1
|
Laksono RM, Kalim H, Rohman MS, Widodo N, Ahmad MR. Serine racemase interaction with N-methyl-D-aspartate receptors antagonist reveals potential alternative target of chronic pain treatment: Molecular docking study. J Adv Pharm Technol Res 2022; 13:232-237. [PMID: 35935687 PMCID: PMC9355058 DOI: 10.4103/japtr.japtr_72_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Serine racemase (SR) catalyzes L-serine racemization to activate the N-methyl-D-aspartate receptor (NMDAR). NMDAR activation is associated with the progression of acute-to-chronic neuropathic pain. This study aimed to investigate NMDAR antagonist interactions with SR to obtain potential chronic pain target therapy. Several NMDAR antagonist drugs were obtained from the drug bank, and malonate was used as a control inhibitor. Ligands were prepared using the open babel feature on PyRx. The SR structure was obtained from Protein data bank (PDB) (3l6B) and then docked with ligands using the AutoDock Vina. Haloperidol had a lower binding affinity than malonate and other ligands. Ethanol had the highest binding affinity than other drugs but could bind to the Adenosine triphosphate (ATP)-binding domain. Haloperidol is bound to reface that function for reprotonation in racemization reaction to produce D-serine. Halothane bond with Arg135 residues aligned negatively charged substrates to be reprotonated properly by reface. Tramadol is bound to amino acid residues in the triple serine loop, which determines the direction of the SR reaction. Several NMDAR antagonists such as haloperidol, halothane, ethanol, and tramadol bind to SR in the specific binding site. It reveals that SR potentially becomes an alternative target for chronic pain treatment.
Collapse
Affiliation(s)
- Ristiawan Muji Laksono
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Brawijaya University/Dr. Saiful Anwar General Hospital, Malang, Indonesia,Address for correspondence: Dr. Ristiawan Muji Laksono, Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Brawijaya University/Dr. Saiful Anwar Malang, Jl. Jaksa Agung Suprapto no. 2 Malang, East Java, Indonesia. E-mail:
| | - Handono Kalim
- Department of Internal Medicine, Faculty of Medicine, Brawijaya University/Dr Saiful Anwar General Hospital, Malang, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Brawijaya University/Dr Saiful Anwar General Hospital, Malang, Indonesia
| | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Science, Brawijaya University, Malang, Indonesia
| | - Muhammad Ramli Ahmad
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
2
|
Moon JY, Choi SR, Roh DH, Yoon SY, Kwon SG, Choi HS, Kang SY, Han HJ, Kim HW, Beitz AJ, Oh SB, Lee JH. Spinal sigma-1 receptor activation increases the production of D-serine in astrocytes which contributes to the development of mechanical allodynia in a mouse model of neuropathic pain. Pharmacol Res 2015; 100:353-64. [PMID: 26316425 DOI: 10.1016/j.phrs.2015.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/05/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated that activation of the spinal sigma-1 receptor (Sig-1R) plays an important role in the development of mechanical allodynia (MA) via secondary activation of the N-methyl-d-aspartate (NMDA) receptor. Sig-1Rs have been shown to localize to astrocytes, and blockade of Sig-1Rs inhibits the pathologic activation of astrocytes in neuropathic mice. However, the mechanism by which Sig-1R activation in astrocytes modulates NMDA receptors in neurons is currently unknown. d-serine, synthesized from l-serine by serine racemase (Srr) in astrocytes, is an endogenous co-agonist for the NMDA receptor glycine site and can control NMDA receptor activity. Here, we investigated the role of d-serine in the development of MA induced by spinal Sig-1R activation in chronic constriction injury (CCI) mice. The production of d-serine and Srr expression were both significantly increased in the spinal cord dorsal horn post-CCI surgery. Srr and d-serine were only localized to astrocytes in the superficial dorsal horn, while d-serine was also localized to neurons in the deep dorsal horn. Moreover, we found that Srr exists in astrocytes that express Sig-1Rs. The CCI-induced increase in the levels of d-serine and Srr was attenuated by sustained intrathecal treatment with the Sig-1R antagonist, BD-1047 during the induction phase of neuropathic pain. In behavioral experiments, degradation of endogenous d-serine with DAAO, or selective blockade of Srr by LSOS, effectively reduced the development of MA, but not thermal hyperalgesia in CCI mice. Finally, BD-1047 administration inhibited the development of MA and this inhibition was reversed by intrathecal treatment with exogenous d-serine. These findings demonstrate for the first time that the activation of Sig-1Rs increases the expression of Srr and d-serine in astrocytes. The increased production of d-serine induced by CCI ultimately affects dorsal horn neurons that are involved in the development of MA in neuropathic mice.
Collapse
Affiliation(s)
- Ji-Young Moon
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae-Hyun Roh
- Department of Maxillofacial Tissue Regeneration, Kyung Hee University School of Dentistry, Seoul 130-701, Republic of Korea
| | - Seo-Yeon Yoon
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Soon-Gu Kwon
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hoon-Seong Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Suk-Yun Kang
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Ho-Jae Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyun-Woo Kim
- Department of Physiology, Institute of Brain Research, Chungnam National University Medical School, Daejeon 301-747, Republic of Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Seog-Bae Oh
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
3
|
Dieb W, Hafidi A. Astrocytes are involved in trigeminal dynamic mechanical allodynia: potential role of D-serine. J Dent Res 2013; 92:808-13. [PMID: 23881719 DOI: 10.1177/0022034513498898] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Trigeminal neuropathic pain affects millions of people worldwide. Despite decades of study on the neuronal processing of pain, mechanisms underlying enhanced pain states after injury remain unclear. N-methyl-D-aspartate (NMDA) receptor-dependent changes play a critical role in triggering central sensitization in neuropathic pain. These receptors are regulated at the glycine site through a mandatory endogenous co-agonist D-serine, which is synthesized by astrocytes. Therefore, the present study was carried out to determine whether astrocytes are involved, through D-serine secretion, in dynamic mechanical allodynia (DMA) obtained after chronic constriction of the infraorbital nerve (CCI-IoN) in rats. Two weeks after CCI-IoN, an important reaction of astrocytes was present in the medullary dorsal horn (MDH), as revealed by an up-regulation of glial fibrillary acidic protein (GFAP) in allodynic rats. In parallel, an increase in D-serine synthesis, which co-localized with its synthesis enzyme serine racemase, was strictly observed in astrocytes. Blocking astrocyte metabolism by intracisternal delivery of fluorocitrate alleviated DMA. Furthermore, the administration of D-amino-acid oxidase (DAAO), a D-serine-degrading enzyme, or that of L-serine O-sulfate (LSOS), a serine racemase inhibitor, significantly decreased pain behavior in allodynic rats. These results demonstrate that astrocytes are involved in the modulation of orofacial post-traumatic neuropathic pain via the release of the gliotransmitter D-serine.
Collapse
Affiliation(s)
- W Dieb
- 7280, Neuro-Psycho-pharmacologie des Systèmes Dopaminergiques sous-corticaux, Clermont-Ferrand, Université Clermont1, F-63000, France.
| | | |
Collapse
|
4
|
Electrophysiological Study of the Antinociception Produced by the Coapplication of (±)-CPP and Propentofylline in Monoarthritic Rats. ISRN PAIN 2013; 2013:315626. [PMID: 27335873 PMCID: PMC4893406 DOI: 10.1155/2013/315626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/15/2013] [Indexed: 11/29/2022]
Abstract
The NMDA receptor is central in the generation and maintenance of chronic pain. This receptor has several sites of modulation. One is the glutamate recognition site that can be blocked by (±)-3-(2-carboxypiperazin-yl)propyl-1-phosphoric acid or (±)-CPP. We investigated whether the effect of glial inhibition produced by propentophylline (PPF) can be enhanced when combined with (±)-CPP. We used Sprague-Dawley rats with experimental monoarthritis, administering intrathecally the ED30 for both drugs (3.97 μg of (±)-CPP and 1.42 μg of PPF), since this combination produces an antinociceptive supra-additive effect when used in mechanical nociception (Randall-Selitto test). The combination of (±)-PPF and CPP produced an antinociceptive effect which was greater than that each drug alone as tested by both the C reflex and windup. We conclude that the antinociceptive effect of the combination of (±)-PPF and CPP possibly generates a supra additive interaction type in monoarthritic rats.
Collapse
|