1
|
Lin X, Long S, Yan C, Zou X, Zhang G, Zou J, Wu G. Therapeutic potential of vasculogenic mimicry in urological tumors. Front Oncol 2023; 13:1202656. [PMID: 37810976 PMCID: PMC10551447 DOI: 10.3389/fonc.2023.1202656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Angiogenesis is an essential process in the growth and metastasis of cancer cells, which can be hampered by an anti-angiogenesis mechanism, thereby delaying the progression of tumors. However, the benefit of this treatment modality could be restricted, as most patients tend to develop acquired resistance during treatment. Vasculogenic mimicry (VM) is regarded as a critical alternative mechanism of tumor angiogenesis, where studies have demonstrated that patients with tumors supplemented with VM generally have a shorter survival period and a poorer prognosis. Inhibiting VM may be an effective therapeutic strategy to prevent cancer progression, which could prove helpful in impeding the limitations of lone use of anti-angiogenic therapy when performed concurrently with other anti-tumor therapies. This review summarizes the mechanism of VM signaling pathways in urological tumors, i.e., prostate cancer, clear cell renal cell carcinoma, and bladder cancer. Furthermore, it also summarizes the potential of VM as a therapeutic strategy for urological tumors.
Collapse
Affiliation(s)
- Xinyu Lin
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Sheng Long
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Congcong Yan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gengqing Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Lee NG, Jeung IC, Heo SC, Song J, Kim W, Hwang B, Kwon MG, Kim YG, Lee J, Park JG, Shin MG, Cho YL, Son MY, Bae KH, Lee SH, Kim JH, Min JK. Ischemia-induced Netrin-4 promotes neovascularization through endothelial progenitor cell activation via Unc-5 Netrin receptor B. FASEB J 2019; 34:1231-1246. [PMID: 31914695 DOI: 10.1096/fj.201900866rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 11/11/2022]
Abstract
Endothelial progenitor cells (EPCs) promote neovascularization and tissue repair by migrating to vascular injury sites; therefore, factors that enhance EPC homing to damaged tissues are of interest. Here, we provide evidence of the prominent role of the Netrin-4 (NTN4)-Unc-5 Netrin receptor B (UNC5B) axis in EPC-specific promotion of ischemic neovascularization. Our results showed that NTN4 promoted the proliferation, chemotactic migration, and paracrine effects of small EPCs (SEPCs) and significantly increased the incorporation of large EPCs (LEPCs) into tubule networks. Additionally, NTN4 prominently augmented neovascularization in mice with hindlimb ischemia by increasing the homing of exogenously transplanted EPCs to the ischemic limb and incorporating EPCs into vessels. Moreover, silencing of UNC5B, an NTN4 receptor, abrogated the NTN4-induced cellular activities of SEPCs in vitro and blood-flow recovery and neovascularization in vivo in ischemic muscle by reducing EPC homing and incorporation. These findings suggest NTN4 as an EPC-based therapy for treating angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Na Geum Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - In Cheul Jeung
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Soon Chul Heo
- Department of Physiology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jinhoi Song
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Wooil Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Byungtae Hwang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Min-Gi Kwon
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Min-Gyeong Shin
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Young-Lai Cho
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Mi-Young Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Kwang-Hee Bae
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Sang-Hyun Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
3
|
Mitra D, Bhattacharyya S, Alam N, Sen S, Mitra S, Mandal S, Vignesh S, Majumder B, Murmu N. Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast. Breast Cancer Res Treat 2019; 179:359-370. [PMID: 31686261 DOI: 10.1007/s10549-019-05482-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE The occurrence of vasculogenic mimicry (VM) and EphA2-mediated tumour progression are associated with poor prognosis in various solid tumours. Here, we aimed to investigate the prognostic implications of VM and its association with phosphorylated EphA2 receptor in invasive carcinoma of the breast. METHODS The patients were stratified based on CD-31/PAS dual staining and subsequently the expression status of phospho-EphA2 (S897), FAK, phospho-ERK1/2 and Laminin 5Ƴ2 was analysed by immunohistochemistry. Survival of patients was correlated within the stratified cohort. RESULTS The pathologically defined VM phenotype and phospho-EphA2 (S897) expression status were significantly associated with lower disease-free survival (DFS) and overall survival (OS). Both the features were also found to be significantly associated with higher nodal status, poor Nottingham Prognostic Index (NPI) and were more prevalent in the triple-negative breast cancer (TNBC) group. Incidentally, there were no significant association between age of the patient, grade and size of the tumour with VM and phospho-EphA2 (S897). The effector molecules of phospho-EphA2 (S897) viz., Focal Adhesion Kinase (FAK), phospho-ERK1/2 and Laminin 5Ƴ2 were significantly upregulated in the VM-positive cohort. Survival analysis revealed that the VM and phospho-EphA2 (S897) dual-positive cohort had poorest DFS [mean time = 48.313 (39.992-56.633) months] and OS [mean time = 56.692 (49.055-64.328) months]. Individually, VM-positive [Hazard Ratio (HR) 6.005; 95% confidence interval (CI) 2.002-18.018; P = 0.001 for DFS and HR 11.654; 95% CI 3.195-42.508; P < 0.0001 for OS] and phospho-EphA2 (S897)-positive (HR 4.342; 95% CI 1.717-10.983; P = 0.002 for DFS and HR 5.853; 95% CI 1.663-20.602; P = 0.006 for OS) expression proved to be independent indicators of prognosis. CONCLUSION This study evaluated tumour dependency on oncogenic EphA2 receptor regulation and VM in invasive carcinoma of the breast and their prognostic significance. Significant correlations between VM, phospho-EphA2 and several clinicopathologic parameters of breast cancer were found. Subsequently, the occurrence of VM or phospho-EphA2 expression proved to be major contributors for poor prognosis in patients with breast cancer but their simultaneous expression failed to be an independent risk factor.
Collapse
Affiliation(s)
- Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Sayantan Bhattacharyya
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Sagar Sen
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Saunak Mitra
- Department of Pathology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Syamsundar Mandal
- Department of Epidemiology and Biostatistics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Shivani Vignesh
- Department of Cancer Biology, Mitra Biotech, 7- Service Road, Pragathi Nagar, Electronic City, Bengaluru, 560100, India
| | - Biswanath Majumder
- Department of Molecular Pathology, Mitra Biotech, 7- Service Road, Pragathi Nagar, Electronic City, Bengaluru, 560100, India
- Department of Cancer Biology, Mitra Biotech, 7- Service Road, Pragathi Nagar, Electronic City, Bengaluru, 560100, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
4
|
Ouyang L, Dan Y, Shao Z, Yang S, Yang C, Liu G, Duan D. MMP-sensitive PEG hydrogel modified with RGD promotes bFGF, VEGF and EPC-mediated angiogenesis. Exp Ther Med 2019; 18:2933-2941. [PMID: 31572536 PMCID: PMC6755480 DOI: 10.3892/etm.2019.7885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/26/2019] [Indexed: 12/17/2022] Open
Abstract
Traumatic soft tissue defects such as bedsores, chronic skin ulcers, limb necrosis, osteonecrosis and other ischemic orthopedic diseases are the most clinically intractable and common problems in orthopedics due to unsatisfactory conventional treatments. The present study designed poly(ethylene glycol; PEG) hydrogels with covalently binded arginylglycylaspartic acid (RGD). Endothelial progenitor cells (EPCs) were encapsulated in the modified hydrogel along with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Results demonstrated that the modified hydrogel displayed good mechanical properties appropriate for a sustained release carrier. RGD modification significantly promoted EPC biocompatibility. VEGF and bFGF encapsulation enhanced the adhesion of EPCs, promoted the production of extracellular matrix and facilitated EPC proliferation. In addition, bFGF and VEGF induced angiogenesis. The combination of growth factors and EPCs in the hydrogel displayed a strong synergy to improve biocompatibility. The present results provided a potential novel treatment approach for soft tissue defects such as bone exposure, chronic skin ulcers, bedsores, limb necrosis, osteonecrosis and other ischemic diseases.
Collapse
Affiliation(s)
- Liu Ouyang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yang Dan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shuhua Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Deyu Duan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
5
|
Otto M, Blatt S, Pabst A, Mandic R, Schwarz J, Neff A, Ziebart T. Influence of buffy coat-derived putative endothelial progenitor cells on tumor growth and neovascularization in oral squamous cell carcinoma xenografts. Clin Oral Investig 2019; 23:3767-3775. [PMID: 30693401 DOI: 10.1007/s00784-019-02806-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this murine in vivo study was to investigate whether buffy coat-derived putative endothelial progenitor cells (BCEPC) alter tumor growth and neovascularization in oral squamous cell carcinomas (OSCC). MATERIALS AND METHODS A murine xenograft model using the PCI-13 oral cancer cell line was deployed of which n = 24 animals received 2 × 106 BCEPC by transfusion whereas the control group (n = 24) received NaCl (0.9%) instead. Tumor size, volume, and capillary density were determined by sonography and measurement with a caliper. Immunohistochemical analysis was carried out with antibodies specific for Cytokeratins, Flt-4, Podoplanin, and Vimentin. RESULTS In the experimental group, systemic application of BCEPC significantly increased tumor volume to 362.49% (p = 0.0012) and weight to 352.38% (p = 0.0018) as well as vascular densities to 162.15% (p = 0.0021) compared with control tumors. In addition, BCEPC-treated xenografts exhibited higher Cytokeratin expression levels by a factor of 1.47 (p = 0.0417), Podoplanin by a factor of 3.3 (p = 0.0020) and Vimentin by a factor of 2.5 (p = 0.0001), respectively. CONCLUSIONS Immunohistochemical investigations support the notion that BCEPC transfusion influences neovascularization and lymphatic vessel density, thereby possibly promoting tumor progression. Future studies, which will include gene expression analysis, should help to define the possible role of BCEPC during OSCC progression in more detail. CLINICAL RELEVANCE Endothelial progenitor cells (EPCs) could serve as a target structure for the treatment of OSCC and possibly other solid tumors.
