1
|
Bigay J, Le Grand R, Martinon F, Maisonnasse P. Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Front Microbiol 2022; 13:932408. [PMID: 36033843 PMCID: PMC9399815 DOI: 10.3389/fmicb.2022.932408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The fight against infectious diseases calls for the development of safe and effective vaccines that generate long-lasting protective immunity. In a few situations, vaccine-mediated immune responses may have led to exacerbated pathology upon subsequent infection with the pathogen targeted by the vaccine. Such vaccine-associated enhanced disease (VAED) has been reported, or at least suspected, in animal models, and in a few instances in humans, for vaccine candidates against the respiratory syncytial virus (RSV), measles virus (MV), dengue virus (DENV), HIV-1, simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and the Middle East respiratory syndrome coronavirus (MERS-CoV). Although alleviated by clinical and epidemiological evidence, a number of concerns were also initially raised concerning the short- and long-term safety of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the ongoing COVID-19 pandemic. Although the mechanisms leading to this phenomenon are not yet completely understood, the individual and/or collective role of antibody-dependent enhancement (ADE), complement-dependent enhancement, and cell-dependent enhancement have been highlighted. Here, we review mechanisms that may be associated with the risk of VAED, which are important to take into consideration, both in the assessment of vaccine safety and in finding ways to define models and immunization strategies that can alleviate such concerns.
Collapse
Affiliation(s)
| | | | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud-INSERM U1184, CEA, Fontenay-Aux-Roses, France
| | | |
Collapse
|
2
|
Equal contributions of feline immunodeficiency virus and coinfections to morbidity in African lions. Int J Parasitol Parasites Wildl 2021; 16:83-94. [PMID: 34466379 PMCID: PMC8385399 DOI: 10.1016/j.ijppaw.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
Feline immunodeficiency virus (FIV) is a pathogenic lentivirus related to human and simian immunodeficiency viruses that has been associated with AIDS-like pathologies in domestic and wild cats, as well as in hyenas. Despite known pathologies, progressive immunosuppression and ill health effects driven by these lentiviruses in association with other secondary infections remain understudied in free-ranging species. Here, the role of coinfections by gastrointestinal parasites and tick-borne hemoparasites for FIV disease progression was explored in 195 free-ranging African lions (Panthera leo) living in Kruger National Park (KNP), South Africa. Using statistical methodology, we evaluated the effects of FIV on a range of health indicators to explore how direct and indirect effects of FIV and associated coinfections align to determine lion health outcomes. Findings show direct negative effects of FIV on host immunity and nutritional status, and exacerbation of aggressive behaviors, conditions which may increase exposure/susceptibility to other secondary infections. When taken together, the contribution of coinfecting parasites to morbidity in lions is of similar magnitude as direct effects of FIV infection alone, suggesting that the particular coinfection assemblage may play a role in mediating disease progression within natural lion populations. Immunosuppression by FIV increases richness and abundance of secondary parasites. Infection by gastrointestinal parasites drives severe malnourishment in FIV hosts. Hemoparasite infection contributed to liver pathology and clinical wasting. Contributions of secondary infections to morbidity equal the direct effects of FIV.
