 years ago in Southwest Eurasia or North Africa. The use of computer programs to better understand the structure and evolutionary trajectory of potyvirus populations is illustrated. The review concludes with recommendations for improving potyvirus nomenclature and the databasing of potyvirus information.
Collapse
Affiliation(s)
- Adrian Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
45
|
Hughes AL. Small effective population sizes and rare nonsynonymous variants in potyviruses. Virology 2009; 393:127-34. [PMID: 19695658 DOI: 10.1016/j.virol.2009.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/07/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
Abstract
Analysis of nucleotide sequence polymorphism in complete genomes of 12 species of potyviruses (single-stranded, positive-sense RNA viruses, family Potyviridae) revealed evidence that long-term effective population sizes of these viruses are on the order of 10(4). Comparison of nucleotide diversity in non-coding regions and at synonymous and nonsynonymous sites in coding regions showed that purifying selection has acted to eliminate numerous deleterious mutations both at nonsynonymous sites and in non-coding regions. The ratio of nonsynonymous to synonymous polymorphic sites increased as a function of the number of genomes sampled, whereas mean gene diversity at nonsynonymous polymorphic sites decreased with increasing sample size at a substantially faster rate than does mean gene diversity at synonymous polymorphic sites. Very similar relationships were observed both in available genomic sequences of 12 potyvirus species and in subsets created by randomly sampling from among 98 TuMV genomes. Taken together, these observations imply that a greater proportion of nonsynonymous than of synonymous variants are relatively rare as the result of ongoing purifying selection, and thus many nonsynonymous variants are unlikely to be discovered without extensive sampling.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Bldg., 715 Sumter St., Columbia SC 29208, USA.
| |
Collapse
|
46
|
Barrett LG, Kniskern JM, Bodenhausen N, Zhang W, Bergelson J. Continua of specificity and virulence in plant host-pathogen interactions: causes and consequences. THE NEW PHYTOLOGIST 2009; 183:513-529. [PMID: 19563451 DOI: 10.1111/j.1469-8137.2009.02927.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ecological, evolutionary and molecular models of interactions between plant hosts and microbial pathogens are largely based around a concept of tightly coupled interactions between species pairs. However, highly pathogenic and obligate associations between host and pathogen species represent only a fraction of the diversity encountered in natural and managed systems. Instead, many pathogens can infect a wide range of hosts, and most hosts are exposed to more than one pathogen species, often simultaneously. Furthermore, outcomes of pathogen infection vary widely because host plants vary in resistance and tolerance to infection, while pathogens are also variable in their ability to grow on or within hosts. Environmental heterogeneity further increases the potential for variation in plant host-pathogen interactions by influencing the degree and fitness consequences of infection. Here, we describe these continua of specificity and virulence inherent within plant host-pathogen interactions. Using this framework, we describe and contrast the genetic and environmental mechanisms that underlie this variation, outline consequences for epidemiology and community structure, explore likely ecological and evolutionary drivers, and highlight several key areas for future research.
Collapse
Affiliation(s)
- Luke G Barrett
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, IL 60637, USA
| | - Joel M Kniskern
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, IL 60637, USA
| | - Natacha Bodenhausen
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, IL 60637, USA
| | - Wen Zhang
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, IL 60637, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
47
|
Elena SF, Agudelo-Romero P, Lalić J. The evolution of viruses in multi-host fitness landscapes. Open Virol J 2009; 3:1-6. [PMID: 19572052 PMCID: PMC2703199 DOI: 10.2174/1874357900903010001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/10/2009] [Accepted: 02/17/2009] [Indexed: 11/22/2022] Open
Abstract
Provided that generalist viruses will have access to potentially unlimited hosts, the question is why most viruses specialize in few hosts. It has been suggested that selection should favor specialists because there are tradeoffs limiting the fitness of generalists in any of the alternative hosts or because evolution proceeds faster with narrower niches. Here we review experiments showing that virus adaptation to a specific host is often coupled with fitness losses in alternative ones. In most instances, mutations beneficial in one host are detrimental in another. This antagonistic pleiotropy should limit the range of adaptation and promote the evolution of specialization. However, when hosts fluctuate in time or space, selective pressures are different and generalist viruses may evolve as well.
