1
|
Clinical characteristics associated with mortality of COVID-19 patients admitted to an intensive care unit of a tertiary hospital in South Africa. PLoS One 2022; 17:e0279565. [PMID: 36584024 PMCID: PMC9803161 DOI: 10.1371/journal.pone.0279565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/11/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Over 130 million people have been diagnosed with Coronavirus disease 2019 (COVID-19), and more than one million fatalities have been reported worldwide. South Africa is unique in having a quadruple disease burden of type 2 diabetes, hypertension, human immunodeficiency virus (HIV) and tuberculosis, making COVID-19-related mortality of particular interest in the country. The aim of this study was to investigate the clinical characteristics and associated mortality of COVID-19 patients admitted to an intensive care unit (ICU) in a South African setting. METHODS AND FINDINGS We performed a prospective observational study of patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection admitted to the ICU of a South African tertiary hospital in Cape Town. The mortality and discharge rates were the primary outcomes. Demographic, clinical and laboratory data were analysed, and multivariable robust Poisson regression model was used to identify risk factors for mortality. Furthermore, Cox proportional hazards regression model was performed to assess the association between time to death and the predictor variables. Factors associated with death (time to death) at p-value < 0.05 were considered statistically significant. Of the 402 patients admitted to the ICU, 250 (62%) died, and another 12 (3%) died in the hospital after being discharged from the ICU. The median age of the study population was 54.1 years (IQR: 46.0-61.6). The mortality rate among those who were intubated was significantly higher at 201/221 (91%). After adjusting for confounding, multivariable robust Poisson regression analysis revealed that age more than 48 years, requiring invasive mechanical ventilation, HIV status, procalcitonin (PCT), Troponin T, Aspartate Aminotransferase (AST), and a low pH on admission all significantly predicted mortality. Three main risk factors predictive of mortality were identified in the analysis using Cox regression Cox proportional hazards regression model. HIV positive status, myalgia, and intubated in the ICU were identified as independent prognostic factors. CONCLUSIONS In this study, the mortality rate in COVID-19 patients admitted to the ICU was high. Older age, the need for invasive mechanical ventilation, HIV status, and metabolic acidosis were found to be significant predictors of mortality in patients admitted to the ICU.
Collapse
|
2
|
Brady M, McQuaid C, Solorzano A, Johnson A, Combs A, Venkatraman C, Rahman A, Leyva H, Kwok WCE, Wood RW, Deane R. Spike protein multiorgan tropism suppressed by antibodies targeting SARS-CoV-2. Commun Biol 2021; 4:1318. [PMID: 34811493 PMCID: PMC8609008 DOI: 10.1038/s42003-021-02856-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
While there is SARS-CoV-2 multiorgan tropism in severely infected COVID-19 patients, it's unclear if this occurs in healthy young individuals. In addition, for antibodies that target the spike protein (SP), it's unclear if these reduce SARS-CoV-2/SP multiorgan tropism equally. We used fluorescently labeled SP-NIRF to study viral behavior, using an in vivo dynamic imaging system and ex in vivo tissue analysis, in young mice. We found a SP body-wide biodistribution followed by a slow regional elimination, except for the liver, which showed an accumulation. SP uptake was highest for the lungs, and this was followed by kidney, heart and liver, but, unlike the choroid plexus, it was not detected in the brain parenchyma or CSF. Thus, the brain vascular barriers were effective in restricting the entry of SP into brain parenchyma in young healthy mice. While both anti-ACE2 and anti-SP antibodies suppressed SP biodistribution and organ uptake, anti-SP antibody was more effective. By extension, our data support the efficacy of these antibodies on SARS-CoV-2 multiorgan tropism, which could determine COVID-19 organ-specific outcomes.
Collapse
Affiliation(s)
- Molly Brady
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Conor McQuaid
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Alexander Solorzano
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Angelique Johnson
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Abigail Combs
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Chethana Venkatraman
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Akib Rahman
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Hannah Leyva
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Wing-Chi Edmund Kwok
- Department of Imaging Sciences, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Ronald W Wood
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Departments of Obstetrics and Gynecology, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Urology, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Rashid Deane
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
3
|
Shalash AO, Hussein WM, Skwarczynski M, Toth I. Key Considerations for the Development of Safe and Effective SARS-CoV-2 Subunit Vaccine: A Peptide-Based Vaccine Alternative. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100985. [PMID: 34176237 PMCID: PMC8373118 DOI: 10.1002/advs.202100985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/18/2021] [Indexed: 05/14/2023]
Abstract
COVID-19 is disastrous to global health and the economy. SARS-CoV-2 infection exhibits similar clinical symptoms and immunopathological sequelae to SARS-CoV infection. Therefore, much of the developmental progress on SARS-CoV vaccines can be utilized for the development of SARS-CoV-2 vaccines. Careful antigen selection during development is always of utmost importance for the production of effective vaccines that do not compromise recipient safety. This holds especially true for SARS-CoV vaccines, as several immunopathological disorders are associated with the activity of structural and nonstructural proteins encoded in the virus's genetic material. Whole viral protein and RNA-encoding full-length proteins contain both protective and "dangerous" sequences, unless pathological fragments are deleted. In light of recent advances, peptide vaccines may present a very safe and effective alternative. Peptide vaccines can avoid immunopathological pro-inflammatory sequences, focus immune responses on neutralizing immunogenic epitopes, avoid off-target antigen loss, combine antigens with different protective roles or mechanisms, even from different viral proteins, and avoid mutant escape by employing highly conserved cryptic epitopes. In this review, an attempt is made to exploit the similarities between SARS-CoV and SARS-CoV-2 in vaccine antigen screening, with particular attention to the pathological and immunogenic properties of SARS proteins.
