1
|
Li J, Chen J, Dong X, Liang C, Guo Y, Chen X, Huang M, Liao M, Cao W. Residues 140-142, 199-200, 222-223, and 262 in the Surface Glycoprotein of Subgroup A Avian Leukosis Virus Are the Key Sites Determining Tva Receptor Binding Affinity and Infectivity. Front Microbiol 2022; 13:868377. [PMID: 35572683 PMCID: PMC9095613 DOI: 10.3389/fmicb.2022.868377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Subgroup A avian leukosis virus (ALV-A) invades cells through gp85-encoded surface glycoprotein (SU) via specifically recognizing the cellular receptor Tva. To identify the key residues of ALV-A SU that determine the Tva binding affinity and infectivity in DF-1 cells, a strategy of substituting corresponding residues of SU between ALV-A RSA and ALV-E ev-1 (using Tvb as the receptor) was adopted. A series of chimeric soluble gp85 proteins were expressed for co-immunoprecipitation (co-IP) analysis and blocking analysis of viral entry, and various recombinant viruses based on replication-competent avian retrovirus vectors containing Bryan polymerase (RCASBP) were constructed for transfection into DF-1 cells and measurement of the percentage of GFP-positive cells. The results revealed that the substitution of residues V138, W140, Y141, L142, S145, and L154 of host range region 1 (hr1), residues V199, G200, Q202, R222, and R223 of host range region 2 (hr2), and residue G262 of variable region 3 (vr3) reduced the viral infectivity and Tva binding affinity, which was similar to the effects of the −139S, −151N, −155PWVNPF, −201NFD, Δ214–215, and −266S mutations. Our study indicated that hr1 and hr2 contain the principal receptor interaction determinants, with new identified-vr3 also playing a key role in the receptor binding affinity of ALV-A.
Collapse
Affiliation(s)
- Jinqun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyi Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Canxin Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanyan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiang Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengyu Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China.,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China.,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
2
|
Chen J, Li J, Li L, Liu P, Xiang Y, Cao W. Single Amino Acids G196 and R198 in hr1 of Subgroup K Avian Leukosis Virus Glycoprotein Are Critical for Tva Receptor Binding. Front Microbiol 2020; 11:596586. [PMID: 33391214 PMCID: PMC7772352 DOI: 10.3389/fmicb.2020.596586] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Avian leukosis viruses (ALVs), a type of retrovirus responsible for various tumor diseases in chickens, are divided into 11 subgroups: ALV-A to ALV-K. After the envelope glycoproteins of ALV interact with the cellular receptor to initiate viral invasion, alterations in a few amino acids of the viral glycoproteins or cell receptors may trigger changes in their conformation and binding affinity. To identify the functional determinants of the ALV-K envelope protein that binds to Tva (a recently identified cellular receptor of ALV-K), using the strategy of continuous, segment-by-segment substitution of the gp85-encoded surface glycoprotein (SU) of ALV-K GDFX0602 with ALV-E ev-1 (using Tvb as the receptor), a series of chimeric soluble gp85 proteins were expressed for co-immunoprecipitation (co-IP) analysis and a series of recombinant viruses with replication-competent avian retrovirus vectors containing Bryan polymerase (RCASBP) as their skeleton were created for transfecting to DF-1 cells and titer determination. The co-IP analysis, fluorescence-activated cell sorting, and virus titer measurements revealed that the substitution of residues 194–198, 206–216 of hr1, residues 251–256 between hr1 and hr2, and residues 269–280 of hr2 were identified to reduce the binding of gp85 to Tva. The substitution of residues 194–221 in hr1 nullified the infectiveness of these viruses, similar to the effect of single amino acid mutations in K251E and L252I located between hr1 and hr2; continuous amino acid mutations in hr2 could not produce the same effect despite reducing their infectiveness. Finally, single amino acid mutations G196A and R198H nearly abolished the binding of gp85 to Tva and nullified the infectiveness of these viruses to DF-1. This study paves the way for exploring the molecular mechanisms of the binding of Tva to ALV-K SU.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinqun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lizhen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yong Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
3
|