Collapse
Affiliation(s)
- Marius Otto
- Interdisciplinary Head & Neck Oncology Laboratory, Department for Oral and Maxillofacial Surgery, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, D-35033, Marburg, Germany
| | - Sebastian Blatt
- Clinic for Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Andreas Pabst
- Clinic for Oral and Maxillofacial Surgery, Federal Armed Forces Hospital Koblenz, Koblenz, Germany
| | - Robert Mandic
- Interdisciplinary Head & Neck Oncology Laboratory, Department of Otolaryngology, Head & Neck Surgery, University Hospital Marburg, Marburg, Germany
| | - Johanna Schwarz
- Department of Mathematics and Computer Science, Research Group for Bioinformatics, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Neff
- Interdisciplinary Head & Neck Oncology Laboratory, Department for Oral and Maxillofacial Surgery, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, D-35033, Marburg, Germany
| | - Thomas Ziebart
- Interdisciplinary Head & Neck Oncology Laboratory, Department for Oral and Maxillofacial Surgery, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, D-35033, Marburg, Germany.
| |
Collapse
|
6
|
Carolina E, Kato T, Khanh VC, Moriguchi K, Yamashita T, Takeuchi K, Hamada H, Ohneda O. Glucocorticoid Impaired the Wound Healing Ability of Endothelial Progenitor Cells by Reducing the Expression of CXCR4 in the PGE2 Pathway. Front Med (Lausanne) 2018; 5:276. [PMID: 30324106 PMCID: PMC6173212 DOI: 10.3389/fmed.2018.00276] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023] Open
Abstract
Background: Endothelial progenitor cells (EPCs) can be used to treat ischemic disease in cell-based therapy owing to their neovascularization potential. Glucocorticoids (GCs) have been widely used as strong anti-inflammatory reagents. However, despite their beneficial effects, side effects, such as impairing wound healing are commonly reported with GC-based therapy, and the effects of GC therapy on the wound healing function of EPCs are unclear. Methods: In this study, we investigated how GC treatment affects the characteristics and wound healing function of EPCs. Results: We found that GC treatment reduced the proliferative ability of EPCs. In addition, the expression of CXCR4 was dramatically impaired, which suppressed the migration of EPCs. A transplantation study in a flap mouse model revealed that GC-treated EPCs showed a poor homing ability to injured sites and a low activity for recruiting inflammatory cells, which led to wound healing dysfunction. Impairment of prostaglandin E2 (PGE2) synthases, cyclooxygenase (COX2) and microsomal PGE2 synthase 1 (mPEGS1) were identified as being involved in the GC-induced impairment of the CXCR4 expression in EPCs. Treatment with PGE2 rescued the expression of CXCR4 and restored the migration ability of GC-treated EPCs. In addition, the PGE2 signal that activated the PI3K/AKT pathway was identified to be involved in the regulation of CXCR4 in EPCs under the effects of GCs. In addition, similar negative effects of GCs were observed in EPCs under hypoxic conditions. Under hypoxic conditions, GCs independently impaired the PGE2 and HIF2α pathways, which downregulated the expression of CXCR4 in EPCs. Our findings highlighted the influences of GCs on the characteristics and functions of EPCs, suggesting that the use of EPCs for autologous cell transplantation in patients who have used GCs for a long time should be considered carefully.
Collapse
Affiliation(s)
- Erica Carolina
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Toshiki Kato
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Ph.D. Program in Human Biology, School of Integrative Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Vuong Cat Khanh
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kana Moriguchi
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Toshiharu Yamashita
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kosuke Takeuchi
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiromi Hamada
- Department of Obstetrics and Gynecology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Wang H, Huang H, Ding SF. Sphingosine-1-phosphate promotes the proliferation and attenuates apoptosis of Endothelial progenitor cells via S1PR1/S1PR3/PI3K/Akt pathway. Cell Biol Int 2018; 42:1492-1502. [PMID: 29790626 DOI: 10.1002/cbin.10991] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/20/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Hang Wang
- Department of Cardiology; Wuhan General Hospital of PLA; Wuhan 430070 China
- Clinic Center; China Life Health Industry Group; Shenzhen 515000 China
| | - Hao Huang
- Medical Project Department; Livzon Pharmaceutical Group Inc.; Zhuhai 519045 China
| | - Shi-Fang Ding
- Department of Cardiology; Wuhan General Hospital of PLA; Wuhan 430070 China
| |
Collapse
|
8
|
Wei Y, Zhou F, Zhou H, Huang J, Yu D, Wu G. Endothelial progenitor cells contribute to neovascularization of non-small cell lung cancer via histone deacetylase 7-mediated cytoskeleton regulation and angiogenic genes transcription. Int J Cancer 2018; 143:657-667. [PMID: 29490434 DOI: 10.1002/ijc.31349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/26/2018] [Accepted: 02/15/2018] [Indexed: 12/19/2022]
Abstract
To supply tumor tissues with nutrients and oxygen, endothelial progenitor cells (EPCs) home to tumor sites and contribute to neovascularization. Although the precise mechanism of EPCs-induced neovascularization remains poorly understood in non-small cell lung cancer (NSCLC), histone deacetylase 7 (HDAC7) is considered as a critical regulator. To explore the function of HDAC7 in neovascularization induced by EPCs, tube formation assay, immunofluorescence, microarray, Western blot analysis and animal models were performed. In vitro, HDAC7 abrogation led to the activation of Rho-associated coiled-coil containing protein kinase/myosin light chain 2 pathway concomitant with ERK dephosphorylation, causing the instability of cytoskeleton and collapse of tube formation. In vivo, absence of HDAC7 impaired the vascular lumen integrity and decreased the functional blood perfusion, inhibiting the growth of tumor. At the level of transcription, HDAC7 silencing upregulated antiangiogenic genes and suppressed proangiogenic genes collectively, turning off the angiogenic switch during vessel formation. Taken together, HDAC7 plays a dual role in maintaining the structural and nonstructural functions of EPCs. Our work demonstrates the molecular mechanism by which HDAC7 contributes to the angiogenic property of EPCs and provides a rational basis for specific targeting of antiangiogenic strategies in lung cancer.
Collapse
Affiliation(s)
- Ye Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangzheng Zhou
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Haibo Zhou
- The First College of Clinical Medical Science, China Three Gorges University and Department of Oncology, Yichang Central People's Hospital, Yichang, Hubei, People's Republic of China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Meng ZY, Kang HL, Duan W, Zheng J, Li QN, Zhou ZJ. MicroRNA-210 Promotes Accumulation of Neural Precursor Cells Around Ischemic Foci After Cerebral Ischemia by Regulating the SOCS1-STAT3-VEGF-C Pathway. J Am Heart Assoc 2018; 7:JAHA.116.005052. [PMID: 29478968 PMCID: PMC5866312 DOI: 10.1161/jaha.116.005052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Neural precursor cell (NPC) migration toward lesions is key for neurological functional recovery. The neovasculature plays an important role in guiding NPC migration. MicroRNA‐210 (miR‐210) promotes angiogenesis and neurogenesis in the subventricular zone and hippocampus after cerebral ischemia; however, whether miR‐210 regulates NPC migration and the underlying mechanism is still unclear. This study investigated the role of miR‐210 in NPC migration. Methods and Results Neovascularization and NPC accumulation was detected around ischemic foci in a mouse model of middle cerebral artery occlusion (MCAO) and reperfusion. Bone marrow–derived endothelial progenitor cells (EPCs) were found to participate in neovascularization. miR‐210 was markedly upregulated after focal cerebral ischemia/reperfusion. Overexpressed miR‐210 enhanced neovascularization and NPC accumulation around the ischemic lesion and vice versa, strongly suggesting that miR‐210 might be involved in neovascularization and NPC accumulation after focal cerebral ischemia/reperfusion. In vitro experiments were conducted to explore the underlying mechanism. The transwell assay showed that EPCs facilitated NPC migration, which was further promoted by miR‐210 overexpression in EPCs. In addition, miR‐210 facilitated VEGF‐C (vascular endothelial growth factor C) expression both in vitro and in vivo. Moreover, the luciferase reporter assay demonstrated that miR‐210 directly targeted the 3′ untranslated region of SOCS1 (suppressor of cytokine signaling 1), and miR‐210 overexpression in HEK293 cells or EPCs decreased SOCS1 and increased STAT3 (signal transducer and activator of transcription 3) and VEGF‐C expression. When EPCs were simultaneously transfected with miR‐210 mimics and SOCS1, the expression of STAT3 and VEGF‐C was reversed. Conclusions miR‐210 promoted neovascularization and NPC migration via the SOCS1–STAT3–VEGF‐C pathway.