Collapse
|
3
|
Eckstrand CD, Sparger EE, Murphy BG. Central and peripheral reservoirs of feline immunodeficiency virus in cats: a review. J Gen Virol 2017; 98:1985-1996. [DOI: 10.1099/jgv.0.000866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Chrissy D. Eckstrand
- Veterinary Microbiology and Pathology, College of Veterinary Medicine, 4003 Animal Disease Biotechnology Facility, Washington State University, Pullman, WA 99163, USA
| | - Ellen E. Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, 3115 Tupper Hall, Davis, CA 95616, USA
| | - Brian G. Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Eckstrand CD, Hillman C, Smith AL, Sparger EE, Murphy BG. Viral Reservoirs in Lymph Nodes of FIV-Infected Progressor and Long-Term Non-Progressor Cats during the Asymptomatic Phase. PLoS One 2016; 11:e0146285. [PMID: 26741651 PMCID: PMC4704817 DOI: 10.1371/journal.pone.0146285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Background Examination of a cohort of cats experimentally infected with feline immunodeficiency virus (FIV) for 5.75 years revealed detectable proviral DNA in peripheral blood mononuclear cells (PBMCs) harvested during the asymptomatic phase, undetectable plasma viral RNA (FIV gag), and rarely detectable cell-associated viral RNA. Despite apparent viral latency in peripheral CD4+ T cells, circulating CD4+ T cell numbers progressively declined in progressor animals. The aim of this study was to explore this dichotomy of peripheral blood viral latency in the face of progressive immunopathology. The viral replication status, cellular immunophenotypes, and histopathologic features were compared between popliteal lymph nodes (PLNs) and peripheral blood. Also, we identified and further characterized one of the FIV-infected cats identified as a long-term non-progressor (LTNP). Results PLN-derived leukocytes from FIV-infected cats during the chronic asymptomatic phase demonstrated active viral gag transcription and FIV protein translation as determined by real-time RT-PCR, Western blot and in situ immunohistochemistry, whereas viral RNA in blood leukocytes was either undetectable or intermittently detectable and viral protein was not detected. Active transcription of viral RNA was detectable in PLN-derived CD4+ and CD21+ leukocytes. Replication competent provirus was reactivated ex vivo from PLN-derived leukocytes from three of four FIV-infected cats. Progressor cats showed a persistent and dramatically decreased proportion and absolute count of CD4+ T cells in blood, and a decreased proportion of CD4+ T cells in PLNs. A single long-term non-progressor (LTNP) cat persistently demonstrated an absolute peripheral blood CD4+ T cell count indistinguishable from uninfected animals, a lower proviral load in unfractionated blood and PLN leukocytes, and very low amounts of viral RNA in the PLN. Conclusion Collectively our data indicates that PLNs harbor important reservoirs of ongoing viral replication during the asymptomatic phase of infection, in spite of undetectable viral activity in peripheral blood. A thorough understanding of tissue-based lentiviral reservoirs is fundamental to medical interventions to eliminate virus or prolong the asymptomatic phase of FIV infection.
Collapse
Affiliation(s)
- C D Eckstrand
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - C Hillman
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - A L Smith
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - E E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - B G Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
5
|
Abstract
The feline immunodeficiency virus (FIV) shares genomic organization, receptor usage, lymphocyte tropism, and induction of immunodeficiency and increased susceptibility to cancer with the human immunodeficiency virus (HIV). Global distribution, marked heterogeneity and variable host adaptation are also properties of both viruses. These features render the FIV-cat model suitable to explore many aspects of lentivirus-host interaction and adaptation, and to explore treatment and prevention of infection. Examples of fundamental discoveries that have emerged from study in the FIV-cat model concern two-receptor entrance strategies that target memory T-lymphocytes, host factors that restrict retroviral infection, viral strategies for replication in non-dividing cells, and identification of correlates of immunity to the virus. This article provides a brief overview of strengths and limitations of the FIV-cat model for comparative biology and medicine.
Collapse
Affiliation(s)
- Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
6
|
Stickney AL, Dunowska M, Cave NJ. Sequence variation of the feline immunodeficiency virus genome and its clinical relevance. Vet Rec 2013; 172:607-14. [PMID: 23749359 DOI: 10.1136/vr.f101460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ongoing evolution of feline immunodeficiency virus (FIV) has resulted in the existence of a diverse continuum of viruses. FIV isolates differ with regards to their mutation and replication rates, plasma viral loads, cell tropism and the ability to induce apoptosis. Clinical disease in FIV-infected cats is also inconsistent. Genomic sequence variation of FIV is likely to be responsible for some of the variation in viral behaviour. The specific genetic sequences that influence these key viral properties remain to be determined. With knowledge of the specific key determinants of pathogenicity, there is the potential for veterinarians in the future to apply this information for prognostic purposes. Genomic sequence variation of FIV also presents an obstacle to effective vaccine development. Most challenge studies demonstrate acceptable efficacy of a dual-subtype FIV vaccine (Fel-O-Vax FIV) against FIV infection under experimental settings; however, vaccine efficacy in the field still remains to be proven. It is important that we discover the key determinants of immunity induced by this vaccine; such data would compliment vaccine field efficacy studies and provide the basis to make informed recommendations on its use.
