1
|
Zhang K, Li C, Wu P, Gao X, Feng X, Shen J, Zhang N, Hu X, Wang S, Zhang H, Lv J, Sun J. Mechanisms of Zhixiao Tang on Anti-Inflammatory Multiple Targets and Multiple Components: Metabonomics Combined with Database Mining Technology. J Inflamm Res 2024; 17:4587-4610. [PMID: 39011417 PMCID: PMC11249118 DOI: 10.2147/jir.s463067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Purpose Zhixiao Tang (ZXT), a traditional Chinese compound prescription, has been used clinically to treat pneumonia in China. However, the underlying mechanism of ZXT treatment in pneumonia is still unclear. The present study aimed to reveal the potential mechanism of ZXT in pneumonia using a strategy combining metabolomics and network pharmacology. Methods Initially, the chemical compositions were identified by UPLC-QE-Orbitrap-MS, while the prediction of potential signal pathways was performed through network pharmacology. To assess the anti-inflammatory properties of ZXT in the context of pneumonia, models of 16HBE cells induced by LPS and zebrafish induced by CuSO4 were established to measure levels of inflammatory markers and apoptosis. Subsequently, the differential changes of endogenous metabolites in cells caused by ZXT were examined using metabolomics technology, and the molecular docking analysis of key targets was carried out using Autodock Vina software. Ultimately, the validation of the primary pathways and targets was conducted through quantitative RT-PCR and Western blot techniques. Results A total of 75 compounds were identified through UPLC-QE-Orbitrap-MS analyses. Network pharmacological analysis shows that it plays an anti-inflammatory role in C-type lectin receptor signaling pathway. After ZXT intervention, the inflammatory factors and apoptosis in cells were significantly reduced. Metabonomics analysis showed that 18 metabolites changed significantly. Four key genes were identified, which exhibited partial compatibility with the findings of network pharmacology. Molecular docking analysis confirmed the substantial affinity of the primary targets for ZXT. Furthermore, ZXT exerted a suppressive effect on neutrophil migration, down-regulated the expression of pro-inflammatory cytokine genes, and inhibited the up-regulation of the Dectin-1/SYK/NF-κB signaling pathway. In vivo cell experiments also yielded consistent experimental outcomes. Conclusion This study enhances comprehension of the pharmacological mechanism underlying ZXT's efficacy in pneumonia treatment, thereby establishing a scholarly basis for future research and clinical utilization of ZXT in pneumonia management.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Chunnan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Peitong Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Xiaochen Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Xueqin Feng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Jiaming Shen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Nanxi Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Xuesheng Hu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Shuo Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Jingwei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Jiaming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| |
Collapse
|
2
|
Wang Y, Wang D, Wang K, Weng S, Zheng R, Liu X, Zhao L, Li C, Hu Z. Litchi pulp-derived gamma-aminobutyric acid (GABA) extract counteracts liver inflammation induced by litchi thaumatin-like protein. Food Funct 2024; 15:4818-4831. [PMID: 38606579 DOI: 10.1039/d3fo05463b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Gamma-aminobutyric acid (GABA) is the predominant amino acid in litchi pulp, known for its neuroregulatory effects and anti-inflammatory properties. Although previous research has highlighted the pro-inflammatory characteristics of litchi thaumatin-like protein (LcTLP), interplay between GABA and LcTLP in relation to inflammation remains unclear. This study aims to explore the hepatoprotective effects of the litchi pulp-derived GABA extract (LGE) against LcTLP-induced liver inflammation in mice and LO2 cells. In vivo experiments demonstrated that LGE significantly reduced the levels of aspartate transaminase and alanine transaminase, and protected the liver against infiltration of CD4+ and CD8+ T cells and histological injury induced by LcTLP. Pro-inflammatory cytokines including interleukin-6, interleukin-1β, and tumor necrosis factor-α were also diminished by LGE. The LGE appeared to modulate the mitogen-activated protein kinase (MAPK) signaling pathway to exert its anti-inflammatory effects, as evidenced by a reduction of 47%, 35%, and 31% in phosphorylated p38, JNK, and ERK expressions, respectively, in the liver of the high-dose LGE group. Additionally, LGE effectively improved the translocation of gut microbiota by modulating its microbiological composition and abundance. In vitro studies have shown that LGE effectively counteracts the increase in reactive oxygen species, calcium ions, and pro-inflammatory cytokines induced by LcTLP. These findings may offer new perspectives on the health benefits and safety of litchi consumption.