Collapse
Affiliation(s)
- Zhao-You Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hua-Li Kang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Duan
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Zheng
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian-Ning Li
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhu-Juan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
10
|
Laurenzana A, Margheri F, Chillà A, Biagioni A, Margheri G, Calorini L, Fibbi G, Del Rosso M. Endothelial Progenitor Cells as Shuttle of Anticancer Agents. Hum Gene Ther 2018; 27:784-791. [PMID: 27502560 DOI: 10.1089/hum.2016.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cell therapies are treatments in which stem or progenitor cells are stimulated to differentiate into specialized cells able to home to and repair damaged tissues. After their discovery, endothelial progenitor cells (EPCs) stimulated worldwide interest as possible vehicles to perform autologous cell therapy of tumors. Taking into account the tumor-homing properties of EPCs, two different approaches to control cancer progression have been pursued by combining cell-based therapy with gene therapy or with nanomedicine. The first approach is based on the possibility of engineering EPCs to express different transgenes, and the second is based on the capacity of EPCs to take up nanomaterials. Here we review the most important progress covering the following issues: the characterization of bona fide endothelial progenitor cells, their role in tumor vascularization and metastasis, and preclinical data about their use in cell-based tumor therapy, considering antiangiogenic, suicide, immune-stimulating, and oncolytic virus gene therapy. The mixed approach of EPC cell therapy and nanomedicine is discussed in terms of plasmonic-dependent thermoablation and molecular imaging.
Collapse
Affiliation(s)
- Anna Laurenzana
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Francesca Margheri
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Anastasia Chillà
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Alessio Biagioni
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Giancarlo Margheri
- 2 Institute for Complex Systems , National Research Council, Sesto Fiorentino, Italy
| | - Lido Calorini
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy.,3 Center of Excellence for the Study at Molecular and Clinical Levels of Chronic, Degenerative, and Neoplastic Diseases to Develop Novel Therapies (DENOTHE) , Florence, Italy
| | - Gabriella Fibbi
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Mario Del Rosso
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy.,3 Center of Excellence for the Study at Molecular and Clinical Levels of Chronic, Degenerative, and Neoplastic Diseases to Develop Novel Therapies (DENOTHE) , Florence, Italy
| |
Collapse
|
11
|
Wang S, Miao J, Qu M, Yang GY, Shen L. Adiponectin modulates the function of endothelial progenitor cells via AMPK/eNOS signaling pathway. Biochem Biophys Res Commun 2017; 493:64-70. [DOI: 10.1016/j.bbrc.2017.09.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 01/15/2023]
|
12
|
Tumor vasculogenic mimicry formation as an unfavorable prognostic indicator in patients with breast cancer. Oncotarget 2017; 8:56408-56416. [PMID: 28915600 PMCID: PMC5593571 DOI: 10.18632/oncotarget.16919] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/17/2017] [Indexed: 11/25/2022] Open
Abstract
Vasculogenic mimicry (VM), a newly defined pattern of tumor blood perfusion, describes the functional plasticity of aggressive tumor cells forming de novo vascular networks and is associated with the cancer progression and metastasis. However, the VM-positive rate and the impact of VM status on breast cancer patients' clinicopathological parameters and prognosis remain unclear. Thus, we performed a meta-analysis by incorporating all available evidence to clarify these issues. Eight studies that involved 1,238 breast cancer patients were eligible for inclusion in our study. We found the VM-positive rate was 24% (pooled proportion was 0.24, 95% CI= 0.13-0.34), and VM was significantly associated with larger tumor size (>2 cm) (OR=0.49, 95% CI=0.26-0.90, P=0.02) and lymph node metastasis (OR=0.27, 95% CI=0.13-0.57, P=0.0005). A boardline correlation was also identified between VM and poorer differentiation (Grade II-III) (OR=0.07, 95% CI=0.00-1.24, P=0.07). Nevertheless, no statistically significant associations were observed between VM and hormone receptor and human epidermal growth factor receptor 2 status. Moreover, the results showed that breast cancer patients with VM-positive have a shorter overall survival than those with VM-negative (HR=0.23, 95% CI=0.08-0.38,P=0.003). In summary, VM was associated with more aggressive tumor phenotype and poor prognosis in patients with breast cancer. Developing strategies against the VM formation would be a promising therapeutic approach to breast cancer.
Collapse
|
13
|
Benslimane-Ahmim Z, Pereira J, Lokajczyk A, Dizier B, Galy-Fauroux I, Fischer AM, Heymann D, Boisson-Vidal C. Osteoprotegerin regulates cancer cell migration through SDF-1/CXCR4 axis and promotes tumour development by increasing neovascularization. Cancer Lett 2017; 395:11-19. [PMID: 28263839 DOI: 10.1016/j.canlet.2017.02.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 01/07/2023]
Abstract
We previously reported that OPG is involved in ischemic tissue neovascularization through the secretion of SDF-1 by pretreated-OPG endothelial colony-forming cells (ECFCs). As the vascularization is one of the key factor influencing the tumour growth and cancer cell dissemination, we investigated whether OPG was able to modulate the invasion of human MNNG-HOS osteosarcoma and DU145 prostate cancer cell lines in vitro and in vivo. Cell motility was analysed in vitro by using Boyden chambers. Human GFP-labelled MMNG-HOS cells were inoculated in immunodeficient mice and the tumour nodules formed were then injected with OPG and/or FGF-2, AMD3100 or 0.9% NaCl (control group). Tumour growth was manually followed and angiogenesis was assessed by immunohistochemistry. In vitro, SDF-1 released by OPG-pretreated ECFCs markedly attracted both MNNG-HOS and DU145 cells and induced spontaneous migration of cancer cells. In vivo, tumour volumes were significantly increased in OPG-treated group compared to the control group and OPG potentiated the effect of FGF-2. Concomitantly, OPG alone or combined with FGF-2 increased the number of new vasculature compared to the control group. Interestingly AMD3100, an inhibitor of SDF-1, prevented the in vivo effects of OPG induced by SDF-1 This study provides experimental evidence that OPG promotes tumour development trough SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Zahia Benslimane-Ahmim
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France
| | - Jessica Pereira
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France
| | - Anna Lokajczyk
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France
| | - Blandine Dizier
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France
| | - Isabelle Galy-Fauroux
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France
| | - Anne-Marie Fischer
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France; AP-HP, Haematology Department, Hôpital European Georges Pompidou, Paris, France
| | - Dominique Heymann
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, S10 2RX, Sheffield, UK; INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue Contre le Cancer 2012, University of Nantes, Faculty of Medicine, 44035, Nantes, France; Nantes University Hospital, Nantes, 44035, France.
| | - Catherine Boisson-Vidal
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France.
| |
Collapse
|
14
|
Endothelial progenitor cells promote tumor growth and progression by enhancing new vessel formation. Oncol Lett 2016; 12:793-799. [PMID: 27446353 PMCID: PMC4950911 DOI: 10.3892/ol.2016.4733] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/02/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor growth and progression require new blood vessel formation to deliver nutrients and oxygen for further cell proliferation and to create a neovascular network exit for tumor cell metastasis. Endothelial progenitor cells (EPCs) are a bone marrow (BM)-derived stem cell population that circulates in the peripheral circulation and homes to the tumor bed to participate in new blood vessel formation. In addition to structural support to nascent vessels, these cells can also regulate the angiogenic process by paracrine secretion of a number of proangiogenic growth factors and cytokines, thus playing a crucial role in tumor neovascularization and development. Inhibition of EPC-mediated new vessel formation may be a promising therapeutic strategy in tumor treatment. EPC-mediated neovascularization is a complex process that includes multiple steps and requires a series of cytokines and modulators, thus understanding the underlying mechanisms may provide anti-neovasculogenesis targets that may be blocked for the prevention of tumor development. The present review stresses the process and contribution of EPCs to the formation of new blood vessels in solid tumors, in an attempt to gain an improved understanding of the underlying cellular and molecular mechanisms involved, and to provide a potential effective therapeutic target for cancer treatment.
Collapse
|
15
|
Significance of endothelial progenitor cells (EPC) for tumorigenesis of head and neck squamous cell carcinoma (HNSCC): possible marker of tumor progression and neovascularization? Clin Oral Investig 2016; 20:2293-2300. [PMID: 26993659 DOI: 10.1007/s00784-016-1785-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/04/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Angiogenesis and neovascularisation plays a crucial role for tumorigenesis and tumor progression in head and neck squamous cell carcinoma (HNSCC). The aim of our study was to investigate the neovascularization capacity by endothelial progenitor cells (EPC) in tumor patient as a possible predictor for tumor progression and tumor stage. MATERIALS AND METHODS Therefore, we investigated the cell number and biologic activity by cell migration and colony-forming ability of EPC. Cells were isolated from the peripheral venous blood of 79 patients who suffer HNSCC in different stages of disease. Thirty-three healthy individuals served as the control group. RESULTS Significantly increased biological activities were reflected by expression of the migration rate (1027 ± 1510) in comparison to the control group (632 ± 269) and the clonal potency measured by colony-forming unit (CFU) (tumor patients (19.7 ± 12.3) vs. control group (10.84 ± 4.8)). To determine whether or not EPC number can be used as a valid prognostic marker for clinical outcome of tumor patients, we furthermore compared a "high EPC-number-subgroup" (HI) with a "low EPC-number-subgroup" (LO) in a Kaplan-Meier survival curve. The HI-subgroup shows herein clearly a worse outcome. CONCLUSIONS Our findings indicate a possible pathway for EPC to play a critical role in the vasculogenesis and consequently in the progression of HNSCC. CLINICAL RELEVANCE Our findings could serve as possible predictors for the neovascularisation potential in HNSCC tumor patients.
