1
|
Abad-Jiménez Z, López-Domènech S, García-Gargallo C, Vezza T, Gómez-Abril SÁ, Morillas C, Díaz-Pozo P, Falcón R, Bañuls C, Víctor VM, Rocha M. Roux-en-Y Gastric Bypass Modulates AMPK, Autophagy and Inflammatory Response in Leukocytes of Obese Patients. Biomedicines 2022; 10:biomedicines10020430. [PMID: 35203639 PMCID: PMC8962362 DOI: 10.3390/biomedicines10020430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is characterized by low-grade chronic inflammation, metabolic overload, and impaired endothelial and cardiovascular function. Roux-en-Y gastric bypass (RYGB) results in amelioration of the pro-oxidant status of leukocytes and the metabolic profile. Nevertheless, little is known about the precise mechanism that drives systemic and metabolic improvements following bariatric surgery. In this cohort study, we investigated the effect of RYGB on molecular pathways involving energy homeostasis in leukocytes in 43 obese subjects one year after surgery. In addition to clinical and biochemical parameters, we determined protein expression of systemic proinflammatory cytokines by Luminex®, different markers of inflammation, endoplasmic reticulum (ER) stress, autophagy/mitophagy by western blot, and mitochondrial membrane potential by fluorescence imaging. Bariatric surgery induced an improvement in metabolic outcomes that was accompanied by a systemic drop in hsCRP, IL6, and IL1β levels, and a slowing down of intracellular inflammatory pathways in leukocytes (NF-κB and MCP-1), an increase in AMPK content, a reduction of ER stress (ATF6 and CHOP), augmented autophagy/mitophagy markers (Beclin 1, ATG5, LC3-I, LC3-II, NBR1, and PINK1), and a decrease of mitochondrial membrane potential. These findings shed light on the specific molecular mechanisms by which RYGB facilitates metabolic improvements, highlighting the relevance of pathways involving energy homeostasis as key mediators of these outcomes. In addition, since leukocytes are particularly exposed to physiological changes, they could be used in routine clinical practice as a good sensor of the whole body’s responses.
Collapse
Affiliation(s)
- Zaida Abad-Jiménez
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Sandra López-Domènech
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
- Correspondence: (S.L.-D.); (V.M.V.); (M.R.); Tel.: +34-96-318-91-32 (M.R.)
| | - Celia García-Gargallo
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Teresa Vezza
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Segundo Ángel Gómez-Abril
- Department of General and Digestive System Surgery, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain;
- Department of Surgery, Faculty of Medicine and Dentistry, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Carlos Morillas
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Pedro Díaz-Pozo
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Rosa Falcón
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Celia Bañuls
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Víctor M. Víctor
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
- CIBERehd-Department of Pharmacology, University of Valencia, Av Blasco Ibáñez 15, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
- Correspondence: (S.L.-D.); (V.M.V.); (M.R.); Tel.: +34-96-318-91-32 (M.R.)
| | - Milagros Rocha
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
- CIBERehd-Department of Pharmacology, University of Valencia, Av Blasco Ibáñez 15, 46010 Valencia, Spain
- Correspondence: (S.L.-D.); (V.M.V.); (M.R.); Tel.: +34-96-318-91-32 (M.R.)
| |
Collapse
|
2
|
Insulin-like growth factor-1 short-period therapy stimulates bone marrow cells in obese swiss mice. Cell Tissue Res 2021; 384:721-734. [PMID: 33977324 DOI: 10.1007/s00441-020-03357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/18/2020] [Indexed: 10/21/2022]
Abstract
Bone marrow cells (BMCs) from obese Swiss mice fed with Western diet show mitochondrial dysfunction. Obesity interferes with BMCs disrupting energetic metabolism, stimulating apoptosis, and reducing cell proliferation since adipose tissue releases inflammatory adipokines into the medullar microenvironment. These changes lead to reduction of BMC differentiation capacity and hematopoiesis impairment, a process responsible for blood cell continuous production through hematopoietic stem cells (HSCs). This work aimed to analyze the effects of IGF-1 therapy on BMC viability in Western diet-induced obesity, in vivo. We observed that after only 1 week of treatment, obese Swiss mice presented reduced body weight and visceral fat and increased mitochondrial oxidative capacity and coupling, indicating mitochondrial function improvement. In addition, IGF-1 was able to reduce apoptosis of total BMCs, stem cell subpopulations (hematopoietic and mesenchymal), and leukocytes, restoring all progenitor hematopoietic lineages. The treatment also contributed to increase proliferative capacity of hematopoietic stem cells and leukocytes, keeping the hematopoietic and immune systems balanced. Therefore, we conclude that IGF-1 short period therapy improved BMC survival, proliferation, and differentiation capacity in obese Swiss mice.
Collapse
|
3
|
Vega-Martín E, González-Blázquez R, Manzano-Lista FJ, Martín-Ramos M, García-Prieto CF, Viana M, Rubio MA, Calle-Pascual AL, Lionetti L, Somoza B, Fernández-Alfonso MS, Alcalá M, Gil-Ortega M. Impact of caloric restriction on AMPK and endoplasmic reticulum stress in peripheral tissues and circulating peripheral blood mononuclear cells from Zucker rats. J Nutr Biochem 2020; 78:108342. [PMID: 32004927 DOI: 10.1016/j.jnutbio.2020.108342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
The activation of endoplasmic reticulum (ER) stress and a reduction of AMP-dependent protein kinase (AMPK) phosphorylation have been described in obesity. We hypothesize that a moderate caloric restriction (CR) might contribute to reducing ER stress and increasing AMPK phosphorylation in peripheral tissues from genetically obese Zucker fa/fa rats and in peripheral blood mononuclear cells (PBMCs). Zucker Lean and Zucker fa/fa rats were fed with chow diet either ad libitum (AL) (C, as controls) or 80% of AL (CR) for 2 weeks, giving rise to four experimental groups: Lean C, Lean CR, fa/fa C and fa/fa CR. CR significantly increased AMPK phosphorylation in the liver, perirenal adipose tissue (PRAT) and PBMCs from fa/fa rats but not in the subcutaneous AT (SCAT), suggesting a reduced response of SCAT to CR. Liver samples of fa/fa rats exhibited an increased mRNA expression of PERK, EIF-2α, XBP-1(s), Chop and caspase 3, which was significantly reduced by CR. PRAT exhibited an overexpression of Edem and PDIA-4 in fa/fa rats, but only PDIA-4 expression was reduced by CR. eIF-2α phosphorylation was significantly increased in all studied tissues from fa/fa rats and reduced by CR. A negative correlation was detected between p-AMPK and p-eIF-2α in the liver, PRAT and PBMCs from fa/fa rats but not in SCAT. This study shows that a moderate CR reduces ER stress and improves AMPK phosphorylation in several peripheral tissues and in circulating PBMCs, suggesting that alterations observed in PBMCs could reflect metabolic alterations associated with obesity.
Collapse
Affiliation(s)
- Elena Vega-Martín
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Francisco J Manzano-Lista
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miriam Martín-Ramos
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Concepción F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Miguel A Rubio
- Department of Endocrinology and Nutrition, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Facultad de Medicina, Complutense University, C/ Prof. Martin Lagos s/n, 28040 Madrid, Spain
| | - Alfonso L Calle-Pascual
- Department of Endocrinology and Nutrition, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Facultad de Medicina, Complutense University, C/ Prof. Martin Lagos s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Lillà Lionetti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain.