Collapse
Affiliation(s)
- A L Stickney
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
7
|
Chumbley LB, Boudreaux CE, Coats KS. Aberrant placental immune parameters in the feline immunodeficiency virus (FIV)-infected cat suggest virus-induced changes in T cell function. Virol J 2013; 10:238. [PMID: 23870389 PMCID: PMC3723510 DOI: 10.1186/1743-422x-10-238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/11/2013] [Indexed: 11/12/2022] Open
Abstract
Background Immune activity during pregnancy must be tightly regulated to ensure successful pregnancy. This regulation includes the suppression of inflammatory activity that could target the semi-allogeneic fetus. Tregs are immunosuppressive; Th17 cells are pro-inflammatory. A precise balance in the two cell populations is critical to pregnancy maintenance, while dysregulation in this balance accompanies compromised pregnancy in humans and mice. FIV is known to target Tregs preferentially in the infected cat. Therefore, it may be hypothesized that FIV infection alters the placental Treg/Th17 cell balance resulting in aberrant immunomodulator expression by these cells and consequent pregnancy perturbation. Methods RNA was purified from random sections of whole placental tissues collected from both uninfected and FIV-infected queens at early pregnancy, including tissues from viable and nonviable fetuses. Real time qPCR was performed to quantify expression of intranuclear markers of Tregs (FoxP3) and Th17 cells (RORγ); cytokine products of Tregs (IL-10 and TGF-β), Th17 cells (IL-2, IL-6, and IL-17a), and macrophages (IL-1β); and the FIV gag gene. Pairwise comparisons were made to evaluate coexpression patterns between the cytokines and between the cytokines and the virus. Results Both FoxP3 and RORγ were reduced in placentas of infected animals. Neither infection status nor fetal viability affected placental expression of IL-1β. However, fetal nonviability was associated with reduced levels of all other cytokines. Infection and fetal nonviability impacted coexpression of various cytokine pairs. No obvious bias toward Treg or Th17 cells was observed. Conclusions FIV infection coupled with fetal nonviability alters expression patterns of T cell cytokines. These data suggest that functionally altered placental T cell leukocyte populations may occur in the infected queen and possibly contribute to fetal nonviability.
Collapse
Affiliation(s)
- Lyndon Bart Chumbley
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | |
Collapse
|
8
|
Feline immunodeficiency virus in South America. Viruses 2012; 4:383-396. [PMID: 22590677 PMCID: PMC3347033 DOI: 10.3390/v4030383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022] Open
Abstract
The rapid emergence of AIDS in humans during the period between 1980 and 2000 has led to extensive efforts to understand more fully similar etiologic agents of chronic and progressive acquired immunodeficiency disease in several mammalian species. Lentiviruses that have gene sequence homology with human immunodeficiency virus (HIV) have been found in different species (including sheep, goats, horses, cattle, cats, and several Old World monkey species). Lentiviruses, comprising a genus of the Retroviridae family, cause persistent infection that can lead to varying degrees of morbidity and mortality depending on the virus and the host species involved. Feline immunodeficiency virus (FIV) causes an immune system disease in domestic cats (Felis catus) involving depletion of the CD4+ population of T lymphocytes, increased susceptibility to opportunistic infections, and sometimes death. Viruses related to domestic cat FIV occur also in a variety of nondomestic felids. This is a brief overview of the current state of knowledge of this large and ancient group of viruses (FIVs) in South America.