Collapse
|
16
|
Cui YF, Liu AH, An DZ, Sun RB, Shi Y, Shi YX, Shi M, Zhang Q, Wang LL, Feng Q, Pan GL, Wang Q. Claudin-4 is required for vasculogenic mimicry formation in human breast cancer cells. Oncotarget 2016; 6:11087-97. [PMID: 25871476 PMCID: PMC4484441 DOI: 10.18632/oncotarget.3571] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/22/2015] [Indexed: 11/29/2022] Open
Abstract
Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks. Claudins are aberrantly expressed in aggressive breast cancer. However, the relationship between claudins and VM formation is not clear. We examined VM in two human breast cancer cell lines with different aggressive capabilities (MDA-MB-231 and MCF-7 cells) and one human umbilical vein endothelial cell line (HUVEC). Both HUVEC and MDA-MB-231 cells formed vascular channels in Matrigel cultures, while MCF-7 cells did not. Western blot analysis revealed a possible correlation between claudin-4 and -6 expression in breast cancer cell lines and tumor aggressiveness, with protein levels correlating with the ability to form vascular channels. Treatment of MDA-MB-231 and HUVEC cells with claudin-4 monoclonal antibodies completely inhibited the ability of cells to form vascular channels. Moreover, knockdown of claudin-4 by short hairpin RNA completely inhibited tubule formation in MDA-MB-231 cells. Overexpression of claudin-4 in MCF-7 cells induced formation of vascular channels. Immunocytochemistry revealed that membranous claudin-4 protein was significantly associated with vascular channel formation. Collectively, these results indicate that claudin-4 may play a critical role in VM in human breast cancer cells, opening new opportunities to improve aggressive breast cancer therapy.
Collapse
Affiliation(s)
- Yong-Feng Cui
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - An-Heng Liu
- Cardiovascular Medicine, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Dai-Zhi An
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Ru-Bao Sun
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Yun Shi
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Yun-Xiang Shi
- Department of Physiology, BaoTou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Miao Shi
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Qiang Zhang
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Li-Li Wang
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Qiong Feng
- Department of Physiology, BaoTou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Gui-Lan Pan
- Department of Physiology, BaoTou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Qiang Wang
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Eccles SA, Court W, Patterson L. In Vitro Assays for Endothelial Cell Functions Required for Angiogenesis: Proliferation, Motility, Tubular Differentiation, and Matrix Proteolysis. Methods Mol Biol 2016; 1430:121-147. [PMID: 27172950 DOI: 10.1007/978-1-4939-3628-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This chapter deconstructs the process of angiogenesis into its component parts in order to provide simple assays to measure discrete endothelial cell functions. The techniques described will be suitable for studying stimulators and/or inhibitors of angiogenesis and determining which aspect of the process is modulated. The assays are designed to be robust and straightforward, using human umbilical vein endothelial cells, but with an option to use other sources such as microvascular endothelial cells from various tissues or lymphatic endothelial cells. It must be appreciated that such reductionist approaches cannot cover the complexity of the angiogenic process as a whole, incorporating as it does a myriad of positive and negative signals, three-dimensional interactions with host tissues and many accessory cells including fibroblasts, macrophages, pericytes and platelets. The extent to which in vitro assays predict physiological or pathological processes in vivo (e.g., wound healing, tumor angiogenesis) or surrogate techniques such as the use of Matrigel™ plugs, sponge implants, corneal assays etc remains to be determined.
Collapse
Affiliation(s)
- Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK.
| | - William Court
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK
| | - Lisa Patterson
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK
| |
Collapse
|
18
|
Chen C, Yu H, Xia R, Wang L, Ai H, Liu S, Xu Z, Xiao X, Gao F. Magnetic Resonance Tracking of Endothelial Progenitor Cells Labeled with Alkyl-Polyethylenimine 2 kDa/Superparamagnetic Iron Oxide in a Mouse Lung Carcinoma Xenograft Model. Mol Imaging 2014; 13. [PMID: 25248646 DOI: 10.2310/7290.2014.00030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Cong Chen
- From the Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; and Radiation Treatment Center, 100 Hospital of PLA, Suzhou, Jiangsu Province, China
| | - Hong Yu
- From the Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; and Radiation Treatment Center, 100 Hospital of PLA, Suzhou, Jiangsu Province, China
| | - Rui Xia
- From the Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; and Radiation Treatment Center, 100 Hospital of PLA, Suzhou, Jiangsu Province, China
| | - Lei Wang
- From the Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; and Radiation Treatment Center, 100 Hospital of PLA, Suzhou, Jiangsu Province, China
| | - Hua Ai
- From the Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; and Radiation Treatment Center, 100 Hospital of PLA, Suzhou, Jiangsu Province, China
| | - Shiyuan Liu
- From the Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; and Radiation Treatment Center, 100 Hospital of PLA, Suzhou, Jiangsu Province, China
| | - Zhiming Xu
- From the Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; and Radiation Treatment Center, 100 Hospital of PLA, Suzhou, Jiangsu Province, China
| | - Xiangsheng Xiao
- From the Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; and Radiation Treatment Center, 100 Hospital of PLA, Suzhou, Jiangsu Province, China
| | - Fabao Gao
- From the Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; and Radiation Treatment Center, 100 Hospital of PLA, Suzhou, Jiangsu Province, China
| |
Collapse
|
19
|
Expression of angiogenesis regulatory proteins and epithelial-mesenchymal transition factors in platelets of the breast cancer patients. ScientificWorldJournal 2014; 2014:878209. [PMID: 25379550 PMCID: PMC4212629 DOI: 10.1155/2014/878209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022] Open
Abstract
Platelets play a role in tumor angiogenesis and growth and are the main transporters of several angiogenesis regulators. Here, we aimed to determine the levels of angiogenesis regulators and epithelial-mesenchymal transition factors sequestered by circulating platelets in breast cancer patients and age-matched healthy controls. Platelet pellets (PP) and platelet-poor plasma (PPP) were collected by routine protocols. Vascular endothelial growth factor (VEGF), platelet-derived growth factor BB (PDGF-BB), thrombospondin-1 (TSP-1), platelet factor 4 (PF4), and transforming growth factor-β1 (TGF-β1) were measured by enzyme-linked immunosorbent assay. Angiogenesis-associated expression of VEGF (2.1 pg/106 platelets versus 0.9 pg/106 platelets, P < 0.001), PF4 (21.2 ng/106 platelets versus 10.2 ng/106 platelets, P < 0.001), PDGF-BB (42.9 pg/106 platelets versus 19.1 pg/106 platelets, P < 0.001), and TGF-β1 (15.3 ng/106 platelets versus 4.3 ng/106 platelets, P < 0.001) differed in the PP samples of cancer and control subjects. In addition, protein concentrations were associated with clinical characteristics (P < 0.05). Circulating platelets in breast cancer sequester higher levels of PF4, VEGF, PDGF-BB, and TGF-β1, suggesting a possible target for early diagnosis. VEGF, PDGF, and TGF-β1 concentrations in platelets may be associated with prognosis.
Collapse
|
20
|
Azab AK, Sahin I, Moschetta M, Mishima Y, Burwick N, Zimmermann J, Romagnoli B, Patel K, Chevalier E, Roccaro AM, Ghobria IM. CXCR7-dependent angiogenic mononuclear cell trafficking regulates tumor progression in multiple myeloma. Blood 2014; 124:1905-14. [PMID: 25079359 PMCID: PMC4168345 DOI: 10.1182/blood-2014-02-558742] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/17/2014] [Indexed: 12/14/2022] Open
Abstract
The CXCR4/stromal cell-derived factor-1 (SDF-1) axis is essential for cell trafficking and has been shown to regulate tumor progression and metastasis in many tumors including multiple myeloma (MM). A second chemokine receptor for SDF-1, CXCR7 was discovered recently and found on activated endothelial cells. We examined the role of CXCR7 in angiogenic mononuclear cells (AMCs) trafficking in MM. Our data demonstrate that AMCs are circulating in patients with MM and in vivo studies show that they specifically home to areas of MM tumor growth. CXCR7 expression is important for regulating trafficking and homing of AMCs into areas of MM tumor growth and neoangiogenesis. We demonstrate that the CXCR7 inhibitor, POL6926, abrogated trafficking of AMCs to areas of MM tumor progression leading to a significant inhibition of tumor progression. These effects were through regulation of endothelial cells and not through a direct tumor effect, indicating that targeting a bone marrow microenvironmental cell can lead to a delay in MM tumor progression. In conclusion, our studies demonstrate that CXCR7 may play an important role in the regulation of tumor progression in MM through an indirect effect on the recruitment of AMCs to areas of MM tumor growth in the bone marrow niche.
Collapse
|
21
|
Moschetta M, Mishima Y, Sahin I, Manier S, Glavey S, Vacca A, Roccaro AM, Ghobrial IM. Role of endothelial progenitor cells in cancer progression. Biochim Biophys Acta Rev Cancer 2014; 1846:26-39. [PMID: 24709008 DOI: 10.1016/j.bbcan.2014.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/19/2014] [Accepted: 03/27/2014] [Indexed: 12/12/2022]
Abstract
Tumor-associated neovasculature is a critical therapeutic target; however, despite significant progress made in the clinical efficacy of anti-vessel drugs, the effect of these agents remains transient: over time, most patients develop resistance, which inevitably leads to tumor progression. To develop more effective treatments, it is imperative that we better understand the mechanisms involved in tumor vessel formation, how they participate to the tumor progression and metastasis, and the best way to target them. Several mechanisms contribute to the formation of tumor-associated vasculature: i) neoangiogenesis; ii) vascular co-option; iii) mosaicism; iv) vasculogenic mimicry, and v) postnatal vasculogenesis. These mechanisms can also play a role in the development of resistance to anti-angiogenic drugs, and could serve as targets for designing new anti-vascular molecules to treat solid as well as hematological malignancies. Bone marrow-derived endothelial progenitor cell (EPC)-mediated vasculogenesis represents an important new target, especially at the early stage of tumor growth (when EPCs are critical for promoting the "angiogenic switch"), and during metastasis, when EPCs promote the transition from micro- to macro-metastases. In hematologic malignancies, the EPC population could be related to the neoplastic clone, and both may share a common ontogeny. Thus, characterization of tumor-associated EPCs in blood cancers may provide clues for more specific anti-vascular therapy that has both direct and indirect anti-tumor effects. Here, we review the role of vasculogenesis, mediated by bone marrow-derived EPCs, in the progression of cancer, with a particular focus on the role of these cells in promoting progression of hematological malignancies.
