1
|
Gonay L, Spourquet C, Baudoin M, Lepers L, Lemoine P, Fletcher AG, Hanert E, Pierreux CE. Modelling of Epithelial Growth, Fission and Lumen Formation During Embryonic Thyroid Development: A Combination of Computational and Experimental Approaches. Front Endocrinol (Lausanne) 2021; 12:655862. [PMID: 34163435 PMCID: PMC8216395 DOI: 10.3389/fendo.2021.655862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Organogenesis is the phase of embryonic development leading to the formation of fully functional organs. In the case of the thyroid, organogenesis starts from the endoderm and generates a multitude of closely packed independent spherical follicular units surrounded by a dense network of capillaries. Follicular organisation is unique and essential for thyroid function, i.e. thyroid hormone production. Previous in vivo studies showed that, besides their nutritive function, endothelial cells play a central role during thyroid gland morphogenesis. However, the precise mechanisms and biological parameters controlling the transformation of the multi-layered thyroid epithelial primordium into a multitude of single-layered follicles are mostly unknown. Animal studies used to improve understanding of organogenesis are costly and time-consuming, with recognised limitations. Here, we developed and used a 2-D vertex model of thyroid growth, angiogenesis and folliculogenesis, within the open-source Chaste framework. Our in silico model, based on in vivo images, correctly simulates the differential growth and proliferation of central and peripheral epithelial cells, as well as the morphogen-driven migration of endothelial cells, consistently with our experimental data. Our simulations further showed that reduced epithelial cell adhesion was critical to allow endothelial invasion and fission of the multi-layered epithelial mass. Finally, our model also allowed epithelial cell polarisation and follicular lumen formation by endothelial cell abundance and proximity. Our study illustrates how constant discussion between theoretical and experimental approaches can help us to better understand the roles of cellular movement, adhesion and polarisation during thyroid embryonic development. We anticipate that the use of in silico models like the one we describe can push forward the fields of developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Leolo Gonay
- Earth and Life Institute, UCLouvain, Louvain-La-Neuve, Belgium
- de Duve Institute, UCLouvain, Woluwé-Saint-Lambert, Belgium
| | | | - Matthieu Baudoin
- Earth and Life Institute, UCLouvain, Louvain-La-Neuve, Belgium
- de Duve Institute, UCLouvain, Woluwé-Saint-Lambert, Belgium
| | - Ludovic Lepers
- Earth and Life Institute, UCLouvain, Louvain-La-Neuve, Belgium
- de Duve Institute, UCLouvain, Woluwé-Saint-Lambert, Belgium
| | | | - Alexander G. Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - Emmanuel Hanert
- Earth and Life Institute, UCLouvain, Louvain-La-Neuve, Belgium
| | - Christophe E. Pierreux
- de Duve Institute, UCLouvain, Woluwé-Saint-Lambert, Belgium
- *Correspondence: Christophe E. Pierreux,
| |
Collapse
|
2
|
Guidolin D, Tortorella C, Ribatti D. Spatial Statistics-Based Image Analysis Methods for the Study of Vascular Morphogenesis. Methods Mol Biol 2021; 2206:67-88. [PMID: 32754812 DOI: 10.1007/978-1-0716-0916-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several studies are available addressing the mechanisms of vascular morphogenesis in order to unravel how cooperative cell behavior can follow from the underlying, genetically regulated behavior of endothelial cells and from cell-to-cell and cell-to-extracellular matrix interactions. From the morphological standpoint several aspects of the process are of interest. They include the way the pattern of vessels fills the available tissue space and how the network grows during the angiogenic process, namely how a main trunk divides into smaller branches, and how branching occurs at different distances from the root point of a vascular tree. A third morphological aspect of interest concerns the spatial relationship between vessels and tissue cells able to secrete factors modulating endothelial cells self-organization, thus influencing vascular rearrangement.In the present chapter image analysis methods allowing for a quantitative characterization of these morphological aspects will be detailed and discussed. They are almost based on concepts derived from the theoretical framework represented by spatial statistics.
Collapse
Affiliation(s)
- Diego Guidolin
- Section of Anatomy, Department of Neuroscience, University of Padova Medical School, Padova, Italy.
| | - Cinzia Tortorella
- Section of Anatomy, Department of Neuroscience, University of Padova Medical School, Padova, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
3
|
Ayan B, Heo DN, Zhang Z, Dey M, Povilianskas A, Drapaca C, Ozbolat IT. Aspiration-assisted bioprinting for precise positioning of biologics. SCIENCE ADVANCES 2020; 6:eaaw5111. [PMID: 32181332 PMCID: PMC7060055 DOI: 10.1126/sciadv.aaw5111] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/13/2019] [Indexed: 05/13/2023]
Abstract
Three-dimensional (3D) bioprinting is an appealing approach for building tissues; however, bioprinting of mini-tissue blocks (i.e., spheroids) with precise control on their positioning in 3D space has been a major obstacle. Here, we unveil "aspiration-assisted bioprinting (AAB)," which enables picking and bioprinting biologics in 3D through harnessing the power of aspiration forces, and when coupled with microvalve bioprinting, it facilitated different biofabrication schemes including scaffold-based or scaffold-free bioprinting at an unprecedented placement precision, ~11% with respect to the spheroid size. We studied the underlying physical mechanism of AAB to understand interactions between aspirated viscoelastic spheroids and physical governing forces during aspiration and bioprinting. We bioprinted a wide range of biologics with dimensions in an order-of-magnitude range including tissue spheroids (80 to 600 μm), tissue strands (~800 μm), or single cells (electrocytes, ~400 μm), and as applications, we illustrated the patterning of angiogenic sprouting spheroids and self-assembly of osteogenic spheroids.