Collapse
|
9
|
Kenyon JC, Lever AML. The molecular biology of feline immunodeficiency virus (FIV). Viruses 2011; 3:2192-213. [PMID: 22163340 PMCID: PMC3230847 DOI: 10.3390/v3112192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is widespread in feline populations and causes an AIDS-like illness in domestic cats. It is highly prevalent in several endangered feline species. In domestic cats FIV infection is a valuable small animal model for HIV infection. In recent years there has been sa significant increase in interest in FIV, in part to exploit this, but also because of the potential it has as a human gene therapy vector. Though much less studied than HIV there are many parallels in the replication of the two viruses, but also important differences and, despite their likely common origin, the viruses have in some cases used alternative strategies to overcome similar problems. Recent advances in understanding the structure and function of FIV RNA and proteins and their interactions has enhanced our knowledge of FIV replication significantly, however, there are still many gaps. This review summarizes our current knowledge of FIV molecular biology and its similarities with, and differences from, other lentiviruses.
Collapse
Affiliation(s)
- Julia C Kenyon
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | | |
Collapse
|
10
|
Isolation and partial characterization of Brazilian samples of feline immunodeficiency virus. Virus Res 2011; 160:59-65. [PMID: 21619902 DOI: 10.1016/j.virusres.2011.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 11/21/2022]
Abstract
Feline immunodeficiency virus (FIV) causes a slow progressive degeneration of the immune system which eventually leads to a disease comparable to acquired immune deficiency syndrome (AIDS) in humans. FIV has extensive sequence variation, a typical feature of lentiviruses. Sequence analysis showed that diversity was not evenly distributed throughout the genome, but was greatest in the envelope gene, env. The virus enters host cells via a sequential interaction, initiated by the envelope glycoprotein (env) binding the primary receptor molecule CD134 and followed by a subsequent interaction with chemokine co-receptor CXCR4. The purpose of this study was to isolate and characterize isolates of FIV from an open shelter in São Paulo, Brazil. The separated PBMC from 11 positive cats were co-cultured with MYA-1 cells. Full-length viral env glycoprotein genes were amplified and determined. Chimeric feline × human CD134 receptors were used to investigate the receptor utilization of 17 clones from Brazilian isolates of FIV. Analyses of the sequence present of molecular clones showed that all clones grouped within subtype B. In contrast to the virulent primary isolate FIV-GL8, expression of the first cysteine-rich domain (CRD1) of feline CD134 in the context of human CD134 was sufficient for optimal receptor function for all Brazilian FIV isolates tested.
Collapse
|
11
|
Bukong TN, Hall WW, Jacqué JM. Lentivirus-associated MAPK/ERK2 phosphorylates EMD and regulates infectivity. J Gen Virol 2010; 91:2381-92. [PMID: 20463147 DOI: 10.1099/vir.0.019604-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection of a cell by lentiviruses, such as human immunodeficiency virus type 1 or feline immunodeficiency virus, results in the formation of a reverse transcription complex, the pre-integration complex (PIC), where viral DNA is synthesized. In non-dividing cells, efficient nuclear translocation of the PIC requires the presence of the inner nuclear lamina protein emerin (EMD). Here, we demonstrate that EMD phosphorylation is induced early after infection in primary non-dividing cells. Furthermore, we demonstrate that EMD phosphorylation is dependent on virion-associated mitogen-activated protein kinase (MAPK). Specific inhibition of MAPK activity with kinase inhibitors markedly reduced EMD phosphorylation and resulted in decreased integration of the proviral DNA into chromatin. Similarly, when a MEK1 kinase-inactive mutant was expressed in virus-producer cells, virus-induced phosphorylation of EMD was impaired and viral integration reduced during the subsequent infection. Expression of constitutively active MEK1 kinase in producer cells did not result in modulation of EMD phosphorylation or viral integration during subsequent infection. These studies demonstrate that, in addition to phosphorylating components of the PICs at an early step of infection, virion-associated MAPK plays a role in facilitating cDNA integration after nuclear translocation through phosphorylation of target-cell EMD.