Collapse
Affiliation(s)
- Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; University of Bari Medical School, Department of Biomedical Sciences and Human Oncology (DIMO), Section of Internal Medicine and Clinical Oncology, Bari, Italy
| | - Yuji Mishima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ilyas Sahin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Siobhan Glavey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Angelo Vacca
- University of Bari Medical School, Department of Biomedical Sciences and Human Oncology (DIMO), Section of Internal Medicine and Clinical Oncology, Bari, Italy
| | - Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Grigoras D, Pirtea L, Ceausu RA. Endothelial progenitor cells contribute to the development of ovarian carcinoma tumor blood vessels. Oncol Lett 2014; 7:1511-1514. [PMID: 24765167 PMCID: PMC3997705 DOI: 10.3892/ol.2014.1917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/07/2014] [Indexed: 11/17/2022] Open
Abstract
Only a few studies in the literature have reported the contribution of endothelial progenitor cells (EPCs) in ovarian tumors, and with regard to malignant tumors, the data on the pre-existing endothelium insertion rate and the extent to which these cells contribute to tumor angiogenesis is controversial. The present study demonstrated the existence of EPCs and evaluated the expression of two markers, AC133 (also known as cluster of differentiation 133 or prominin) and tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (Tie2), signaling the presence of EPCs in the pre-existing endothelium. In total, 62 female patients who were diagnosed with ovarian tumors were retrospectively selected over a four-year period. Immunohistochemical analyses used Tie2 and AC133 as primary antibodies. In total, 27.4% of ovarian tumor cases expressed AC133 and Tie2 in blood vessel endothelial cells. The expression of these two markers did not correlate with the clinicopathological prognostic parameters, histological type, vascular microdensity or vessel type. The expression of AC133 and Tie2 in blood vessel endothelial cells contributes to angiogenesis progression in cases where the budding process is reduced or absent, as shown by the inverse correlation with the rate of proliferation of the endothelial cells.
Collapse
Affiliation(s)
- Dorin Grigoras
- Department of Obstetrics and Gynecology, 'Victor Babeş' University of Medicine and Pharmacy, Timişoara 300041, Romania
| | - Laurenţiu Pirtea
- Department of Obstetrics and Gynecology, 'Victor Babeş' University of Medicine and Pharmacy, Timişoara 300041, Romania
| | - Raluca Amalia Ceausu
- Department of Microscopic Morphology, Angiogenesis Research Center, 'Victor Babeş' University of Medicine and Pharmacy, Timişoara 300041, Romania
| |
Collapse
|
23
|
Abstract
BACKGROUND Obstructive sleep apnea (OSA) occurs in 4% of middle-aged men and 2% of middle-aged women in the general population, and the prevalence is even higher in specific patient groups. OSA is an independent risk factor for a variety of cardiovascular diseases. Endothelial injury could be the pivotal determinant in the development of cardiovascular pathology in OSA. Endothelial damage ultimately represents a dynamic balance between the magnitude of injury and the capacity for repair. Bone marrow-derived endothelial progenitor cells (EPCs) within adult peripheral blood present a possible means of vascular maintenance that could home to sites of injury and restore endothelial integrity and normal function. METHODS We summarized pathogenetic mechanisms of OSA and searched for available studies on numbers and functions of EPCs in patients with OSA to explore the potential links between the numbers and functions of EPCs and OSA. In particular, we tried to elucidate the molecular mechanisms of the effects of OSA on EPCs. CONCLUSION Intermittent hypoxia cycles and sleep fragmentation are major pathophysiologic characters of OSA. Intermittent hypoxia acts as a trigger of oxidative stress, systemic inflammation, and sympathetic activation. Sleep fragmentation is associated with a burst of sympathetic activation and systemic inflammation. In most studies, a reduction in circulating EPCs has emerged. The possible mechanisms underlying the decrease in the number or function of EPCs include prolonged inflammation response, oxidative stress, increased sympathetic activation, physiological adaptive responses of tissue to hypoxia, reduced EPC mobilization, EPC apoptosis, and functional impairment in untreated OSA. Continuous positive airway pressure (CPAP) therapy for OSA affects the mobilization, apoptosis, and function of EPCs through preventing intermittent hypoxia episodes, improving sleep quality, and reducing systemic inflammation, oxidative stress levels, and sympathetic overactivation. To improve CPAP adherence, the medical staff should pay attention to making the titration trial a comfortable first CPAP experience for the patients; for example, using the most appropriate ventilators or proper humidification. It is also important to give the patients education and support about CPAP use in the follow-up, especially in the early stage of the treatment.
Collapse
Affiliation(s)
- Qing Wang
- The Second Respiratory Department of the First People’s Hospital of Kunming, Yunnan, People’s Republic of China
| | - Qi Wu
- Tianjin Haihe Hospital, Tianjin, People’s Republic of China
| | - Jing Feng
- Respiratory Department of Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Division of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
- Correspondence: Jing Feng, Respiratory Department of Tianjin Medical University General Hospital, Tianjin 300052, People’s Republic of China, Email
| | - Xin Sun
- Respiratory Department of Tianjin Haihe Hospital, Tianjin, People’s Republic of China
- Xin Sun, Respiratory Department of Tianjin Haihe Hospital, Tianjin 300350, People’s Republic of China, Email
| |
Collapse
|
24
|
Yu D, Wu H, Yang B, Yang K, Liu H, Wu G. Antitumor effects of Endostar on non-Hodgkin's lymphoma by regulating endothelial progenitor cells through protein kinase B-dependent pathway. Acta Biochim Biophys Sin (Shanghai) 2013; 45:742-8. [PMID: 23811754 DOI: 10.1093/abbs/gmt070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelial progenitor cells (EPCs) play an important role in non-Hodgkin's lymphoma (NHL) development. Endostar is an anti-angiogenic drug designed to stop cancer by nullifying a tumor's ability to obtain oxygen and nutrients. In this study, we examined the anti-angiogenic activities of Endostar on NHL cell lines and murine xenograft model of NHL in vitro and in vivo, respectively, and explored the underlying antiangiogenic mechanism of Endostar. Results showed that Endostar may inhibit the EPC proliferation by reducing the expression of p-protein kinase B, but not p-ERK expression. Our finding could lead to a better understanding of the effects of Endostar on NHL.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endostatins/pharmacology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Humans
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Confocal
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- Recombinant Proteins
- Signal Transduction/drug effects
- Stem Cells/drug effects
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
25
|
Iskander A, Knight RA, Zhang ZG, Ewing JR, Shankar A, Varma NRS, Bagher-Ebadian H, Ali MM, Arbab AS, Janic B. Intravenous administration of human umbilical cord blood-derived AC133+ endothelial progenitor cells in rat stroke model reduces infarct volume: magnetic resonance imaging and histological findings. Stem Cells Transl Med 2013; 2:703-14. [PMID: 23934909 DOI: 10.5966/sctm.2013-0066] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Endothelial progenitor cells (EPCs) hold enormous therapeutic potential for ischemic vascular diseases. Previous studies have indicated that stem/progenitor cells derived from human umbilical cord blood (hUCB) improve functional recovery in stroke models. Here, we examined the effect of hUCB AC133+ EPCs on stroke development and resolution in a middle cerebral artery occlusion (MCAo) rat model. Since the success of cell therapies strongly depends on the ability to monitor in vivo the migration of transplanted cells, we also assessed the capacity of magnetic resonance imaging (MRI) to track in vivo the magnetically labeled cells that were administered. Animals were subjected to transient MCAo and 24 hours later injected intravenously with 10(7) hUCB AC133+ EPCs. MRI performed at days 1, 7, and 14 after the insult showed accumulation of transplanted cells in stroke-affected hemispheres and revealed that stroke volume decreased at a significantly higher rate in cell-treated animals. Immunohistochemistry analysis of brain tissues localized the administered cells in the stroke-affected hemispheres only and indicated that these cells may have significantly affected the magnitude of endogenous proliferation, angiogenesis, and neurogenesis. We conclude that transplanted cells selectively migrated to the ischemic brain parenchyma, where they exerted a therapeutic effect on the extent of tissue damage, regeneration, and time course of stroke resolution.
Collapse
Affiliation(s)
- Asm Iskander
- Department of Radiology, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ziebart T, Ziebart J, Gauss L, Pabst A, Ackermann M, Smeets R, Konerding MA, Walter C. Investigation of inhibitory effects on EPC-mediated neovascularization by different bisphosphonates for cancer therapy. Biomed Rep 2013; 1:719-722. [PMID: 24649016 DOI: 10.3892/br.2013.145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/11/2012] [Indexed: 12/16/2022] Open
Abstract
Bisphosphonates (BPs) are potent drugs, used in metastatic cancer-like prostate or breast carcinoma. In recent studies, besides reduced bone remodeling, influences on angiogenesis and neovascularization were reported. Since BPs have the tendency to accumulate in the bones, the biological effect of various nitrogen- and non-nitrogen BPs on endothelial progenitor cells (EPCs) that originated from bone marrow and mobilized under physiological and pathophysiological conditions, such as tumor neovascularization, was investigated. EPCs subsequent to 72-h treatment with different concentrations of bisphosphonates comprised the non-nitrogen-containing BP clodronate and the nitrogen-containing BPs ibandronate, pamidronate and zoledronate. After incubation, biological activity was measured by using the migration boyden chamber assay and measurement of the colony-forming ability. Nitrogen-containing BPs inhibited the migration ability and differentiation of EPCs in a dose-dependent manner, as compared to the non-treated control groups. More specifically, the nitrogen-containing BP zoledronate significantly inhibited angiogenesis and neovascularization. Clodronate was less distinct on EPC function. To underline the importance of neovascularization in the context of tumor angiogenesis, EPC functions were significantly influenced in a dose-dependent manner by nitrogen-containing BPs. From these findings, we conclude that especially the nitrogen-containing BPs, such as zoledronate, are potential anticancer agents through the inhibition of neovascularization.