Collapse
Affiliation(s)
- Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| | | | | |
Collapse
|
48
|
Agudelo-Romero P, de la Iglesia F, Elena SF. The pleiotropic cost of host-specialization in Tobacco etch potyvirus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2008; 8:806-14. [PMID: 18765302 DOI: 10.1016/j.meegid.2008.07.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 07/27/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
Host-range expansion is thought to allow viruses to broaden their ecological niches by allowing access to new resources. However, traits governing the infection of multiple hosts may decrease fitness in the original one due to the pleiotropic effect of adaptive mutations that may give rise to fitness tradeoffs across hosts. Here, we have experimentally examined the consequences of host-specialization in the plant pathogen Tobacco etch potyvirus (TEV). Replicate populations of TEV were allowed to evolve for 15 serial undiluted passages on the original tobacco host or on pepper, a novel host. Virulence and biologically active viral load were evaluated during the course of the experiment for each lineage on both potential hosts. In agreement with the tradeoff hypothesis, lineages evolved in the novel host experienced substantial increases in virulence and virus accumulation in its own host, but suffered reduced virulence and accumulation on the original host. By contrast, lineages evolved on the ancestral host did not increase virulence or viral load on either host. Genomic consensus sequences were obtained for each lineage at the end time point. The potential relevance for the evolution of virulence and virus fitness of the characterized mutations is discussed.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | | | | |
Collapse
|
49
|
Hajimorad MR, Eggenberger AL, Hill JH. Adaptation of Soybean mosaic virus avirulent chimeras containing P3 sequences from virulent strains to Rsv1-genotype soybeans is mediated by mutations in HC-Pro. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:937-46. [PMID: 18533834 DOI: 10.1094/mpmi-21-7-0937] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In Rsv1-genotype soybean, Soybean mosaic virus (SMV)-N (an avirulent isolate of strain G2) elicits extreme resistance (ER) whereas strain SMV-G7 provokes a lethal systemic hypersensitive response (LSHR). SMV-G7d, an experimentally evolved variant of SMV-G7, induces systemic mosaic. Thus, for Rsv1-genotype soybean, SMV-N is avirulent whereas SMV-G7 and SMV-G7d are both virulent. Exploiting these differential interactions, we recently mapped the elicitor functions of SMV provoking Rsv1-mediated ER and LSHR to the N-terminal 271 amino acids of P3 from SMV-N and SMV-G7, respectively. The phenotype of both SMV-G7 and SMV-G7d were rendered avirulent on Rsv1-genotype soybean when the part of the genome encoding the N-terminus or the entire P3 cistron was replaced with that from SMV-N; however, reciprocal exchanges did not confer virulence to SMV-N-derived P3 chimeras. Here, we describe virulent SMV-N-derived P3 chimeras containing the full-length or the N-terminal P3 from SMV-G7 or SMV-G7d, with or without additional mutations in P3, that were selected on Rsv1-genotype soybean by sequential transfers on rsv1 and Rsv1-genotype soybean. Sequence analyses of the P3 and helper-component proteinase (HC-Pro) cistrons of progeny recovered from Rsv1-genotype soybean consistently revealed the presence of mutations in HC-Pro. Interestingly, the precise mutations in HC-Pro required for the adaptation varied among the chimeras. No mutation was detected in the HC-Pro of progeny passaged continuously in rsv1-genotype soybean, suggesting that selection is a consequence of pressure imposed by Rsv1. Mutations in HC-Pro alone failed to confer virulence to SMV-N; however, reconstruction of mutations in HC-Pro of the SMV-N-derived P3 chimeras resulted in virulence. Taken together, the data suggest that HC-Pro complementation of P3 is essential for SMV virulence on Rsv1-genotype soybean.
Collapse
Affiliation(s)
- M R Hajimorad
- Department of Entomology and Plant Pathology, the University of Tennessee, Knoxville 37996, USA.
| | | | | |
Collapse
|
50
|
Gibbs AJ, Ohshima K, Phillips MJ, Gibbs MJ. The prehistory of potyviruses: their initial radiation was during the dawn of agriculture. PLoS One 2008; 3:e2523. [PMID: 18575612 PMCID: PMC2429970 DOI: 10.1371/journal.pone.0002523] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 05/19/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Potyviruses are found world wide, are spread by probing aphids and cause considerable crop damage. Potyvirus is one of the two largest plant virus genera and contains about 15% of all named plant virus species. When and why did the potyviruses become so numerous? Here we answer the first question and discuss the other. METHODS AND FINDINGS We have inferred the phylogenies of the partial coat protein gene sequences of about 50 potyviruses, and studied in detail the phylogenies of some using various methods and evolutionary models. Their phylogenies have been calibrated using historical isolation and outbreak events: the plum pox virus epidemic which swept through Europe in the 20th century, incursions of potyviruses into Australia after agriculture was established by European colonists, the likely transport of cowpea aphid-borne mosaic virus in cowpea seed from Africa to the Americas with the 16th century slave trade and the similar transport of papaya ringspot virus from India to the Americas. CONCLUSIONS/SIGNIFICANCE Our studies indicate that the partial coat protein genes of potyviruses have an evolutionary rate of about 1.15x10(-4) nucleotide substitutions/site/year, and the initial radiation of the potyviruses occurred only about 6,600 years ago, and hence coincided with the dawn of agriculture. We discuss the ways in which agriculture may have triggered the prehistoric emergence of potyviruses and fostered their speciation.
Collapse
|