1
|
Angeli F, Zappa M, Reboldi G, Gentile G, Trapasso M, Spanevello A, Verdecchia P. The spike effect of acute respiratory syndrome coronavirus 2 and coronavirus disease 2019 vaccines on blood pressure. Eur J Intern Med 2023; 109:12-21. [PMID: 36528504 PMCID: PMC9744686 DOI: 10.1016/j.ejim.2022.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Among the various comorbidities potentially worsening the clinical outcome in patients hospitalized for the acute respiratory syndrome coronavirus-2 (SARS-CoV-2), hypertension is one of the most prevalent. However, the basic mechanisms underlying the development of severe forms of coronavirus disease 2019 (COVID-19) among hypertensive patients remain undefined and the direct association of hypertension with outcome in COVID-19 is still a field of debate. Experimental and clinical data suggest that SARS-CoV-2 infection promotes a rise in blood pressure (BP) during the acute phase of infection. Acute increase in BP and high in-hospital BP variability may be tied with acute organ damage and a worse outcome in patients hospitalized for COVID-19. In this context, the failure of the counter-regulatory renin-angiotensin-system (RAS) axis is a potentially relevant mechanism involved in the raise in BP. It is well recognized that the efficient binding of the Spike (S) protein to angiotensin converting enzyme 2 (ACE2) receptors mediates the virus entry into cells. Internalization of ACE2, downregulation and malfunction predominantly due to viral occupation, dysregulates the protective RAS axis with increased generation and activity of angiotensin (Ang) II and reduced formation of Ang1,7. Thus, the imbalance between Ang II and Ang1-7 can directly contribute to excessively rise BP in the acute phase of SARS-CoV-2 infection. A similar mechanism has been postulated to explain the raise in BP following COVID-19 vaccination ("Spike Effect" similar to that observed during the infection of SARS-CoV-2). S proteins produced upon vaccination have the native-like mimicry of SARS-CoV-2 S protein's receptor binding functionality and prefusion structure and free-floating S proteins released by the destroyed cells previously targeted by vaccines may interact with ACE2 of other cells, thereby promoting ACE2 internalization and degradation, and loss of ACE2 activities.
Collapse
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese, 21100, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS Tradate, 21049, Italy.
| | - Martina Zappa
- Department of Medicine and Surgery, University of Insubria, Varese, 21100, Italy
| | - Gianpaolo Reboldi
- Department of Medicine, and Centro di Ricerca Clinica e Traslazionale (CERICLET), University of Perugia, Perugia, 06100, Italy
| | - Giorgio Gentile
- College of Medicine and Health. University of Exeter, Exeter, United Kingdom and Department of Nephrology, Royal Cornwall Hospitals NHS Trust, Truro, United Kingdom
| | - Monica Trapasso
- Dipartimento di Igiene e Prevenzione Sanitaria, PSAL, Sede Territoriale di Varese, ATS Insubria, Varese, 21100, Italy
| | - Antonio Spanevello
- Department of Medicine and Surgery, University of Insubria, Varese, 21100, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS Tradate, 21049, Italy
| | - Paolo Verdecchia
- Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, and Fondazione Umbra Cuore e Ipertensione-ONLUS, Perugia, 06100, Italy
| |
Collapse
|
2
|
Song S, Kim H, Jang EY, Jeon H, Diao H, Khan MRI, Lee M, Lee YJ, Nam J, Kim S, Kim Y, Sohn E, Hwang I, Choi J. SARS-CoV-2 spike trimer vaccine expressed in Nicotiana benthamiana adjuvanted with Alum elicits protective immune responses in mice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2298-2312. [PMID: 36062974 PMCID: PMC9538723 DOI: 10.1111/pbi.13908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has spurred rapid development of vaccines as part of the public health response. However, the general strategy used to construct recombinant trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) proteins in mammalian cells is not completely adaptive to molecular farming. Therefore, we generated several constructs of recombinant S proteins for high expression in Nicotiana benthamiana. Intramuscular injection of N. benthamiana-expressed Sct vaccine (NSct Vac) into Balb/c mice elicited both humoral and cellular immune responses, and booster doses increased neutralizing antibody titres. In human angiotensin-converting enzyme knock-in mice, two doses of NSct Vac induced anti-S and neutralizing antibodies, which cross-neutralized Alpha, Beta, Delta and Omicron variants. Survival rates after lethal challenge with SARS-CoV-2 were up to 80%, without significant body weight loss, and viral titres in lung tissue fell rapidly, with no infectious virus detectable at 7-day post-infection. Thus, plant-derived NSct Vac could be a candidate COVID-19 vaccine.
Collapse
Affiliation(s)
- Shi‐Jian Song
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Heeyeon Kim
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Eun Young Jang
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Hyungmin Jeon
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Hai‐Ping Diao
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Md Rezaul Islam Khan
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Mi‐Seon Lee
- Division of Infectious Diseases InspectionJeju Special Self‐Governing Province Institute of Environment ResearchJejuKorea
| | - Young Jae Lee
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Jeong‐hyun Nam
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Seong‐Ryeol Kim
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Young‐Jin Kim
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Eun‐Ju Sohn
- BioApplications Inc.Pohang Technopark ComplexPohangSouth Korea
| | - Inhwan Hwang
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Jang‐Hoon Choi
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| |
Collapse
|
3
|
Angeli F, Reboldi G, Trapasso M, Zappa M, Spanevello A, Verdecchia P. COVID-19, vaccines and deficiency of ACE 2 and other angiotensinases. Closing the loop on the "Spike effect". Eur J Intern Med 2022; 103:23-28. [PMID: 35753869 PMCID: PMC9217159 DOI: 10.1016/j.ejim.2022.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The role of a dysregulated renin-angiotensin system (RAS) in the pathogenesis of COVID-19 is well recognized. The imbalance between angiotensin II (Ang II) and Angiotensin1-7 (Ang1,7) caused by the interaction between SARS-CoV-2 and the angiotensin converting enzyme 2 (ACE2) receptors exerts a pivotal role on the clinical picture and outcome of COVID-19. ACE2 receptors are not the exclusive angiotensinases in nature. Other angiotensinases (PRCP, and POP) have the potential to limit the detrimental effects of the interactions between ACE2 and the Spike proteins. In the cardiovascular disease continuum, ACE2 activity tends to decrease, and POP/PRCP activity to increase, from the health status to advanced deterioration of the cardiovascular system. The failure of the counter-regulatory RAS axis during the acute phase of COVID-19 is characterized by a decrease of ACE2 expression coupled to unchanged activity of other angiotensinases, therefore failing to limit the accumulation of Ang II. COVID-19 vaccines increase the endogenous synthesis of SARS-CoV-2 spike proteins. Once synthetized, the free-floating spike proteins circulate in the blood, interact with ACE2 receptors and resemble the pathological features of SARS-CoV-2 ("Spike effect" of COVID-19 vaccines). It has been noted that an increased catalytic activity of POP/PRCP is typical in elderly individuals with comorbidities or previous cardiovascular events, but not in younger people. Thus, the adverse reactions to COVID-19 vaccination associated with Ang II accumulation are generally more common in younger and healthy subjects. Understanding the relationships between different mechanisms of Ang II cleavage and accumulation offers the opportunity to close the pathophysiological loop between the risk of progression to severe forms of COVID-19 and the potential adverse events of vaccination.
Collapse
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy.
| | - Gianpaolo Reboldi
- Department of Medicine, and Centro di Ricerca Clinica e Traslazionale (CERICLET), University of Perugia, Perugia, Italy
| | - Monica Trapasso
- Dipartimento di Igiene e Prevenzione Sanitaria, ATS Insubria, PSAL, Sede Territoriale di Varese, Varese, Italy
| | - Martina Zappa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Antonio Spanevello
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy
| | - Paolo Verdecchia
- Division of Cardiology, Hospital S. Maria Della Misericordia, Perugia, Italy; Fondazione Umbra Cuore e Ipertensione-ONLUS, Perugia, Italy
| |
Collapse
|
4
|
Shahzamani K, Mahmoudian F, Ahangarzadeh S, Ranjbar MM, Beikmohammadi L, Bahrami S, Mohammadi E, Esfandyari S, Alibakhshi A, Javanmard SH. Vaccine design and delivery approaches for COVID-19. Int Immunopharmacol 2021; 100:108086. [PMID: 34454291 PMCID: PMC8380485 DOI: 10.1016/j.intimp.2021.108086] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022]
Abstract
COVID-19 is still a deadly disease that remains yet a major challenge for humans. In recent times, many large pharmaceutical and non-pharmaceutical companies have invested a lot of time and cost in fighting this disease. In this regard, today's scientific knowledge shows that designing and producing an effective vaccine is the best possible way to diminish the disease burden and dissemination or even eradicate the disease. Due to the urgent need, many vaccines are now available earlier than scheduled. New technologies have also helped to produce much more effective vaccines, although the potential side effects must be taken into account. Thus, in this review, the types of vaccines and vaccine designs made against COVID-19, the vaccination programs, as well as the delivery methods and molecules that have been used to deliver some vaccines that need a carrier will be described.
Collapse
Affiliation(s)
- Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (lGHRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Mahmoudian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Samira Bahrami
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elmira Mohammadi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Core Research Facilities, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Esfandyari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Angeli F, Zappa M, Reboldi G, Trapasso M, Cavallini C, Spanevello A, Verdecchia P. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection: One year later. Eur J Intern Med 2021; 93:28-34. [PMID: 34588140 PMCID: PMC8450306 DOI: 10.1016/j.ejim.2021.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS Tradate, Italy
| | - Martina Zappa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Gianpaolo Reboldi
- Department of Medicine, and Centro di Ricerca Clinica e Traslazionale (CERICLET), University of Perugia, Perugia, Italy
| | - Monica Trapasso
- Dipartimento di Igiene e Prevenzione Sanitaria, PSAL, Sede Territoriale di Varese, ATS Insubria, Varese, Italy
| | - Claudio Cavallini
- Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, Italy
| | - Antonio Spanevello
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS Tradate, Italy
| | - Paolo Verdecchia
- Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, Italy; Fondazione Umbra Cuore e Ipertensione-ONLUS, Perugia, Italy.
| |
Collapse
|
6
|
Angeli F, Spanevello A, Reboldi G, Visca D, Verdecchia P. SARS-CoV-2 vaccines: Lights and shadows. Eur J Intern Med 2021; 88:1-8. [PMID: 33966930 PMCID: PMC8084611 DOI: 10.1016/j.ejim.2021.04.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022]
Abstract
Vaccines to prevent acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection elicit an immune neutralizing response. Some concerns have been raised regarding the safety of SARS-CoV-2 vaccines, largely based on case-reports of serious thromboembolic events after vaccination. Some mechanisms have been suggested which might explain the adverse cardiovascular reactions to SARS-CoV-2 vaccines. Different vaccine platforms are currently available which include live attenuated vaccines, inactivated vaccines, recombinant protein vaccines, vector vaccines, DNA vaccines and RNA vaccines. Vaccines increase the endogenous synthesis of SARS-CoV-2 Spike proteins from a variety of cells. Once synthetized, the Spike proteins assembled in the cytoplasma migrate to the cell surface and protrude with a native-like conformation. These proteins are recognized by the immune system which rapidly develops an immune response. Such response appears to be quite vigorous in the presence of DNA vaccines which encode viral vectors, as well as in subjects who are immunized because of previous exposure to SARS-CoV-2. The resulting pathological features may resemble those of active coronavirus disease. The free-floating Spike proteins synthetized by cells targeted by vaccine and destroyed by the immune response circulate in the blood and systematically interact with angiotensin converting enzyme 2 (ACE2) receptors expressed by a variety of cells including platelets, thereby promoting ACE2 internalization and degradation. These reactions may ultimately lead to platelet aggregation, thrombosis and inflammation mediated by several mechanisms including platelet ACE2 receptors. Whereas Phase III vaccine trials generally excluded participants with previous immunization, vaccination of huge populations in the real life will inevitably include individuals with preexisting immunity. This might lead to excessively enhanced inflammatory and thrombotic reactions in occasional subjects. Further research is urgently needed in this area.
Collapse
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese and Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS Tradate, Varese, Italy.
| | - Antonio Spanevello
- Department of Medicine and Surgery, University of Insubria, Varese and Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS Tradate, Varese, Italy
| | - Gianpaolo Reboldi
- Department of Medicine, and Centro di Ricerca Clinica e Traslazionale (CERICLET), University of Perugia, Perugia, Italy
| | - Dina Visca
- Department of Medicine and Surgery, University of Insubria, Varese and Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS Tradate, Varese, Italy
| | - Paolo Verdecchia
- Fondazione Umbra Cuore e Ipertensione-ONLUS and Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, Italy
| |
Collapse
|
7
|
Passariello M, Gentile C, Ferrucci V, Sasso E, Vetrei C, Fusco G, Viscardi M, Brandi S, Cerino P, Zambrano N, Zollo M, De Lorenzo C. Novel human neutralizing mAbs specific for Spike-RBD of SARS-CoV-2. Sci Rep 2021; 11:11046. [PMID: 34040046 PMCID: PMC8155001 DOI: 10.1038/s41598-021-90348-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 02/04/2023] Open
Abstract
Among the therapies against the pandemic SARS-CoV-2 virus, monoclonal Antibodies (mAbs) targeting the Spike glycoprotein represent good candidates to interfere in the Spike/ACE2 interaction, preventing virus cell entry. Since anti-spike mAbs, used individually, might be unable to block the virus entry in the case of resistant mutations, we designed an innovative strategy for the isolation of multiple novel human scFvs specific for the binding domain (RBD) of Spike. By panning a large phage display antibody library on immobilized RBD, we obtained specific binders by eluting with ACE2 in order to identify those scFvs recognizing the epitope of Spike interacting with its receptor. We converted the novel scFvs into full size IgG4, differently from the previously isolated IgG1 mAbs, to avoid unwanted potential side effects of IgG1 potent effector functions on immune system. The novel antibodies specifically bind to RBD in a nanomolar range and interfere in the interaction of Spike with ACE2 receptor, either used as purified protein or when expressed on cells in its native conformation. Furthermore, some of them have neutralizing activity for virus infection in cell cultures by using two different SARS-CoV-2 isolates including the highly contagious VOC 202012/01 variant and could become useful therapeutic tools to fight against the SARS-CoV-2 virus.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Monoclonal
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- COVID-19/immunology
- COVID-19/therapy
- Cells, Cultured
- