1
|
Malebari AM, E A Ahmed H, Ihmaid SK, Omar AM, Muhammad YA, Althagfan SS, Aljuhani N, A A El-Sayed AA, Halawa AH, El-Tahir HM, Turkistani SA, Almaghrabi M, K B Aljohani A, El-Agrody AM, Abulkhair HS. Exploring the dual effect of novel 1,4-diarylpyranopyrazoles as antiviral and anti-inflammatory for the management of SARS-CoV-2 and associated inflammatory symptoms. Bioorg Chem 2023; 130:106255. [PMID: 36403336 PMCID: PMC9671780 DOI: 10.1016/j.bioorg.2022.106255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
COVID-19 and associated substantial inflammations continue to threaten humankind triggering death worldwide. So, the development of new effective antiviral and anti-inflammatory medications is a major scientific goal. Pyranopyrazoles have occupied a crucial position in medicinal chemistry because of their biological importance. Here, we report the design and synthesis of a series of sixteen pyranopyrazole derivatives substituted with two aryl groups at N-1 and C-4. The designed compounds are suggested to show dual activity to combat the emerging Coronaviruses and associated substantial inflammations. All compounds were evaluated for their in vitro antiviral activity and cytotoxicity against SARS-CoV infected Vero cells. As well, the in vitro assay of all derivatives against the SARS-CoV Mpro target was performed. Results revealed the potential of three pyranopyrazoles (22, 27, and 31) to potently inhibit the viral main protease with IC50 values of 2.01, 1.83, and 4.60 μM respectively compared with 12.85 and 82.17 μM for GC-376 and lopinavir. Additionally, in vivo anti-inflammatory testing for the most active compound 27 proved its ability to reduce levels of two cytokines (TNF-α and IL-6). Molecular docking and dynamics simulation revealed consistent results with the in vitro enzymatic assay and indicated the stability of the putative complex of 27 with SARS-CoV-2 Mpro. The assessment of metabolic stability and physicochemical properties of 27 have also been conducted. This investigation identified a set of metabolically stable pyranopyrazoles as effective anti-SARS-CoV-2 Mpro and suppressors of host cell cytokine release. We believe that the new compounds deserve further chemical optimization and evaluation for COVID-19 treatment.
Collapse
Affiliation(s)
- Azizah M Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| | - Saleh K Ihmaid
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Jadara University Irbid, Jordan
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia; Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Yosra A Muhammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| | - Sultan S Althagfan
- Clinical and Hospital Pharmacy Department, Taibah University, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Naif Aljuhani
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Abdel-Aziz A A El-Sayed
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia; Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ahmed H Halawa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Heba M El-Tahir
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | | | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt.
| |
Collapse
|
2
|
Mslati H, Gentile F, Perez C, Cherkasov A. Comprehensive Consensus Analysis of SARS-CoV-2 Drug Repurposing Campaigns. J Chem Inf Model 2021; 61:3771-3788. [PMID: 34313439 PMCID: PMC8340583 DOI: 10.1021/acs.jcim.1c00384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 01/18/2023]
Abstract
The current COVID-19 pandemic has elicited extensive repurposing efforts (both small and large scale) to rapidly identify COVID-19 treatments among approved drugs. Herein, we provide a literature review of large-scale SARS-CoV-2 antiviral drug repurposing efforts and highlight a marked lack of consistent potency reporting. This variability indicates the importance of standardizing best practices-including the use of relevant cell lines, viral isolates, and validated screening protocols. We further surveyed available biochemical and virtual screening studies against SARS-CoV-2 targets (Spike, ACE2, RdRp, PLpro, and Mpro) and discuss repurposing candidates exhibiting consistent activity across diverse, triaging assays and predictive models. Moreover, we examine repurposed drugs and their efficacy against COVID-19 and the outcomes of representative repurposed drugs in clinical trials. Finally, we propose a drug repurposing pipeline to encourage the implementation of standard methods to fast-track the discovery of candidates and to ensure reproducible results.
Collapse
Affiliation(s)
- Hazem Mslati
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Francesco Gentile
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Carl Perez
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| |
Collapse
|
3
|
Hu X, Shrimp JH, Guo H, Xu M, Chen CZ, Zhu W, Zakharov AV, Jain S, Shinn P, Simeonov A, Hall MD, Shen M. Discovery of TMPRSS2 Inhibitors from Virtual Screening as a Potential Treatment of COVID-19. ACS Pharmacol Transl Sci 2021; 4:1124-1135. [PMID: 34136758 PMCID: PMC8043206 DOI: 10.1021/acsptsci.0c00221] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has prompted researchers to pivot their efforts to finding antiviral compounds and vaccines. In this study, we focused on the human host cell transmembrane protease serine 2 (TMPRSS2), which plays an important role in the viral life cycle by cleaving the spike protein to initiate membrane fusion. TMPRSS2 is an attractive target and has received attention for the development of drugs against SARS and Middle East respiratory syndrome. Starting with comparative structural modeling and a binding model analysis, we developed an efficient pharmacophore-based approach and applied a large-scale in silico database screening for small-molecule inhibitors against TMPRSS2. The hits were evaluated in the TMPRSS2 biochemical assay and the SARS-CoV-2 pseudotyped particle entry assay. A number of novel inhibitors were identified, providing starting points for the further development of drug candidates for the treatment of coronavirus disease 2019.
Collapse
Affiliation(s)
- Xin Hu
- National Center
for Advancing
Translational Sciences, National Institutes
of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Jonathan H. Shrimp
- National Center
for Advancing
Translational Sciences, National Institutes
of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Hui Guo
- National Center
for Advancing
Translational Sciences, National Institutes
of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Miao Xu
- National Center
for Advancing
Translational Sciences, National Institutes
of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Catherine Z. Chen
- National Center
for Advancing
Translational Sciences, National Institutes
of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wei Zhu
- National Center
for Advancing
Translational Sciences, National Institutes
of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Alexey V. Zakharov
- National Center
for Advancing
Translational Sciences, National Institutes
of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Sankalp Jain
- National Center
for Advancing
Translational Sciences, National Institutes
of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Paul Shinn
- National Center
for Advancing
Translational Sciences, National Institutes
of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National Center
for Advancing
Translational Sciences, National Institutes
of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National Center
for Advancing
Translational Sciences, National Institutes
of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Min Shen
- National Center
for Advancing
Translational Sciences, National Institutes
of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
4
|
Hu X, Shrimp JH, Guo H, Xu M, Chen CZ, Zhu W, Zakharov A, Jain S, Shinn P, Simeonov A, Hall MD, Shen M. Discovery of TMPRSS2 inhibitors from virtual screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.12.28.424413. [PMID: 33398276 PMCID: PMC7781311 DOI: 10.1101/2020.12.28.424413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 pandemic has prompted researchers to pivot their efforts to finding antiviral compounds and vaccines. In this study, we focused on the human host cell transmembrane protease serine 2 (TMPRSS2), which plays an important role in the viral life cycle by cleaving the spike protein to initiate membrane fusion. TMPRSS2 is an attractive target and has received attention for the development of drugs against SARS and MERS. Starting with comparative structural modeling and binding model analysis, we developed an efficient pharmacophore-based approach and applied a large-scale in silico database screening for small molecule inhibitors against TMPRSS2. The hits were evaluated in the TMPRSS2 biochemical assay and the SARS-CoV-2 pseudotyped particle (PP) entry assay. A number of novel inhibitors were identified, providing starting points for further development of drug candidates for the treatment of COVID-19.
Collapse
Affiliation(s)
- Xin Hu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Jonathan H. Shrimp
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Hui Guo
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Miao Xu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Catherine Z. Chen
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Wei Zhu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Alexey Zakharov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Sankalp Jain
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Paul Shinn
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Min Shen
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| |
Collapse
|
5
|
Drayman N, Jones KA, Azizi SA, Froggatt HM, Tan K, Maltseva NI, Chen S, Nicolaescu V, Dvorkin S, Furlong K, Kathayat RS, Firpo MR, Mastrodomenico V, Bruce EA, Schmidt MM, Jedrzejczak R, Muñoz-Alía MÁ, Schuster B, Nair V, Botten JW, Brooke CB, Baker SC, Mounce BC, Heaton NS, Dickinson BC, Jaochimiak A, Randall G, Tay S. Drug repurposing screen identifies masitinib as a 3CLpro inhibitor that blocks replication of SARS-CoV-2 in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32908976 DOI: 10.1101/2020.08.31.274639] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is an urgent need for anti-viral agents that treat SARS-CoV-2 infection. The shortest path to clinical use is repurposing of drugs that have an established safety profile in humans. Here, we first screened a library of 1,900 clinically safe drugs for inhibiting replication of OC43, a human beta-coronavirus that causes the common-cold and is a relative of SARS-CoV-2, and identified 108 effective drugs. We further evaluated the top 26 hits and determined their ability to inhibit SARS-CoV-2, as well as other pathogenic RNA viruses. 20 of the 26 drugs significantly inhibited SARS-CoV-2 replication in human lung cells (A549 epithelial cell line), with EC50 values ranging from 0.1 to 8 micromolar. We investigated the mechanism of action for these and found that masitinib, a drug originally developed as a tyrosine-kinase inhibitor for cancer treatment, strongly inhibited the activity of the SARS-CoV-2 main protease 3CLpro. X-ray crystallography revealed that masitinib directly binds to the active site of 3CLpro, thereby blocking its enzymatic activity. Mastinib also inhibited the related viral protease of picornaviruses and blocked picornaviruses replication. Thus, our results show that masitinib has broad anti-viral activity against two distinct beta-coronaviruses and multiple picornaviruses that cause human disease and is a strong candidate for clinical trials to treat SARS-CoV-2 infection.