Collapse
Affiliation(s)
- Terence N Bukong
- University College Dublin, Centre for Research in Infectious Diseases, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
12
|
Folkl A, Wen X, Kuczynski E, Clark ME, Bienzle D. Feline programmed death and its ligand: characterization and changes with feline immunodeficiency virus infection. Vet Immunol Immunopathol 2009; 134:107-14. [PMID: 19931185 DOI: 10.1016/j.vetimm.2009.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Programmed death (PD)-1 and its ligand, PD-L1, are co-stimulatory molecules expressed on T cells and antigen-presenting cells, respectively, that modulate T cell receptor signals. Altered PD expression or signalling contributes to pathogen persistence in chronic infections. The sequence of the feline PD genes was derived from gene amplification with primers conserved across human and canine homologs, and by sequence extension through rapid amplification of cDNA ends. Feline PD-1 was similar to that of other mammalian species and consisted of extracellular, transmembrane and cytoplasmic regions. Functional motif analysis of the translated amino acid sequence predicted immunoreceptor tyrosine-based inhibitory and switch motifs, and a SH3-binding region, in the cytoplasmic tail. PD-1 and PD-L1 were expressed in resting lymphocytes and dendritic cells, and up-regulated on mitogen-activated or irradiated lymphocytes of both CD4 and CD8-positive subsets. In vitro infection with the feline immunodeficiency virus (FIV) significantly decreased PD-1, but not PD-L1, gene expression in lymphocytes at 24h, and decreased expression of both genes at 168h. No significant changes in gene or protein expression from FIV infection were noted in dendritic cells. Blood lymphocytes from cats chronically FIV-infected expressed significantly higher PD protein than lymphocytes from FIV-negative cats. These findings indicate that both feline PD-1 and PD-L1 are expressed by resting lymphocytes and dendritic cells. Apoptosis and cell activation increased protein expression on lymphocytes, while in vitro acute FIV infection decreased PD-1 gene expression. Increased PD levels in lymphocytes from chronically FIV-infected cats suggests that alterations in T cell co-signalling may contribute to immune dysfunction in lentiviral infection.
Collapse
Affiliation(s)
- A Folkl
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
13
|
Lehman TL, O'Halloran KP, Hoover EA, Avery PR. Utilizing the FIV model to understand dendritic cell dysfunction and the potential role of dendritic cell immunization in HIV infection. Vet Immunol Immunopathol 2009; 134:75-81. [PMID: 19896214 DOI: 10.1016/j.vetimm.2009.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dendritic cells (DC) are potent antigen presenting cells which initiate and coordinate the immune response making them central targets of and attractive candidates for manipulation in chronic lentiviral infections. Emerging evidence suggests that DC immune function is disrupted during both acute and chronic infection with human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV), and feline immunodeficiency virus (FIV). Despite some early promising data, the use of DC for lentiviral immunotherapy has not fulfilled its expected potential and has been complicated by the large number of variables involved in DC harvesting, purifying, and antigen loading. Pre-clinical studies aimed at identifying successful strategies for DC augmentation of current HIV treatment protocols are needed. Over the past two decades, the FIV model for HIV infection has increased the understanding of retroviral pathogenesis, and studies have begun using the FIV model to study DC dysfunction and DC-mediated immunotherapy. Careful consideration of the many variables involved in DC function and therapy should help develop protocols to explore the potential of DC vaccine-based therapies for lentiviral infection.
Collapse
Affiliation(s)
- Tracy L Lehman
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
14
|
Scofield VL, Yan M, Kuang X, Kim SJ, Crunk D, Wong PKY. The drug monosodium luminol (GVT) preserves thymic epithelial cell cytoarchitecture and allows thymocyte survival in mice infected with the T cell-tropic, cytopathic retrovirus ts1. Immunol Lett 2009; 122:159-69. [PMID: 19183564 DOI: 10.1016/j.imlet.2008.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 11/14/2008] [Accepted: 12/01/2008] [Indexed: 02/03/2023]
Abstract
A mutant of MoMuLV, called ts1, causes an AIDS-like syndrome in susceptible strains of mice. In mice infected at birth, thymic atrophy, CD4+ T cell loss, body wasting, and death occur by approximately 30-40 days postinfection (dpi). We have shown previously that the death of ts1-infected cells is not caused by viral replication per se, but by oxidative stress and apoptosis following their accumulation the ts1 viral envelope precursor protein, gPr80(env). In infected mice treated with the antioxidant monosodium alpha-luminol (GVT), T cell loss and thymic atrophy are delayed for many weeks, and body wasting and death do not occur until long after infected, untreated control mice have died. We show here that GVT treatment of ts1-infected mice maintains the thymic epithelial cell (TEC) cytoarchitecture and cytokeratin gradients required for thymocyte differentiation. It also suppresses thymocyte reactive oxygen species (ROS) levels, upregulates and stabilizes levels of the antioxidant-regulating transcription factor Nrf2, and prevents accumulation of gPr80(env) in thymocytes. We conclude that GVT treatment can make ts1 a non-cytopathic virus for thymocytes, although it cannot prevent thymocyte infection. Since oxidative stress also contributes to the loss of T cells in HIV-AIDS, the antioxidant effects of GVT may make it a useful therapeutic adjunct to HAART treatment.