Collapse
Affiliation(s)
- Thomas Ziebart
- Department of Maxillofacial Surgery, University Medical Center of Johannes Gutenberg University Mainz, D-55131 Mainz
| | - Johanna Ziebart
- Department of Maxillofacial Surgery, University Medical Center of Johannes Gutenberg University Mainz, D-55131 Mainz ; Department of Prosthodontics, University Medical Center of Johannes Gutenberg University Mainz, D-55131 Mainz
| | - Leonie Gauss
- Department of Maxillofacial Surgery, University Medical Center of Johannes Gutenberg University Mainz, D-55131 Mainz
| | - Andreas Pabst
- Department of Maxillofacial Surgery, University Medical Center of Johannes Gutenberg University Mainz, D-55131 Mainz
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg University Mainz, D-55131 Mainz
| | - Ralf Smeets
- Department of Maxillofacial Surgery, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz A Konerding
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg University Mainz, D-55131 Mainz
| | - Christian Walter
- Department of Maxillofacial Surgery, University Medical Center of Johannes Gutenberg University Mainz, D-55131 Mainz
| |
Collapse
|
27
|
de la Puente P, Muz B, Azab F, Azab AK. Cell trafficking of endothelial progenitor cells in tumor progression. Clin Cancer Res 2013; 19:3360-8. [PMID: 23665736 DOI: 10.1158/1078-0432.ccr-13-0462] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blood vessel formation plays an essential role in many physiologic and pathologic processes, including normal tissue growth and healing, as well as tumor progression. Endothelial progenitor cells (EPC) are a subtype of stem cells with high proliferative potential that are capable of differentiating into mature endothelial cells, thus contributing to neovascularization in tumors. In response to tumor-secreted cytokines, EPCs mobilize from the bone marrow to the peripheral blood, home to the tumor site, and differentiate to mature endothelial cells and secrete proangiogenic factors to facilitate vascularization of tumors. In this review, we summarize the expression of surface markers, cytokines, receptors, adhesion molecules, proteases, and cell signaling mechanisms involved in the different steps (mobilization, homing, and differentiation) of EPC trafficking from the bone marrow to the tumor site. Understanding the biologic mechanisms of EPC cell trafficking opens a window for new therapeutic targets in cancer.
Collapse
Affiliation(s)
- Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri 63108, USA
| | | | | | | |
Collapse
|
28
|
Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review. Crit Rev Oncol Hematol 2013; 87:1-11. [PMID: 23332547 DOI: 10.1016/j.critrevonc.2012.12.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/05/2012] [Accepted: 12/19/2012] [Indexed: 01/02/2023] Open
Abstract
Lung cancer remains one of the most common and malignant cancers worldwide. It is most often diagnosed at late stages, when it has already presented local invasion and distal metastases. The basic stages of invasion and metastasis involve the detachment of tumor cells from the extracellular matrix, invasion of surrounding tissues and basal lamina, intravasation into the blood stream, survival and transport through the blood stream, migration, arrest and extravasation at a distal site and formation of a metastatic lesion. These steps require fundamental mechanisms such as angiogenesis, degradation of matrix barriers, disruption of cell-cell and cell-matrix adhesion and inducement of cellular motility. Genes that regulate functions like unlimited growth potential, survival, genomic instability, angiogenesis, epithelial to mesenchymal transition and apoptosis evasion, are involved in giving lung cancer tumors invasive and metastatic competence. Improving of understanding of the underlying molecular and cellular mechanisms remains an urgent and essential issue, in order to develop new more effective strategies in preventing and treating lung cancer.
Collapse
|
29
|
Wang XY, Ju S, Li C, Peng XG, Chen AF, Mao H, Teng GJ. Non-invasive imaging of endothelial progenitor cells in tumor neovascularization using a novel dual-modality paramagnetic/near-infrared fluorescence probe. PLoS One 2012; 7:e50575. [PMID: 23226317 PMCID: PMC3511537 DOI: 10.1371/journal.pone.0050575] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/23/2012] [Indexed: 01/19/2023] Open
Abstract
Objective Bone-marrow derived endothelial progenitor cells (EPCs) play an important role in tumor neovasculature. Due to their tumor homing property, EPCs are regarded as promising targeted vectors for delivering therapeutic agents in cancer treatment. Consequently, non-invasive confirmation of targeted delivery via imaging is urgently needed. This study shows the development and application of a novel dual-modality probe for in vivo non-invasively tracking of the migration, homing and differentiation of EPCs. Methods The paramagnetic/near-infrared fluorescence probe Conjugate 1 labeled EPCs were systemically transplanted into mice bearing human breast MDA-MB-231 tumor xenografts. Magnetic resonance imaging (MRI) and near-infrared (NIR) fluorescence optical imaging were performed at different stages of tumor development. The homing of EPCs and the tumor neovascularization were further evaluated by immunofluorescence. Results Conjugate 1 labeled EPCs can be monitored in vivo by MRI and NIR fluorescence optical imaging without altering tumor growth for up to three weeks after the systemic transplantation. Histopathological examination confirmed that EPCs were recruited into the tumor bed and then incorporated into new vessels two weeks after the transplantation. Tumor size and microvessel density was not influenced by EPCs transplantation in the first three weeks. Conclusions This preclinical study shows the feasibility of using a MRI and NIR fluorescence optical imaging detectable probe to non-invasively monitor transplanted EPCs and also provides strong evidence that EPCs are involved in the development of endothelial cells during the tumor neovascularization.
Collapse
Affiliation(s)
- Xin-Yi Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China
- * E-mail:
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Xin-Gui Peng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Alex F. Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Yuan XW, Ge XQ, Sun XT, Ding YT. Intravenous administration of endothelial progenitor cells transfected with the TRAIL gene inhibits the growth of tumors derived from H22 cells in nude mice. Shijie Huaren Xiaohua Zazhi 2012; 20:2986-2991. [DOI: 10.11569/wcjd.v20.i31.2986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the influence of intravenous administration of endothelial progenitor cells (EPCs) transfected with the TRAIL gene on the growth of tumors derived from subcutaneously inoculated H22 cells in nude mice to provide a theoretical basis for the treatment of liver cancer.
METHODS: The TRAIL gene was amplified by PCR, cloned into the pcDNA3.1 vector, and transfected into EPCs. The expression of TRAIL protein was detected by Western blot. Mice were inoculated subcutaneously with H22 cells to induce tumor formation. Tumor-bearing mice were randomly divided into three groups and injected via the tail vein with EPCs transfected with the recombinant adenoviral vector carrying the TRAIL gene, the empty vector, and normal saline, respectively.
RESULTS: Restriction enzyme digestion and DNA sequencing analyses indicate that the recombinant plasmid was constructed successfully. TRAIL expression was detected in EPCs transfected with the recombinant adenoviral vector by Western blot. The rate of reduced tumor growth was 47.77% in mice administered with EPCs carrying the TRAIL gene. Tumor volume and weight in the experimental group (0.791 cm3 ± 0.119 cm3, 0.29 g ± 0.04 g) were significantly lower than those in the two control groups (all P < 0.05).
CONCLUSION: The recombinant plasmid carrying the TRAIL gene has been successfully constructed. Intravenous administration of endothelial progenitor cells transfected with the TRAIL gene inhibits the growth of tumors derived from H22 cells in nude mice.
Collapse
|
31
|
Zhu Z, Chen G, Li X, Yin Q, Yang Z, Yi J. Endothelial progenitor cells homing to the orthotopic implanted liver tumor of nude mice. ACTA ACUST UNITED AC 2012; 32:675-679. [PMID: 23073795 DOI: 10.1007/s11596-012-1016-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Indexed: 12/17/2022]
Abstract
This study investigated the "homing" phenomenon in hepatocellular carcinoma (HCC). The "homing" specificity of endothelial progenitor cells (EPC) by establishing an orthotopic implantation model in nude mice. EPCs harvested from the marrow cells were separated by density gradient centrifugation. Fluorescence microscope, flow cytometry (FCM) and double fluorescence staining with FITC-UEA-I and DiI-ac-LDL, were employed to identify the cells. 4',6-diamidino-2-phenylindole (DAPI) labelling and real-time PCR were used for detecting the expression of CD133 and chemokines to trace and observe the distribution of EPCs. Our results showed that the distribution rate of EPCs was obviously higher than that in other important organs and the negative control group. Detection of CD133 and chemokines yielded similar results in difference tissues. Our experiment confirmed that the chemotaxis of EPCs does exist in HCC. Moreover, HIF-1α, SDF-1 and VEGF might play important roles in the "homing" of EPCs in HCC. EPCs might be a potential candidate for targeting vector of HCC for gene therapy.