Collapse
|
6
|
Resnick SJ, Iketani S, Hong SJ, Zask A, Liu H, Kim S, Melore S, Nair MS, Huang Y, Tay NE, Rovis T, Yang HW, Stockwell BR, Ho DD, Chavez A. A simplified cell-based assay to identify coronavirus 3CL protease inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.29.272864. [PMID: 32869020 PMCID: PMC7457602 DOI: 10.1101/2020.08.29.272864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We describe a mammalian cell-based assay capable of identifying coronavirus 3CL protease (3CLpro) inhibitors without requiring the use of live virus. By enabling the facile testing of compounds across a range of coronavirus 3CLpro enzymes, including the one from SARS-CoV-2, we are able to quickly identify compounds with broad or narrow spectra of activity. We further demonstrate the utility of our approach by performing a curated compound screen along with structure-activity profiling of a series of small molecules to identify compounds with antiviral activity. Throughout these studies, we observed concordance between data emerging from this assay and from live virus assays. By democratizing the testing of 3CL inhibitors to enable screening in the majority of laboratories rather than the few with extensive biosafety infrastructure, we hope to expedite the search for coronavirus 3CL protease inhibitors, to address the current epidemic and future ones that will inevitably arise.
Collapse
Affiliation(s)
- Samuel J. Resnick
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Seo Jung Hong
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Hengrui Liu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Schuyler Melore
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Manoj S. Nair
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nicholas E.S. Tay
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Brent R. Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
7
|
Chen CZ, Shinn P, Itkin Z, Eastman RT, Bostwick R, Rasmussen L, Huang R, Shen M, Hu X, Wilson KM, Brooks B, Guo H, Zhao T, Klump-Thomas C, Simeonov A, Michael SG, Lo DC, Hall MD, Zheng W. Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.18.255877. [PMID: 32839771 PMCID: PMC7444282 DOI: 10.1101/2020.08.18.255877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug repurposing is a rapid approach to identifying therapeutics for the treatment of emerging infectious diseases such as COVID-19. To address the urgent need for treatment options, we carried out a quantitative high-throughput screen using a SARS-CoV-2 cytopathic assay with a compound collection of 8,810 approved and investigational drugs, mechanism-based bioactive compounds, and natural products. Three hundred and nineteen compounds with anti-SARS-CoV-2 activities were identified and confirmed, including 91 approved drug and 49 investigational drugs. Among these confirmed compounds, the anti-SARS-CoV-2 activities of 230 compounds, including 38 approved drugs, have not been previously reported. Chlorprothixene, methotrimeprazine, and piperacetazine were the three most potent FDA approved drugs with anti-SARS-CoV-2 activities. These three compounds have not been previously reported to have anti-SARS-CoV-2 activities, although their antiviral activities against SARS-CoV and Ebola virus have been reported. These results demonstrate that this comprehensive data set of drug repurposing screen for SARS-CoV-2 is useful for drug repurposing efforts including design of new drug combinations for clinical trials.
Collapse
Affiliation(s)
- Catherine Z. Chen
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Paul Shinn
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Zina Itkin
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Richard T. Eastman
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Robert Bostwick
- Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama, 35205
| | - Lynn Rasmussen
- Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama, 35205
| | - Ruili Huang
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Min Shen
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Xin Hu
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Kelli M. Wilson
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Brianna Brooks
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Hui Guo
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Tongan Zhao
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Carleen Klump-Thomas
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Samuel G. Michael
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Donald C. Lo
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Wei Zheng
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| |
Collapse
|