Collapse
Affiliation(s)
- Yao Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Dongwei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shaoquan Weng
- Guangzhou Wanglaoji Great Health Industry Co., Ltd, Guangzhou 510623, China
| | - Rongbo Zheng
- Guangzhou Wanglaoji Great Health Industry Co., Ltd, Guangzhou 510623, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chuyuan Li
- Guangzhou Pharmaceutical Holding Limited, Guangzhou 510130, China.
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Li X, Zhao X, Peng L, Du H, Chen S, Chen X. Deciphering GABBR1-centered drug targets to fight viral infection with preexisting diabetes. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1999-2003. [PMID: 37969011 PMCID: PMC10753374 DOI: 10.3724/abbs.2023249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Xiangqi Li
- Department of Endocrinology and Metabolism, Gongli Hospital, Naval Medical University, Shanghai 200135, China
| | - Xuemei Zhao
- Department of Endocrinology and Metabolism, Gongli Hospital, Naval Medical University, Shanghai 200135, China
| | - Li Peng
- Department of Endocrinology and Metabolism, Gongli Hospital, Naval Medical University, Shanghai 200135, China
| | - Hong Du
- Department of General Practice, Hudong Community Health Service Centre, Shanghai 200129, China
| | - Shiwei Chen
- Department of Intervention, Gongli Hospital, Naval Medical University, Shanghai 200135, China
| | - Xia Chen
- Department of Endocrinology and Metabolism, Gongli Hospital, Naval Medical University, Shanghai 200135, China
| |
Collapse
|
4
|
Glutamine-Driven Metabolic Adaptation to COVID-19 Infection. Indian J Clin Biochem 2023; 38:83-93. [PMID: 35431470 PMCID: PMC8992789 DOI: 10.1007/s12291-022-01037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/11/2022] [Indexed: 01/24/2023]
Abstract
Background COVID-19 is known to be transmitted by direct contact, droplets or feces/orally. There are many factors which determines the clinical progression of the disease. Aminoacid disturbance in viral disease is shown in many studies. İn this study we aimed to evaluate the change of aminoacid metabolism especially the aspartate, glutamine and glycine levels which have been associated with an immune defence effect in viral disease. Methods Blood samples from 35 volunteer patients with COVID-19, concretized diagnosis was made by oropharyngeal from nazofaringeal swab specimens and reverse transcriptase-polymerase chain reaction, and 35 control group were analyzed. The amino acid levels were measured with liquid chromatography-mass spectrometry technology. Two groups were compared by Kolmogorov-Smirnov analysis, Kruskal-Wallis and the Mann-Whitney U. The square test was used to evaluate the tests obtained by counting, and the error level was taken as 0.05. Results The average age of the patient and control group were 48.5 ± 14.9 and 48.8 ± 14.6 years respectively. The decrease in aspartate (p = 5.5 × 10-9) and glutamine levels (p = 9.0 × 10-17) were significiantly in COVID group, whereas Glycine (p = 0.243) increase was not significiant. Conclusions Metabolic pathways, are affected in rapidly dividing cells in viral diseases which are important for immun defence. We determined that aspartate, glutamine and glycine levels in Covid 19 patients were affected by the warburg effect, malate aspartate shuttle, glutaminolysis and pentose phosphate pathway. Enteral or parenteral administration of these plasma amino acid levels will correct the duration and pathophysiology of the patients' stay in hospital and intensive care.
Collapse
|
5
|
Abstract
Infection with SARS-CoV-2, the causative agent of the COVID-19 pandemic, originated in China and quickly spread across the globe. Despite tremendous economic and healthcare devastation, research on this virus has contributed to a better understanding of numerous molecular pathways, including those involving γ-aminobutyric acid (GABA), that will positively impact medical science, including neuropsychiatry, in the post-pandemic era. SARS-CoV-2 primarily enters the host cells through the renin–angiotensin system’s component named angiotensin-converting enzyme-2 (ACE-2). Among its many functions, this protein upregulates GABA, protecting not only the central nervous system but also the endothelia, the pancreas, and the gut microbiota. SARS-CoV-2 binding to ACE-2 usurps the neuronal and non-neuronal GABAergic systems, contributing to the high comorbidity of neuropsychiatric illness with gut dysbiosis and endothelial and metabolic dysfunctions. In this perspective article, we take a closer look at the pathology emerging from the viral hijacking of non-neuronal GABA and summarize potential interventions for restoring these systems.