Collapse
Affiliation(s)
- Bugra Ayan
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Dong Nyoung Heo
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Zhifeng Zhang
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Madhuri Dey
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| | - Adomas Povilianskas
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Corina Drapaca
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Abstract
The vascular network carries blood throughout the body, delivering oxygen to tissues and providing a pathway for communication between distant organs. The network is hierarchical and structured, but also dynamic, especially at the smaller scales. Remodeling of the microvasculature occurs in response to local changes in oxygen, gene expression, cell-cell communication, and chemical and mechanical stimuli from the microenvironment. These local changes occur as a result of physiological processes such as growth and exercise, as well as acute and chronic diseases including stroke, cancer, and diabetes, and pharmacological intervention. While the vasculature is an important therapeutic target in many diseases, drugs designed to inhibit vascular growth have achieved only limited success, and no drug has yet been approved to promote therapeutic vascular remodeling. This highlights the challenges involved in identifying appropriate therapeutic targets in a system as complex as the vasculature. Systems biology approaches provide a means to bridge current understanding of the vascular system, from detailed signaling dynamics measured in vitro and pre-clinical animal models of vascular disease, to a more complete picture of vascular regulation in vivo. This will translate to an improved ability to identify multi-component biomarkers for diagnosis, prognosis, and monitoring of therapy that are easy to measure in vivo, as well as better drug targets for specific disease states. In this review, we summarize systems biology approaches that have advanced our understanding of vascular function and dysfunction in vivo, with a focus on computational modeling.
Collapse
Affiliation(s)
- Lindsay E Clegg
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
5
|
Tissue Dynamics of the Carotid Body Under Chronic Hypoxia: A Computational Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:25-39. [DOI: 10.1007/978-3-319-18440-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Guidolin D, Fede C, Albertin G, De Caro R. Investigating in vitro angiogenesis by computer-assisted image analysis and computational simulation. Methods Mol Biol 2015; 1214:197-214. [PMID: 25468606 DOI: 10.1007/978-1-4939-1462-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vitro assays that stimulate the formation of capillary-like structures by EC have become increasingly popular, because they allow the study of the EC's intrinsic ability to self-organize to form vascular-like patterns. Here we describe a widely applied protocol involving the use of basement membrane matrix (Matrigel) as a suitable environment to induce an angiogenic phenotype in cultured EC. EC differentiation on basement membrane matrix is a highly specific process, which recapitulates many steps in blood vessel formation and for this reason it is presently considered as a reliable in vitro tool to identify factors with potential antiangiogenic or pro-angiogenic properties. The morphological features of the obtained cell patterns can also be accurately quantified by computer-assisted image analysis and the main steps of such a procedure will be here outlined and discussed. The dynamics of in vitro EC self-organization is a complex biological process, involving a network of interactions between a high number of cells. For this reason, the combined use of in vitro experiments and computational modeling can represent a key approach to unravel how mechanical and chemical signaling by EC coordinates their organization into capillary-like tubes. Thus, a particularly helpful approach to modeling is also briefly described together with examples of its application.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Molecular Medicine, Section of Anatomy, University of Padova, via Gabelli 65, 35121, Padova, Italy,
| | | | | | | |
Collapse
|
7
|
Logsdon EA, Finley SD, Popel AS, Mac Gabhann F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 2013; 18:1491-508. [PMID: 24237862 PMCID: PMC4190897 DOI: 10.1111/jcmm.12164] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022] Open
Abstract
Blood travels throughout the body in an extensive network of vessels – arteries, veins and capillaries. This vascular network is not static, but instead dynamically remodels in response to stimuli from cells in the nearby tissue. In particular, the smallest vessels – arterioles, venules and capillaries – can be extended, expanded or pruned, in response to exercise, ischaemic events, pharmacological interventions, or other physiological and pathophysiological events. In this review, we describe the multi-step morphogenic process of angiogenesis – the sprouting of new blood vessels – and the stability of vascular networks in vivo. In particular, we review the known interactions between endothelial cells and the various blood cells and plasma components they convey. We describe progress that has been made in applying computational modelling, quantitative biology and high-throughput experimentation to the angiogenesis process.
Collapse
Affiliation(s)
- Elizabeth A Logsdon
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|