Collapse
Affiliation(s)
- Zhi Zhu
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, 325000, China
| | - Xingrui Li
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qian Yin
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhifang Yang
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jilin Yi
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
32
|
Su W, Wang L, Zhou M, Liu Z, Hu S, Tong L, Liu Y, Fan Y, Kong D, Zheng Y, Han Z, Wu JC, Xiang R, Li Z. Human embryonic stem cell-derived endothelial cells as cellular delivery vehicles for treatment of metastatic breast cancer. Cell Transplant 2012; 22:2079-90. [PMID: 23067802 DOI: 10.3727/096368912x657927] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have shown tropism towards primary tumors or metastases and are thus potential vehicles for targeting tumor therapy. However, the source of adult EPCs is limited, which highlights the need for a consistent and renewable source of endothelial cells for clinical applications. Here, we investigated the potential of human embryonic stem cell-derived endothelial cells (hESC-ECs) as cellular delivery vehicles for therapy of metastatic breast cancer. In order to provide an initial assessment of the therapeutic potency of hESC-ECs, we treated human breast cancer MDA-MB-231 cells with hESC-EC conditioned medium (EC-CM) in vitro. The results showed that hESC-ECs could suppress the Wnt/β-catenin signaling pathway and thereby inhibit the proliferation and migration of MDA-MB-231 cells. To track and evaluate the possibility of hESC-EC-employed therapy, we employed the bioluminescence imaging (BLI) technology. To study the therapeutic potential of hESC-ECs, we established lung metastasis models by intravenous injection of MDA-MB-231 cells labeled with firefly luciferase (Fluc) and green fluorescent protein (GFP) to NOD/SCID mice. In mice with lung metastases, we injected hESC-ECs armed with herpes simplex virus truncated thymidine kinase (HSV-ttk) intravenously on days 11, 16, 21, and 26 after MDA-MB-231 cell injection. The NOD/SCID mice were subsequently treated with ganciclovir (GCV), and the growth status of tumor was monitored by Fluc imaging. We found that MDA-MB-231 tumors were significantly inhibited by intravenously injected hESC-ECs. The tumor-suppressive effects of the hESC-ECs, by inhibiting Wnt/β-catenin signaling pathway and inducing tumor cell death through bystander effect in human metastatic breast cancer model, provide previously unexplored therapeutic modalities for cancer treatment.
Collapse
Affiliation(s)
- Weijun Su
- Nankai University School of Medicine, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nowak K, Jachol N, Rafat N, Joas E, Beck GC, Hohenberger P. Alterations of circulating bone marrow-derived VEGFR-2+ progenitor cells in isolated limb perfusion with or without rhTNF-α. Ann Surg Oncol 2012; 20:3694-701. [PMID: 22948772 PMCID: PMC3764318 DOI: 10.1245/s10434-012-2637-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Circulating endothelial progenitor cells (cEPCs) as recruited to the angiogenic vascular system of malignant tumors have been proposed as a biomarker in malignancies. The effect of antitumor chemotherapy on cEPCs is not fully understood. We examined the level of cEPCs, vascular endothelial growth factor (VEGF), and angiopoietin-2 in the blood of sarcoma and melanoma patients before and after isolated limb perfusion (ILP) with or without recombinant human tumor necrosis factor-α (rhTNF-α). METHODS Twenty-two patients, 11 each with soft tissue sarcoma or recurrent melanoma of the limb, were recruited. ILP was performed with rhTNF-α/melphalan (TNF) or melphalan only (no TNF). Fifteen healthy volunteers served as control subjects. Blood was sampled before and up to 6 weeks after ILP. Peripheral blood mononuclear cells were isolated by density gradient centrifugation, and annexin V-negative cells were characterized as cEPCs by triple staining for CD133(+), CD34, and VEGFR-2(+). RESULTS Before treatment, cEPC numbers were significantly increased in sarcoma (0.179 ± 0.190 %) and melanoma patients (0.110 ± 0.073 %) versus healthy controls (0.025 ± 0.018 %; P < 0.01), but did not differ significantly between sarcoma and melanoma patients. cEPC decreased significantly after ILP in patients with no TNF compared to pretreatment values (P < 0.05) and were significantly lower at 4 h, 48 h, and 1 week compared to ILP with TNF (P < 0.05). Values 6 weeks after ILP were significantly lower than before ILP in both investigated groups (P < 0.01). CONCLUSIONS ILP with TNF results in activation of bone marrow-derived EPCs compared to ILP without TNF. Alteration of cEPCs and angiopoietin-2 by rhTNF-α might account for the cytotoxicity and hemorrhagic effects on tumor vessels during limb perfusion procedures.
Collapse
Affiliation(s)
- Kai Nowak
- Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, Mannheim University Medical Center, Heidelberg University, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Chen L, Ackerman R, Guo AM. 20-HETE in neovascularization. Prostaglandins Other Lipid Mediat 2011; 98:63-8. [PMID: 22227460 DOI: 10.1016/j.prostaglandins.2011.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/09/2011] [Accepted: 12/19/2011] [Indexed: 12/18/2022]
Abstract
Cytochrome P450 4A/F (CYP4A/F) converts arachidonic acid (AA) to 20-HETE by ω-hydroxylation. The contribution of 20-HETE to the regulation of myogenic response, blood pressure, and mitogenic actions has been well summarized. This review focuses on the emerging role of 20-HETE in physiological and pathological vascularization. 20-HETE has been shown to regulate vascular smooth muscle cells (VSMC) and endothelial cells (EC) by affecting their proliferation, migration, survival, and tube formation. Furthermore, the proliferation, migration, secretion of proangiogenic molecules (such as HIF-1α, VEGF, SDF-1α), and tube formation of endothelial progenitor cells (EPC) are stimulated by 20-HETE. These effects are mediated through c-Src- and EGFR-mediated downstream signaling pathways, including MAPK and PI3K/Akt pathways, eNOS uncoupling, and NOX/ROS system activation. Therefore, the CYP4A/F-20-HETE system may be a therapeutic target for the treatment of abnormal angiogenic diseases.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
35
|
Modulation of chemotactic and pro-inflammatory activities of endothelial progenitor cells by hepatocellular carcinoma. Cell Signal 2011; 24:779-93. [PMID: 22120522 DOI: 10.1016/j.cellsig.2011.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/05/2011] [Indexed: 12/12/2022]
Abstract
Endothelial progenitor cells (EPCs) participate in the neovascularization processes in the development of hepatocellular carcinoma (HCC). We investigated whether interactions between EPCs and HCC cells affect chemotactic and pro-inflammatory activities of EPCs. Two distinct phenotypes of circulating EPCs, i.e., myeloid-derived EPCs (colony forming unit-endothelial cells, CFU-ECs) and outgrowth EPCs (endothelial-colony forming cells, ECFCs), were co-cultured with Huh7 and Hep3B cells by using transwell chamber and IBIDI(TM) Culture-Inserts and μ-slide plates. Transwell and horizontal migration/invasion assays and time-lapse microscopy were used to monitor and analyze the migration and invasion of EPCs induced by these HCC cells. A human cytokine antibody array was used to compare protein expression profiles in EPCs and HCC cells. Flow cytometry and electromobility shift analysis were used to detect nuclear factor-κB (NF-κB)-DNA binding activity and pro-inflammatory adhesion molecule expression in EPCs. Ectopic full-length CC chemokine receptor 6 (CCR6) plasmid was used to transfect into ECFCs to investigate the role of CCR6 in HCC-induced EPC migration and invasion. The results show that co-culture with Huh7 and Hep3B cells induces the expression of endothelial cell (EC) markers KDR, Flt1, CD31 and VE-cadherin in CFU-ECs, but down-regulates the expressions of CD31 and VE-cadherin in ECFCs. These HCC cells induce migration and invasion of CFU-ECs, but not ECFCs, and do not affect the cell cycle distribution in these EPCs. Cytokine protein array identifies macrophage inflammatory protein-3α (MIP-3α) produced by HCC cells as a critical factor responsible for the HCC-induced chemotaxis of CFU-ECs, which highly express the specific MIP-3α counterreceptor CCR6. Overexpressing CCR6 in ECFCs significantly increases their chemotaxis in response to HCC cells. Co-culturing EPCs with HCC cells results in decreases in NF-κB binding activity and hence intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expressions in EPCs. Our results indicate that HCC cells exert differential effects on CFU-ECs and ECFCs, with increased chemotaxis for CFU-ECs, but not ECFCs. This HCC-induced chemotaxis of CFU-ECs is mediated by MIP-3α produced by HCC cells, which targets to CCR6 on CFU-ECs. Tumors may provide a humoral microenvironment to attenuate the pro-inflammatory activity of EPCs, which might be associated with the tumor escape mechanism.
Collapse
|
36
|
Grapensparr L, Olerud J, Vasylovska S, Carlsson PO. The therapeutic role of endothelial progenitor cells in Type 1 diabetes mellitus. Regen Med 2011; 6:599-605. [DOI: 10.2217/rme.11.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pancreatic β-cells sense and adjust the blood glucose level by secretion of insulin. In Type 1 diabetes mellitus, these insulin-producing cells are destroyed, leaving the patients incapable of regulating blood glucose homeostasis. At the time of diagnosis, most patients still have 20–30% of their original β-cell mass remaining. These residual β-cells are targets for intervention therapies aimed at preventing further autoimmune destruction, in addition to increasing the number of existing β-cells. Such a therapeutic option is highly desirable since it may lead to a full recovery of newly diagnosed patients, with no need for further treatment with immunosuppressant drugs or exogenous insulin administration. In this article, we propose that endothelial progenitor cells, a cell type known to promote and support neovascularization following endothelial injury, may be used as part of a combinational stem cell therapy aimed to improve the vascularization, survival and proliferation of β-cells.