Collapse
Affiliation(s)
- Virginia L Scofield
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Huisman W, Martina BEE, Rimmelzwaan GF, Gruters RA, Osterhaus ADME. Vaccine-induced enhancement of viral infections. Vaccine 2008; 27:505-12. [PMID: 19022319 PMCID: PMC7131326 DOI: 10.1016/j.vaccine.2008.10.087] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 12/19/2022]
Abstract
Examples of vaccine-induced enhancement of susceptibility to virus infection or of aberrant viral pathogenesis have been documented for infections by members of different virus families. Several mechanisms, many of which still are poorly understood, are at the basis of this phenomenon. Vaccine development for lentivirus infections in general, and for HIV/AIDS in particular, has been little successful. Certain experimental lentiviral vaccines even proved to be counterproductive: they rendered vaccinated subjects more susceptible to infection rather than protecting them. For vaccine-induced enhanced susceptibility to infection with certain viruses like feline coronavirus, Dengue virus, and feline immunodeficiency virus, it has been shown that antibody-dependent enhancement (ADE) plays an important role. Other mechanisms may, either in the absence of or in combination with ADE, be involved. Consequently, vaccine-induced enhancement has been a major stumble block in the development of certain flavi-, corona-, paramyxo-, and lentivirus vaccines. Also recent failures in the development of a vaccine against HIV may at least in part be attributed to induction of enhanced susceptibility to infection. There may well be a delicate balance between the induction of protective immunity on the one hand and the induction of enhanced susceptibility on the other. The present paper reviews the currently known mechanisms of vaccine-induced enhancement of susceptibility to virus infection or of aberrant viral pathogenesis.
Collapse
Affiliation(s)
- W Huisman
- Erasmus MC, Institute of Virology, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Reggeti F, Bienzle D. Alloimmunity does not protect from challenge with the feline immunodeficiency virus. Vet Immunol Immunopathol 2008; 124:152-62. [PMID: 18471896 DOI: 10.1016/j.vetimm.2008.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/27/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
Abstract
Immune responses against polymorphic host molecules incorporated into lentiviral envelopes during cell budding have induced protection against primate immunodeficiency virus infection. Dendritic cells (DCs) express high levels of MHC molecules and are infectable by lentiviruses. Therefore, in this pilot study we addressed the hypothesis that immunization of cats with allogeneic DC would induce immune responses that protect against challenge with the feline immunodeficiency virus. Two groups of 3 cats each received 3 subcutaneous injections of allogeneic or autologous DC, and were then challenged with viruses propagated in the immunizing DC. Infection status and lymphocyte parameters of cats were assessed during 6 weeks after challenge. MHC II antigens were incorporated into viral particles as identified by Western blot; and antibodies reactive with MHC class II antigens were detected in the serum of cats immunized with allogeneic but not autologous DC. After challenge, all cats had proviral DNA in blood leukocytes from 2 weeks post-challenge onward and seroconverted. Cats immunized with allogeneic DC maintained higher total and CD21(+) lymphocyte concentrations, and higher CD4(+)/CD8(+) lymphocyte ratios; however, these differences were not significantly different from cats that received autologous DC immunizations. Plasma viral load was not significantly different between groups of cats (p=0.204). These results suggest that immunization of cats with allogeneic DC does not induce protective immunity against FIV infection.
Collapse
Affiliation(s)
- F Reggeti
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|