| |
Collapse
|
4
|
García-Prieto CF, Gil-Ortega M, Vega-Martín E, Ramiro-Cortijo D, Martín-Ramos M, Bordiú E, Sanchez-Pernaute A, Torres A, Aránguez I, Fernández-Alfonso M, Rubio MA, Somoza B. Beneficial Effect of Bariatric Surgery on Abnormal MMP-9 and AMPK Activities: Potential Markers of Obesity-Related CV Risk. Front Physiol 2019; 10:553. [PMID: 31133882 PMCID: PMC6517546 DOI: 10.3389/fphys.2019.00553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/18/2019] [Indexed: 12/30/2022] Open
Abstract
Bariatric surgery (BS) results in sustained weight loss and may reverse inflammation, metabolic alterations, extracellular matrix remodeling and arterial stiffness. We hypothesize that increased stiffening in omental arteries from obese patients might be associated with an increase in MMP activity and a decrease in p-AMPK, together with systemic oxidative stress and inflammation. Moreover, BS could contribute to reversing these alterations. This study was conducted with 38 patients of Caucasian origin: 31 adult patients with morbid obesity (9 men and 22 women; mean age 46 years and BMI = 42.7 ± 1.0 kg/m2) and 7 non-obese subjects (7 women; mean age 45 years and BMI = 22.7 ± 0.6 kg/m2). Seventeen obese patients were studied before and 12 months after BS. The stiffness index β, an index of intrinsic arterial stiffness, was determined in omental arteries and was significantly higher in obese patients. Levels of phosphorylated AMPK (p-AMPKThr-172) and SIRT-1 were significantly lower in peripheral blood mononuclear cells (PBMCs) from obese patients than those from non-obese patients (p < 0.05) and were normalized after BS. Total and active MMP-9 activities, LDH, protein carbonyls and uric acid were higher in obese patients and reduced by BS. Moreover, there was a correlation between plasmatic LDH levels and the stiffness index β. BS has a beneficial effect on abnormal MMP-9, LDH and AMPK activities that might be associated with the development of arterial stiffness in obese patients. Since these parameters are easily measured in blood samples, they could constitute potential biomarkers of cardiovascular risk in morbid obesity.
Collapse
Affiliation(s)
- Concha F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Elena Vega-Martín
- Departamento de Farmacología, Facultad de Farmacia, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - David Ramiro-Cortijo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miriam Martín-Ramos
- Departamento de Farmacología, Facultad de Farmacia, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Bordiú
- Servicio de Endocrinología y Nutrición, Facultad de Medicina, Hospital Clínico San Carlos, Instituto de Investigaciones Sanitarias San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrés Sanchez-Pernaute
- Servicio de Cirugía, Facultad de Medicina, Hospital Clínico San Carlos, Instituto de Investigaciones Sanitarias San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Torres
- Servicio de Cirugía, Facultad de Medicina, Hospital Clínico San Carlos, Instituto de Investigaciones Sanitarias San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - I Aránguez
- Departamento de Bioquímica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - María Fernández-Alfonso
- Departamento de Farmacología, Facultad de Farmacia, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel A Rubio
- Servicio de Endocrinología y Nutrición, Facultad de Medicina, Hospital Clínico San Carlos, Instituto de Investigaciones Sanitarias San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
5
|
Capybara Oil Improves Hepatic Mitochondrial Dysfunction, Steatosis, and Inflammation in a Murine Model of Nonalcoholic Fatty Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4956079. [PMID: 29853957 PMCID: PMC5949171 DOI: 10.1155/2018/4956079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is recognized as the most common cause of liver dysfunction worldwide and is commonly associated with obesity. Evidences suggest that NAFLD might be a mitochondrial disease, which contributes to the hepatic steatosis, oxidative stress, cytokine release, and cell death. Capybara oil (CO) is a rich source of polyunsaturated fatty acids (PUFA), which is known to improve inflammation and oxidative stress. In order to determine the effects of CO on NAFLD, C57Bl/6 mice were divided into 3 groups and fed a high-fat diet (HFD) (NAFLD group and NAFLD + CO group) or a control diet (CG group) during 16 weeks. The CO (1.5 g/kg/daily) was administered by gavage during the last 4 weeks of the diet protocol. We evaluated plasma liver enzymes, hepatic steatosis, and cytokine expression in liver as well as hepatocyte ultrastructural morphology and mitochondrial function. CO treatment suppressed hepatic steatosis, attenuated inflammatory response, and decreased plasma alanine aminotransferase (ALT) in mice with NAFLD. CO was also capable of restoring mitochondrial ultrastructure and function as well as balance superoxide dismutase and catalase levels. Our findings indicate that CO treatment has positive effects on NAFLD improving mitochondrial dysfunction, steatosis, acute inflammation, and oxidative stress.
Collapse
|
6
|
Hsiao CP, Hoppel C. Analyzing mitochondrial function in human peripheral blood mononuclear cells. Anal Biochem 2018; 549:12-20. [PMID: 29505781 PMCID: PMC5938136 DOI: 10.1016/j.ab.2018.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/06/2018] [Accepted: 03/01/2018] [Indexed: 12/13/2022]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) is responsible for producing most of the adenosine triphosphate required by eukaryotic cells. Lymphocytes make up the majority of the peripheral blood mononuclear cells. Peripheral blood mononuclear cells are readily obtainable, providing an ideal sample to monitor systemic changes and understand molecular signaling mechanisms in disease processes. Mitochondrial energy metabolism of lymphocyte has been used to screen for OXPHOS disorders. While there are increasing studies of lymphocyte OXPHOS, few studies examined activity of electron transport chain of lymphocyte mitochondria. We present an optimal protocol to harvest fresh peripheral blood mononuclear cells from human whole blood, determine integrated mitochondrial function, and analyze electron transport chain complex activity. Analyzing integrated mitochondrial function using OXPHOS provides data to uncover defects in the transport of substrates into the mitochondria, generation of reducing equivalents, the electron transport chain, and coupling to the production of adenosine triphosphate. The optimal conditions to harvest peripheral blood mononuclear cells were using blood anticoagulated with ethylenediaminetetraacetic acid, processed utilizing Lymphoprep™, and washed in phosphate buffered saline, all at room temperature. Using isolated peripheral blood mononuclear cells, integrated mitochondrial function and the activities of electron transport chain were determined.
Collapse
Affiliation(s)
- Chao-Pin Hsiao
- Frances Payne Bolton School of Nursing, Case Western Reserve University, USA.
| | - Charles Hoppel
- Center for Mitochondrial Disease, Department of Pharmacology and Medicine, School of Medicine, Case Western Reserve University, USA
| |
Collapse
|
7
|
de Andrade DC, de Carvalho SN, Pinheiro D, Thole AA, Moura AS, de Carvalho L, Cortez EAC. Bone marrow mononuclear cell transplantation improves mitochondrial bioenergetics in the liver of cholestatic rats. Exp Cell Res 2015; 336:15-22. [PMID: 25978973 DOI: 10.1016/j.yexcr.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction has been associated with liver cholestatis. Toxic bile salt accumulation leads to chronic injury with mitochondrial damage, ROS increase and apoptosis, resulting in liver dysfunction. This study aimed to analyze mitochondrial bioenergetics in rats with hepatic fibrosis induced by bile duct ligation (BDL) after BMMNC transplantation. Livers were collected from normal rats, fibrotic rats after 14 and 21 days of BDL (F14d and F21d) and rats that received BMMNC at 14 days of BDL, analyzed after 7 days. F21d demonstrated increased collagen I content and consequently decrease after BMMNC transplantation. Both F14d and F21d had significantly reduced mitochondrial oxidation capacity and increased mitochondrial uncoupling, which were restored to levels similar to those of normal group after BMMNC transplantation. In addition, F21d had a significantly increase of UCP2, and reduced PGC-1α content. However, after BMMNC transplantation both proteins returned to levels similar to normal group. Moreover, F14d had a significantly increase in 4-HNE content compared to normal group, but after BMMNC transplantation 4-HNE content significantly reduced, suggesting oxidative stress reduction. Therefore, BMMNC transplantation has a positive effect on hepatic mitochondrial bioenergetics of cholestatic rats, increasing oxidative capacity and reducing oxidative stress, which, in turn, contribute to liver function recover.
Collapse
Affiliation(s)
- Daniela Caldas de Andrade
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, Brazil
| | - Simone Nunes de Carvalho
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, Brazil
| | - Daphne Pinheiro
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, Brazil
| | - Alessandra Alves Thole
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, Brazil
| | - Anibal Sanchez Moura
- Labotatory of Nutrition and Development Physiology, Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 5° andar, 20550-170 Rio de Janeiro, Brazil
| | - Lais de Carvalho
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, Brazil
| | - Erika Afonso Costa Cortez
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Impaired mitochondrial function and reduced viability in bone marrow cells of obese mice. Cell Tissue Res 2014; 357:185-94. [DOI: 10.1007/s00441-014-1857-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
|
9
|
Neves FA, Cortez E, Bernardo AF, Mattos ABM, Vieira AK, Malafaia TDO, Thole AA, Rodrigues-Cunha ACDS, Garcia-Souza EP, Sichieri R, Moura AS. Heart energy metabolism impairment in Western-diet induced obese mice. J Nutr Biochem 2013; 25:50-7. [PMID: 24314865 DOI: 10.1016/j.jnutbio.2013.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/20/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
Nutritional transition has contributed to growing obesity, mainly by changing eating habits of the population. The mechanisms by which diet-induced obesity leads to cardiac injury are not completely understood, but it is known that obesity is associated to impaired cardiac function and energy metabolism, increasing morbidity and mortality. Therefore, our study aimed to investigate the mechanisms underlying cardiac metabolism impairment related to Western diet-induced obesity. After weaning, male Swiss mice were fed a Western diet for 16 weeks in order to induce obesity. After this period, the content of proteins involved in heart energy metabolism GLUT1, cytosolic lysate and plasma membrane GLUT4, AMPK, pAMPK, IRβ, IRS-1, PGC-1α, CPT1 and UCP2 was evaluated. Also, the oxidative phosphorylation of myocardial fibers was measured by high-resolution respirometry. Mice in the Western diet group (WG) presented altered biometric parameters compared to those in control group, including higher body weight, increased myocardial lipid deposition and glucose intolerance, which demonstrate the obesogenic role of Western diet. WG presented increased CPT1 and UCP2 contents and decreased IRS-1, plasma membrane GLUT4 and PGC-1α contents. In addition, WG presented cardiac mitochondrial dysfunction and reduced biogenesis, demonstrating a lower capacity of carbohydrates and fatty acid oxidation and also decreased coupling between oxidative phosphorylation and adenosine triphosphate synthesis. Cardiac metabolism impairment related to Western diet-induced obesity is probably due to damaged myocardial oxidative capacity, reduced mitochondrial biogenesis and mitochondria uncoupling, which compromise the bioenergetic metabolism of heart.
Collapse
Affiliation(s)
- Fabiana A Neves
- Laboratory of Nutrition Physiology and Development, Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Montano MAE, da Cruz IBM, Duarte MMMF, Krewer CDC, da Rocha MIDUM, Mânica-Cattani MF, Soares FAA, Rosa G, Maris AF, Battiston FG, Trott A, Lera JPB. Inflammatory cytokines in vitro production are associated with Ala16Val superoxide dismutase gene polymorphism of peripheral blood mononuclear cells. Cytokine 2012; 60:30-3. [PMID: 22688013 DOI: 10.1016/j.cyto.2012.05.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 11/16/2022]
Abstract
Obesity is considered a chronic low-grade inflammatory state associated with a chronic oxidative stress caused by superoxide production (O(2)(-)). The superoxide dismutase manganese dependent (SOD2) catalyzes O(2)(-) in H(2)O(2) into mitochondria and is encoded by a single gene that presents a common polymorphism that results in the replacement of alanine (A) with a valine (V) in the 16 codon. This polymorphism has been implicated in a decreased efficiency of SOD2 transport into targeted mitochondria in V allele carriers. Previous studies described an association between VV genotype and metabolic diseases, including obesity and diabetes. However, the causal mechanisms to explain this association need to be more elucidated. We postulated that the polymorphism could influence the inflammatory response. To test our hypothesis, we evaluated the in vitro cytokines production by human peripheral blood mononuclear cells (PBMCs) carrier's different Ala16Val-SOD2 genotypes (IL-1, IL-6, IL-10, TNF-α, IFN-γ). Additionally, we evaluated if the culture medium glucose, enriched insulin, could influence the cytokine production. Higher levels of proinflammatory cytokines were observed in VV-PBMCs when compared to AA-PBMCs. However, the culture medium glucose and enriched insulin did not affect cytokine production. The results suggest that Ala16Val-SOD2 gene polymorphism could trigger the PBMCs proinflammatory cytokines level. However, discerning if a similar mechanism occurs in fat cells is an open question.
Collapse
Affiliation(s)
- Marco Aurélio Echart Montano
- Laboratory of Molecular Aspects Associated to Genetic Diseases, University of Western Santa Catarina, Unoesc, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|