Collapse
Affiliation(s)
- Liza Grapensparr
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johan Olerud
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Svitlana Vasylovska
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
37
|
George AL, Bangalore-Prakash P, Rajoria S, Suriano R, Shanmugam A, Mittelman A, Tiwari RK. Endothelial progenitor cell biology in disease and tissue regeneration. J Hematol Oncol 2011; 4:24. [PMID: 21609465 PMCID: PMC3123653 DOI: 10.1186/1756-8722-4-24] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/24/2011] [Indexed: 12/20/2022] Open
Abstract
Endothelial progenitor cells are increasingly being studied in various diseases ranging from ischemia, diabetic retinopathy, and in cancer. The discovery that these cells can be mobilized from their bone marrow niche to sites of inflammation and tumor to induce neovasculogenesis has afforded a novel opportunity to understand the tissue microenvironment and specific cell-cell interactive pathways. This review provides a comprehensive up-to-date understanding of the physiological function and therapeutic utility of these cells. The emphasis is on the systemic factors that modulate their differentiation/mobilization and survival and presents the challenges of its potential therapeutic clinical utility as a diagnostic and prognostic reagent.
Collapse
Affiliation(s)
- Andrea L George
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Guo AM, Janic B, Sheng J, Falck JR, Roman RJ, Edwards PA, Arbab AS, Scicli AG. The cytochrome P450 4A/F-20-hydroxyeicosatetraenoic acid system: a regulator of endothelial precursor cells derived from human umbilical cord blood. J Pharmacol Exp Ther 2011; 338:421-9. [PMID: 21527533 DOI: 10.1124/jpet.111.179036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endothelial progenitor cells (EPCs) contribute to physiological and pathological neovascularization. Previous data have suggested that the cytochrome P450 4A/F (CYP4A/F)-20-hydroxyeicosatetraenoic acid (20-HETE) system regulates neovascularization. Therefore, we studied whether the angiogenic effects of the CYP4A/F-20-HETE system involve regulation of EPC function. We extracted human umbilical cord blood and isolated EPCs, which express AC133(+)CD34(+) and kinase insert domain receptor (KDR) surface markers and contain mRNA and protein for CYP4A11 and CYP4A22 enzymes, as opposed to mesenchymal stem cells, which only express negligible amounts of CYP4A11/22. When EPCs were incubated with arachidonic acid, they produced 20-HETE, which stimulated the cells to proliferate and migrate, as did vascular endothelial growth factor. Incubation with 1 μM N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine (HET0016), a selective inhibitor of 20-HETE synthesis, reduced the proliferative and migratory effects of vascular endothelial growth factor and also significantly abolished EPC migration mediated by stroma-derived factor-1α, as did (6,15) 20-hydroxyeicosadienoic acid. Coculturing EPCs and endothelial cells on a Matrigel matrix led to tube formation, which in turn was inhibited by both HET0016 and 20-hydroxyeicosadienoic acid. We concluded that the CYP4A/F-20-HETE system is expressed in EPCs and can act as both an autocrine and a paracrine regulatory factor.
Collapse
Affiliation(s)
- Austin M Guo
- Department of Pharmacology, New York Medical College, 15 Dana Rd., BSB 546A, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Herringson TP, Altin JG. Effective tumor targeting and enhanced anti-tumor effect of liposomes engrafted with peptides specific for tumor lymphatics and vasculature. Int J Pharm 2011; 411:206-14. [PMID: 21443937 DOI: 10.1016/j.ijpharm.2011.03.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/10/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
Abstract
The use of liposomes to target drugs to tumors represents an attractive therapeutic strategy, especially when used with convenient targeting moieties such as peptides. Here we explored several peptides for their ability to target liposomes to tumors. The metal chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA) was incorporated into liposomes to enable the engraftment of His-tagged peptides containing targeting motifs specific for tumor vasculature markers VEGFR-1 (p39-Flt-1) and neuropilin-1 (p24-NRP-1), or a motif known to accumulate in hypoxic areas of tumors (p47-LyP-1). Peptide-engrafted liposomes were examined for their biodistribution and anti-tumor effects after i.v. administration. Our results show that radiolabelled liposomes engrafted with either p24-NRP-1 or p47-LyP-1 and then injected into mice bearing subcutaneous B16-F1 tumors, show increased accumulation in the tumor. For p24-NRP-1-liposomes, tumor targeting was significantly increased when the stabilizing lipid phosphatidylethanolamine polyethylene glycol-750 (PE-PEG(750)) was used instead of PE-PEG(2000) in the liposome lipid mixture. Importantly, compared to the controls, p24-NRP-1 liposomes containing 10 mol% PE-PEG(750) and loaded with doxorubicin significantly inhibited the rate of tumor growth in the tumor-bearing mice. Our findings demonstrate that the use of drug-containing liposomes incorporating NTA(3)-DTDA and engrafted with NRP-1 targeting peptide is a convenient strategy to enhance the therapeutic effect of non-targeted doxorubicin.
Collapse
Affiliation(s)
- Thomas P Herringson
- Division of Biomedical Science and Biochemistry, Research School of Biology, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
40
|
Amjadi F, Javanmard SH, Zarkesh-Esfahani H, Khazaei M, Narimani M. Leptin promotes melanoma tumor growth in mice related to increasing circulating endothelial progenitor cells numbers and plasma NO production. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:21. [PMID: 21338489 PMCID: PMC3049751 DOI: 10.1186/1756-9966-30-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/21/2011] [Indexed: 01/08/2023]
Abstract
Background Epidemiological studies propose that obesity increases the risk of several cancers, including melanoma. Obesity increases the expression of leptin, a multifunctional peptide produced predominantly by adipocytes which may promote tumor growth. Several recently experiments have suggested that the tumors growth is in need of endothelial progenitor cell (EPC) dependent generation of new blood vessels. Our objectives in the present study were to examine the effects of leptin on melanoma growth, circulating EPCs number and plasma levels of nitric oxide metabolites (NOx). Methods 2 × 106 B16F10 melanoma cells were injected to thirty two C57BL6 mice subcutaneously. The mice were randomly divided into 4 groups (n = 8) in 8th day. Two groups were received twice daily intraperitoneal(i.p) injections of either PBS or recombinant murine leptin (1 μg/g initial body weight). Two groups were received i.p. injections of either 9F8 an anti leptin receptor antibody or the control mouse IgG at 50 μg/mouse every 3 consecutive days. By the end of the second week the animals were euthanized and blood samples and tumors were analyzed. Results The tumor weight, EPC numbers and NOx level in leptin, PBS, 9F8, and IgG group were (3.2 ± 0.6, 1.7 ± 0.3, 1.61 ± 0.2,1.7 ± 0.3 g), (222.66 ± 36.5, 133.33 ± 171, 23.33 ± 18, 132.66 ± 27.26/ml of blood), and (22.47 ± 5.5, 12.30 ± 1.5, 6.26 ± 0.84, 15.75 ± 6.3 μmol/L) respectively. Tumors weight and size, circulating EPC numbers and plasma levels of NOx were significantly more in the leptin than 9f8 and both control groups (p < 0.05). The plasma concentration of NOx significantly decreased in 9f8 treated mice compare to control group (p < 0.05). Conclusions In conclusion, our observations indicate that leptin causes melanoma growth likely through increased NO production and circulating EPC numbers and consequently vasculogenesis.
Collapse
Affiliation(s)
- Fatemehsadat Amjadi
- Applied Physiology Research Center and Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | |
Collapse
|
41
|
Interleukin-18 suppresses angiogenesis and lymphangiogenesis in implanted Lewis lung cancer. Chin J Cancer Res 2010. [DOI: 10.1007/s11670-010-0303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
42
|
Zhu P, Ning Y, Yao L, Chen M, Xu C. The proliferation, apoptosis, invasion of endothelial-like epithelial ovarian cancer cells induced by hypoxia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:124. [PMID: 20831794 PMCID: PMC2944817 DOI: 10.1186/1756-9966-29-124] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/10/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Epithelial ovarian cancer is one of the most malignant cancers in women because metastasis occurs in the most of patients by the time of diagnosis. Cancer cells have strong capacity to form angiogenesis or vasculogenic mimicry, which plays the major role in its malignant phenotype. Vasculogenic mimicry might contribute to the failure of the angiogenesis-targeted therapy strategies. Under the microenvironment of the tumor, hypoxia is the most common phenomena because of the vast energy and oxygen consuming. In the present study, the endothelial-like cells induced by hypoxia from SKOV-3 and ES-2 ovarian cancer cells were harvested to investigate the changes in their biological behaviors. METHODS The endothelial-like cells from SKOV-3 and ES-2 cells were harvested by laser capture microdissection. The biological behaviors of the endothelial-like cells, including proliferation, cell cycle, apoptosis, invasion and telomerase activity were determined by MTT, FCM, Transwell chamber and TRAP-ELISA methods. HIF-1α is the most important factor for the behavior changes under hypoxic condition. Some other genes relative to biological behaviors are also changes following the changes of HIF-1α. In order to elucidate the underlying mechanisms for these changes by hypoxia, the relative genes expressions including HIF-1α, CyclinD1, Flk-1, VEGF, p53 and V-src were determined by real-time PCR. RESULTS SKOV-3 and ES-2 cells were resistant to hypoxia by adoption of proliferation, apoptosis, differentiation and invasion. Combined with other studies, the more poorly cancer cells differentiate, the more strongly cells are resistant to hypoxia, the more possible to form vasculogenic mimicry. The changes in the expression of HIF-1α, and HIF-1α-dependent VEGF, Flk-1, Cyclin D1, and HIF-1α-independent p53 have been involved in this process. CONCLUSIONS HIF-1α took an important role in the behavioral changes of SKOV-3 and ES-2 cells by hypoxia. At the same time, other mechanisms were also involved in this process.
Collapse
Affiliation(s)
- Pengfei Zhu
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, China
| | | | | | | | | |
Collapse
|