Collapse
Affiliation(s)
- Ahmed O. Shalash
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
| | - Istvan Toth
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD4072Australia
- School of PharmacyThe University of QueenslandWoolloongabbaQLD4102Australia
| |
Collapse
|
4
|
Dökümcü E. The role of carbohydrate antigen 125 in COVID-19. Med Hypotheses 2021; 151:110590. [PMID: 33873150 PMCID: PMC8007193 DOI: 10.1016/j.mehy.2021.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an inflammatory process with complex pathophysiology and by affecting the cardiovascular system directly or indirectly that causes life threatening cardiac injuries. Therefore, clarifying the effects of this infection on the cardiovascular system is of importance in terms of the clinical course of the disease. The increases in cardiac and inflammatory biomarkers in COVID-19 have been associated with poor prognosis and mortality. However, there are no specific laboratory markers yet to assess the severity of the disease. In this context, the combination of available biomarkers is needed to better define the clinical course of this disease. Carbohydrate antigen 125 (CA-125) has become a remarkable marker in recent years as a result of the correlation of increasing levels in cardiovascular diseases with clinical, hemodynamic, echocardiographic parameters and its relation with mortality or re-hospitalization due to heart failure. These findings suggest that CA-125 might be useful biomarker to identify the damage mechanisms of COVID-19, monitoring the prognosis of the disease and the course of the treatment.
Collapse
Affiliation(s)
- Esra Dökümcü
- Medical Biochemistry Laboratory, Edirne Public Health Institution, Turkey.
| |
Collapse
|
5
|
Peng X, Wang Y, Xi X, Jia Y, Tian J, Yu B, Tian J. Promising Therapy for Heart Failure in Patients with Severe COVID-19: Calming the Cytokine Storm. Cardiovasc Drugs Ther 2021; 35:231-247. [PMID: 33404925 PMCID: PMC7786163 DOI: 10.1007/s10557-020-07120-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 12/11/2022]
Abstract
The coronavirus disease 19 (COVID-19) pandemic poses a serious global threat to human health and the economy. Based on accumulating evidence, its continuous progression involves not only pulmonary injury but also damage to the cardiovascular system due to intertwined pathophysiological risks. As a point of convergence in the pathophysiologic process between COVID-19 and heart failure (HF), cytokine storm induces the progression of COVID-19 in patients presenting pre-existing or new onset myocardial damage and even HF. Cytokine storm, as a trigger of the progression of HF in patients with COVID-19, has become a novel focus to explore therapies for target populations. In this review, we briefly introduce the basis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and illuminate the mechanism and links among COVID-19, cytokine storm, and HF. Furthermore, we discuss drugs and therapeutic targets for patients with COVID-19 and HF.
Collapse
Affiliation(s)
- Xiang Peng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Yani Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Xiangwen Xi
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Ying Jia
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Jiangtian Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, 541000, Guangxi, China.
| |
Collapse
|
6
|
Kothari A, Singh V, Nath UK, Kumar S, Rai V, Kaushal K, Omar BJ, Pandey A, Jain N. Immune Dysfunction and Multiple Treatment Modalities for the SARS-CoV-2 Pandemic: Races of Uncontrolled Running Sweat? BIOLOGY 2020; 9:E243. [PMID: 32846906 PMCID: PMC7563789 DOI: 10.3390/biology9090243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic threat with more than 11.8 million confirmed cases and more than 0.5 million deaths as of 3 July 2020. Given the lack of definitive pharmaceutical interventions against SARS-CoV-2, multiple therapeutic strategies and personal protective applications are being used to reduce the risk of high mortality and community spread of this infection. Currently, more than a hundred vaccines and/or alternative therapeutic regimens are in clinical trials, and some of them have shown promising results in improving the immune cell environment and controlling the infection. In this review, we discussed high-performance multi-directory strategies describing the uncontrolled deregulation of the host immune landscape associated with coronavirus disease (COVID-19) and treatment strategies using an anti-neoplastic regimen. We also followed selected current treatment plans and the most important on-going clinical trials and their respective outcomes for blocking SARS-CoV-2 pathogenesis through regenerative medicine, such as stem cell therapy, chimeric antigen receptors, natural killer (NK) cells, extracellular vesicular-based therapy, and others including immunomodulatory regimens, anti-neoplastic therapy, and current clinical vaccine therapy.
Collapse
Affiliation(s)
- Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India; (A.K.); (V.S.)
| | - Vanya Singh
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India; (A.K.); (V.S.)
| | - Uttam Kumar Nath
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Sandeep Kumar
- School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Vineeta Rai
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Karanvir Kaushal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India; (A.K.); (V.S.)
| | - Atul Pandey
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Neeraj Jain
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|