The Bipartite Sequence Motif in the N and C Termini of gp85 of Subgroup J Avian Leukosis Virus Plays a Crucial Role in Receptor Binding and Viral Entry. J Virol 2020; 94:JVI.01232-20. [PMID: 32878894 DOI: 10.1128/jvi.01232-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/29/2020] [Indexed: 01/24/2023] Open
Abstract
Subgroup J avian leukemia virus (ALV-J), belonging to the genus Alpharetrovirus, enters cells through its envelope surface unit (gp85) via specifically recognizing the cellular receptor chicken Na+/H+ exchanger type I (chNHE1), the 28 to 39 N-terminal residues of which were characterized as the minimal receptor functional domain in our previous studies. In this study, to further clarify the precise organization and properties of the interaction between ALV-J gp85 and chNHE1, we identified the chNHE1-binding domain of ALV-J gp85 using a series of gp85 mutants with segment substitutions and evaluating their effects on chNHE1 binding in protein-cell binding assays. Our results showed that hemagglutinin (HA) substitutions of amino acids (aa) 38 to 131 (N terminus of gp85) and aa 159 to 283 (C terminus of gp85) significantly inhibited the interaction between gp85 and chNHE1/chNHE1 loop 1. In addition, these HA-substituted chimeric gp85 proteins could not effectively block the entry of ALV-J into chNHE1-expressing cells. Furthermore, analysis of various N-linked glycosylation sites and cysteine mutants in gp85 revealed that glycosylation sites (N6 and N11) and cysteines (C3 and C9) were directly involved in receptor-gp85 binding and important for the entry of ALV-J into cells. Taken together, our findings indicated that the bipartite sequence motif, spanning aa 38 to 131 and aa 159 to 283, of ALV-J gp85 was essential for binding to chNHE1, with its two N-linked glycosylation sites and two cysteines being important for its receptor-binding function and subsequent viral infection steps.IMPORTANCE Infection of a cell by retroviruses requires the attachment and fusion of the host and viral membranes. The specific adsorption of envelope (Env) surface proteins to cell receptors is a key step in triggering infections and has been the target of antiviral drug screening. ALV-J is an economically important avian pathogen that belongs to the genus Alpharetrovirus and has a wider host range than other ALV subgroups. Our results showed that the amino acids 38 to 131 of the N terminus and 159 to 283 of the C terminus of ALV-J gp85 controlled the efficiency of gp85 binding to chNHE1 and were critical for viral infection. In addition, the glycosylation sites (N6 and N11) and cysteines (C3 and C9) of gp85 played a crucial role in the receptor binding and viral entry. These findings might help elucidate the mechanism of the entry of ALV-J into host cells and provide antiviral targets for the control of ALV-J.
Collapse
|
4
|
Nonsynonymous changes of equine lentivirus receptor-1 (ELR1) gene in amino acids involved in the interaction with equine infectious anemia virus (EIAV). Res Vet Sci 2017; 112:185-191. [PMID: 28500993 DOI: 10.1016/j.rvsc.2017.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/17/2017] [Accepted: 05/01/2017] [Indexed: 11/24/2022]
Abstract
Equine lentivirus receptor-1 (ELR1) has been characterized as the specific functional receptor that mediates equine infectious anemia virus (EIAV) entrance to horse macrophages. This receptor is tumor necrosis factor receptor superfamily member 14 (TNFRSF14). The aim of this study was to investigate the occurrence of allelic variants in the coding sequence of equine TNFRSF14 gene by screening for single-nucleotide polymorphisms (SNPs) in different equine populations. Forty seven horse samples were randomly selected from a reservoir of EIAV-seropositive and seronegative samples collected from different outbreaks and regions of Argentina. DNA samples were scanned via PCR and direct sequencing of exon 3 and exon 5 of TNFRSF14 gene. A total of 21 SNPs were identified, of which 11 were located in coding sequences. Within exon 5, four SNPs caused nonsynonymous substitutions, while two other SNPs caused synonymous substitutions in crucial residues (Ser112 and Thr114) implicated in the interaction with EIAV. Despite some of exon 5 variants occurred exclusively in EIAV-positive or EIAV-negative horses, critical residues for the function of the mature protein were conserved, accounting for selective pressures in favor of preserving the specific function of TNFRSF members and the host immune response. To our knowledge, this is the first report of the existence of allelic variations involving some crucial amino acid residues in horse ELR1. Further, it could be an initial step to test the possible functional relevance and relationship of these variants with EIAV infection and disease progression as well as to develop preventive strategies.