Collapse
|
6
|
Li F, Boon ACM, Michelson AP, Foraker RE, Zhan M, Payne PRO. Estrogen hormone is an essential sex factor inhibiting inflammation and immune response in COVID-19. Sci Rep 2022; 12:9462. [PMID: 35676404 PMCID: PMC9175532 DOI: 10.1038/s41598-022-13585-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 05/25/2022] [Indexed: 01/18/2023] Open
Abstract
Although vaccines have been evaluated and approved for SARS-CoV-2 infection prevention, there remains a lack of effective treatments to reduce the mortality of COVID-19 patients already infected with SARS-CoV-2. The global data on COVID-19 showed that men have a higher mortality rate than women. We further observed that the proportion of mortality of females increases starting from around the age of 55 significantly. Thus, sex is an essential factor associated with COVID-19 mortality, and sex related genetic factors could be interesting mechanisms and targets for COVID-19 treatment. However, the associated sex factors and signaling pathways remain unclear. Here, we propose to uncover the potential sex associated factors using systematic and integrative network analysis. The unique results indicated that estrogens, e.g., estrone and estriol, (1) interacting with ESR1/2 receptors, (2) can inhibit SARS-CoV-2 caused inflammation and immune response signaling in host cells; and (3) estrogens are associated with the distinct fatality rates between male and female COVID-19 patients. Specifically, a high level of estradiol protects young female COVID-19 patients, and estrogens drop to an extremely low level in females after about 55 years of age causing the increased fatality rate of women. In conclusion, estrogen, interacting with ESR1/2 receptors, is an essential sex factor that protects COVID-19 patients from death by inhibiting inflammation and immune response caused by SARS-CoV-2 infection. Moreover, medications boosting the down-stream signaling of ESR1/ESR2, or inhibiting the inflammation and immune-associated targets on the signaling network can be potentially effective or synergistic combined with other existing drugs for COVID-19 treatment.
Collapse
Affiliation(s)
- Fuhai Li
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Adrianus C M Boon
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Andrew P Michelson
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Pulmonary and Critical Care Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Randi E Foraker
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ming Zhan
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD, USA
| | - Philip R O Payne
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Masoodi M, Peschka M, Schmiedel S, Haddad M, Frye M, Maas C, Lohse A, Huber S, Kirchhof P, Nofer JR, Renné T. Disturbed lipid and amino acid metabolisms in COVID-19 patients. J Mol Med (Berl) 2022; 100:555-568. [PMID: 35064792 PMCID: PMC8783191 DOI: 10.1007/s00109-022-02177-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic is overwhelming the healthcare systems. Identification of systemic reactions underlying COVID-19 will lead to new biomarkers and therapeutic targets for monitoring and early intervention in this viral infection. We performed targeted metabolomics covering up to 630 metabolites within several key metabolic pathways in plasma samples of 20 hospitalized COVID-19 patients and 37 matched controls. Plasma metabolic signatures specifically differentiated severe COVID-19 from control patients. The identified metabolic signatures indicated distinct alterations in both lipid and amino acid metabolisms in COVID-19 compared to control patient plasma. Systems biology-based analyses identified sphingolipid, tryptophan, tyrosine, glutamine, arginine, and arachidonic acid metabolism as mostly impacted pathways in COVID-19 patients. Notably, gamma-aminobutyric acid (GABA) was significantly reduced in COVID-19 patients and GABA plasma levels allowed for stratification of COVID-19 patients with high sensitivity and specificity. The data reveal large metabolic disturbances in COVID-19 patients and suggest use of GABA as potential biomarker and therapeutic target for the infection.
Collapse
Affiliation(s)
- Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Manuela Peschka
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20251, Hamburg, Germany
| | - Stefan Schmiedel
- Center for Internal Medicine, Clinic of Gastroenterology, Infectiology and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Munif Haddad
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20251, Hamburg, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20251, Hamburg, Germany
| | - Coen Maas
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, University, Utrecht, the Netherlands
| | - Ansgar Lohse
- Center for Internal Medicine, Clinic of Gastroenterology, Infectiology and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Center for Internal Medicine, Clinic of Gastroenterology, Infectiology and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center UKE Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lubeck, Hamburg, Germany
| | - Jerzy-Roch Nofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20251, Hamburg, Germany
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20251, Hamburg, Germany.
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany.
| |
Collapse
|
8
|
Paidas MJ, Mohamed AB, Norenberg MD, Saad A, Barry AF, Colon C, Kenyon NS, Jayakumar AR. Multi-Organ Histopathological Changes in a Mouse Hepatitis Virus Model of COVID-19. Viruses 2021; 13:1703. [PMID: 34578284 PMCID: PMC8473123 DOI: 10.3390/v13091703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Infection with SARS-CoV-2, the virus responsible for the global COVID-19 pandemic, causes a respiratory illness that can severely impact other organ systems and is possibly precipitated by cytokine storm, septic shock, thrombosis, and oxidative stress. SARS-CoV-2 infected individuals may be asymptomatic or may experience mild, moderate, or severe symptoms with or without pneumonia. The mechanisms by which SARS-CoV-2 infects humans are largely unknown. Mouse hepatitis virus 1 (MHV-1)-induced infection was used as a highly relevant surrogate animal model for this study. We further characterized this animal model and compared it with SARS-CoV-2 infection in humans. MHV-1 inoculated mice displayed death as well as weight loss, as reported earlier. We showed that MHV-1-infected mice at days 7-8 exhibit severe lung inflammation, peribronchiolar interstitial infiltration, bronchiolar epithelial cell necrosis and intra-alveolar necrotic debris, alveolar exudation (surrounding alveolar walls have capillaries that are dilated and filled with red blood cells), mononuclear cell infiltration, hyaline membrane formation, the presence of hemosiderin-laden macrophages, and interstitial edema. When compared to uninfected mice, the infected mice showed severe liver vascular congestion, luminal thrombosis of portal and sinusoidal vessels, hepatocyte degeneration, cell necrosis, and hemorrhagic changes. Proximal and distal tubular necrosis, hemorrhage in interstitial tissue, and the vacuolation of renal tubules were observed. The heart showed severe interstitial edema, vascular congestion, and dilation, as well as red blood cell extravasation into the interstitium. Upon examination of the MHV-1 infected mice brain, we observed congested blood vessels, perivascular cavitation, cortical pericellular halos, vacuolation of neuropils, darkly stained nuclei, pyknotic nuclei, and associated vacuolation of the neuropil in the cortex, as well as acute eosinophilic necrosis and necrotic neurons with fragmented nuclei and vacuolation in the hippocampus. Our findings suggest that the widespread thrombotic events observed in the surrogate animal model for SARS-CoV-2 mimic the reported findings in SARS-CoV-2 infected humans, representing a highly relevant and safe animal model for the study of the pathophysiologic mechanisms of SARS-CoV-2 for potential therapeutic interventions.
Collapse
Affiliation(s)
- Michael J Paidas
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| | - Adhar B Mohamed
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| | - Michael D Norenberg
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ali Saad
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ariel Faye Barry
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| | - Cristina Colon
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| | - Norma Sue Kenyon
- Microbiology & Immunology and Biomedical Engineering, Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Arumugam R Jayakumar
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
9
|
Thibivilliers S, Libault M. Enhancing Our Understanding of Plant Cell-to-Cell Interactions Using Single-Cell Omics. FRONTIERS IN PLANT SCIENCE 2021; 12:696811. [PMID: 34421948 PMCID: PMC8375048 DOI: 10.3389/fpls.2021.696811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/07/2021] [Indexed: 05/05/2023]
Abstract
Plants are composed of cells that physically interact and constantly adapt to their environment. To reveal the contribution of each plant cells to the biology of the entire organism, their molecular, morphological, and physiological attributes must be quantified and analyzed in the context of the morphology of the plant organs. The emergence of single-cell/nucleus omics technologies now allows plant biologists to access different modalities of individual cells including their epigenome and transcriptome to reveal the unique molecular properties of each cell composing the plant and their dynamic regulation during cell differentiation and in response to their environment. In this manuscript, we provide a perspective regarding the challenges and strategies to collect plant single-cell biological datasets and their analysis in the context of cellular interactions. As an example, we provide an analysis of the transcriptional regulation of the Arabidopsis genes controlling the differentiation of the root hair cells at the single-cell level. We also discuss the perspective of the use of spatial profiling to complement existing plant single-cell omics.
Collapse
Affiliation(s)
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
10
|
Tian J, Song M, Kaufman DL. Homotaurine limits the spreading of T cell autoreactivity within the CNS and ameliorates disease in a model of multiple sclerosis. Sci Rep 2021; 11:5402. [PMID: 33686135 PMCID: PMC7940650 DOI: 10.1038/s41598-021-84751-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/19/2021] [Indexed: 01/03/2023] Open
Abstract
Most multiple sclerosis (MS) patients given currently available disease-modifying drugs (DMDs) experience progressive disability. Accordingly, there is a need for new treatments that can limit the generation of new waves T cell autoreactivity that drive disease progression. Notably, immune cells express GABAA-receptors (GABAA-Rs) whose activation has anti-inflammatory effects such that GABA administration can ameliorate disease in models of type 1 diabetes, rheumatoid arthritis, and COVID-19. Here, we show that oral GABA, which cannot cross the blood-brain barrier (BBB), does not affect the course of murine experimental autoimmune encephalomyelitis (EAE). In contrast, oral administration of the BBB-permeable GABAA-R-specific agonist homotaurine ameliorates monophasic EAE, as well as advanced-stage relapsing-remitting EAE (RR-EAE). Homotaurine treatment beginning after the first peak of paralysis reduced the spreading of Th17 and Th1 responses from the priming immunogen to a new myelin T cell epitope within the CNS. Antigen-presenting cells (APC) isolated from homotaurine-treated mice displayed an attenuated ability to promote autoantigen-specific T cell proliferation. The ability of homotaurine treatment to limit epitope spreading within the CNS, along with its safety record, makes it an excellent candidate to help treat MS and other inflammatory disorders of the CNS.
Collapse
Affiliation(s)
- Jide Tian
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095-1735, USA.
| | - Min Song
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095-1735, USA
| | - Daniel L Kaufman
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095-1735, USA.
| |
Collapse
|
11
|
GABA B-Receptor Agonist-Based Immunotherapy for Type 1 Diabetes in NOD Mice. Biomedicines 2021; 9:biomedicines9010043. [PMID: 33418884 PMCID: PMC7825043 DOI: 10.3390/biomedicines9010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Some immune system cells express type A and/or type B γ-aminobutyric acid receptors (GABAA-Rs and/or GABAB-Rs). Treatment with GABA, which activates both GABAA-Rs and GABAB-Rs), and/or a GABAA-R-specific agonist inhibits disease progression in mouse models of type 1 diabetes (T1D), multiple sclerosis, rheumatoid arthritis, and COVID-19. Little is known about the clinical potential of specifically modulating GABAB-Rs. Here, we tested lesogaberan, a peripherally restricted GABAB-R agonist, as an interventive therapy in diabetic NOD mice. Lesogaberan treatment temporarily restored normoglycemia in most newly diabetic NOD mice. Combined treatment with a suboptimal dose of lesogaberan and proinsulin/alum immunization in newly diabetic NOD mice or a low-dose anti-CD3 in severely hyperglycemic NOD mice greatly increased T1D remission rates relative to each monotherapy. Mice receiving combined lesogaberan and anti-CD3 displayed improved glucose tolerance and, unlike mice that received anti-CD3 alone, had some islets with many insulin+ cells, suggesting that lesogaberan helped to rapidly inhibit β-cell destruction. Hence, GABAB-R-specific agonists may provide adjunct therapies for T1D. Finally, the analysis of microarray and RNA-Seq databases suggested that the expression of GABAB-Rs and GABAA-Rs, as well as GABA production/secretion-related genes, may be a more common feature of immune cells than currently recognized.
Collapse
|