Collapse
|
5
|
Duan L, Du J, Wang X, Zhou J, Wang X, Liu X. Structural and functional characterization of EIAV gp45 fusion peptide proximal region and asparagine-rich layer. Virology 2016; 491:64-72. [PMID: 26874586 DOI: 10.1016/j.virol.2016.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Equine infectious anaemia virus (EIAV) and human immunodeficiency virus (HIV) are members of the lentiviral genus. Similar to HIV gp41, EIAV gp45 is a fusogenic protein that mediates fusion between the viral particle and the host cell membrane. The crystal structure of gp45 reported reveals a different conformation in the here that includes the fusion peptide proximal region (FPPR) and neighboring asparagine-rich layer compared with previous HIV-1 gp41 structures. A complicated hydrogen-bond network containing a cluster of solvent molecules appears to be critical for the stability of the gp45 helical bundle. Interestingly, viral replication was relatively unaffected by site-directed mutagenesis of EIAV, in striking contrast to that of HIV-1. Based on these observations, we speculate that EIAV is more adaptable to emergent mutations, which might be important for the evolution of EIAV as a quasi-species, and could potentially contribute to the success of the EIAV vaccine.
Collapse
Affiliation(s)
- Liangwei Duan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiansen Du
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xuefeng Wang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jianhua Zhou
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xiaojun Wang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Liu Q, Ma J, Wang XF, Xiao F, Li LJ, Zhang JE, Lin YZ, Du C, He XJ, Wang X, Zhou JH. Infection with equine infectious anemia virus vaccine strain EIAVDLV121 causes no visible histopathological lesions in target organs in association with restricted viral replication and unique cytokine response. Vet Immunol Immunopathol 2016; 170:30-40. [PMID: 26832985 PMCID: PMC7112881 DOI: 10.1016/j.vetimm.2016.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 11/10/2015] [Accepted: 01/20/2016] [Indexed: 11/06/2022]
Abstract
The live equine infectious anemia virus (EIAV) vaccine strain EIAVDLV121 was developed by in vitro attenuation of a virulent strain, EIAVLN40, in the 1970s, and it has been demonstrated to induce protective immunity under laboratory and natural EIAV infection conditions. The detailed biological features of this attenuated virus remain to be further investigated. Experimental inoculation with EIAVDLV121 did not result in clinical symptoms even with immunosuppressive treatment in our previous studies. Here, we further investigated whether the replication of the vaccine strain EIAVDLV121 in experimentally infected horses causes histopathological lesions to develop in the targeted organs. Both the lungs and the spleen have been demonstrated to support EIAV replication. By evaluating the gross macroscopic and histological changes, we found that EIAVDLV121 did not cause detectable histopathological lesions and that it replicated several hundred times more slowly than its parental virulent strain, EIAVLN40, in tissues. Immunochemical assays of these tissues indicated that the primary target cells of EIAVDLV121 were monocytes/macrophages, but that EIAVLN40 also infected alveolar epithelial cells and vascular endothelial cells. In addition, both of these viral strains promoted the up- and down-regulation of the expression of various cytokines and chemokines, implicating the potential involvement of these cellular factors in the pathological outcomes of EIAV infection and host immune responses. Taken together, these results demonstrate that the EIAV vaccine strain does not cause obvious histopathological lesions or clinical symptoms and that it induces a unique cytokine response profile. These features are considered essential for EIAVDLV121 to function as an effective live vaccine.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Fei Xiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Li-Jia Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jiao-Er Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi-Jun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China; Harbin Pharmaceutical Group Biovaccine Company, Harbin 150069, China.
| |
Collapse
|
7
|
Qian L, Han X, Liu X. Structural insight into equine lentivirus receptor 1. Protein Sci 2015; 24:633-42. [PMID: 25559821 DOI: 10.1002/pro.2634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 11/07/2022]
Abstract
Equine lentivirus receptor 1 (ELR1) has been identified as a functional cellular receptor for equine infectious anemia virus (EIAV). Herein, recombinant ELR1 and EIAV surface glycoprotein gp90 were respectively expressed in Drosophila melanogaster S2 cells, and purified to homogeneity by Ni-NTA affinity chromatography and gel filtration chromatography. Gel filtration chromatography and analytical ultracentrifugation (AUC) analyses indicated that both ELR1 and gp90 existed as individual monomers in solution and formed a complex with a stoichiometry of 1:1 when mixed. The structure of ELR1 was first determined with the molecular replacement method, which belongs to the space group P42 21 2 with one molecule in an asymmetric unit. It contains eight antiparallel β-sheets, of which four are in cysteine rich domain 1 (CRD1) and two are in CRD2 and CRD3, respectively. Alignment of ELR1 with HVEM and CD134 indicated that Tyr61, Leu70, and Gly72 in CRD1 of ELR1 are important residues for binding to gp90. Isothermal titration calorimetry (ITC) experiments further confirmed that Leu70 and Gly72 are the critical residues.
Collapse
Affiliation(s)
- Lei Qian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | | | | |
Collapse
|
8
|
Cook R, Leroux C, Issel C. Equine infectious anemia and equine infectious anemia virus in 2013: A review. Vet Microbiol 2013; 167:181-204. [DOI: 10.1016/j.vetmic.2013.09.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
|
9
|
Selection of a rare neutralization-resistant variant following passive transfer of convalescent immune plasma in equine infectious anemia virus-challenged SCID horses. J Virol 2010; 84:6536-48. [PMID: 20392850 DOI: 10.1128/jvi.00218-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccines preventing HIV-1 infection will likely elicit antibodies that neutralize diverse strains. However, the capacity for lentiviruses to escape broadly neutralizing antibodies (NAbs) is not completely understood, nor is it known whether NAbs alone can control heterologous infection. Here, we determined that convalescent immune plasma from a horse persistently infected with equine infectious anemia virus (EIAV) neutralized homologous virus and several envelope variants containing heterologous principal neutralizing domains (PND). Plasma was infused into young horses (foals) affected with severe combined immunodeficiency (SCID), followed by challenge with a homologous EIAV stock. Treated SCID foals were protected against clinical disease, with complete prevention of infection occurring in one foal. In three SCID foals, a novel neutralization-resistant variant arose that was found to preexist at a low frequency in the challenge inoculum. In contrast, SCID foals infused with nonimmune plasma developed acute disease associated with high levels of the predominant challenge virus. Following transfer to an immunocompetent horse, the neutralization-resistant variant induced a single febrile episode and was subsequently controlled in the absence of type-specific NAb. Long-term control was associated with the presence of cytotoxic T lymphocytes (CTL). Our results demonstrate that immune plasma with neutralizing activity against heterologous PND variants can prevent lentivirus infection and clinical disease in the complete absence of T cells. Importantly, however, rare neutralization-resistant envelope variants can replicate in vivo under relatively broad selection pressure, highlighting the need for protective lentivirus vaccines to elicit NAb responses with increased breadth and potency and/or CTL that target conserved epitopes.
Collapse
|
10
|
Sun C, Chu J, Singh S, Salter RD. Identification and characterization of a novel variant of the human P2X(7) receptor resulting in gain of function. Purinergic Signal 2009; 6:31-45. [PMID: 19838818 DOI: 10.1007/s11302-009-9168-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/05/2009] [Indexed: 11/30/2022] Open
Abstract
The P2X(7) receptor exhibits significant allelic polymorphism in humans, with both loss and gain of function variants potentially impacting on a variety of infectious and inflammatory disorders. At least five loss-of-function polymorphisms (G150R, R307Q, T357S, E496A, and I568N) and two gain-of-function polymorphisms (H155Y and Q460R) have been identified and characterized to date. In this study, we used RT-PCR cloning to isolate and characterize P2X(7) cDNA clones from human PBMCs and THP-1 cells. A previously unreported variant with substitutions of V80M and A166G was identified. When expressed in HEK293 cells, this variant exhibited heightened sensitivity to the P2X(7) agonist (BzATP) relative to the most frequent allele, as shown by pore formation measured by fluorescent dye uptake into cells. Mutational analyses showed that A166G alteration was critical for the gain-of-function change, while V80M was not. Full-length variants with multiple previously identified nonsynonymous SNPs (H155Y, H270R, A348T, and E496A) were also identified. Distinct functional phenotypes of the P2X(7) variants or mutants constructed with multiple polymorphisms were observed. Gain-of-function variations (A166G or H155Y) could not rescue the loss-of-function E496A polymorphism. Synergistic effects of the gain-of-function variations were also observed. We also identified the A348T alteration as a weak gain-of-function variant. Thus, these results identify the new gain-of-function variant A166G and demonstrate that multiple-gene polymorphisms contribute to functional phenotypes of the human P2X(7) receptor. Furthermore, the results demonstrate that the C-terminal of the cysteine-rich domain 1 of P2X(7) is critical for regulation of P2X(7)-mediated pore formation.
Collapse
Affiliation(s)
- Chengqun Sun
- Department of Immunology, University of Pittsburgh School of Medicine, E1052 Biomedical Science Tower, Pittsburgh, PA 15261 USA
| | | | | | | |
Collapse
|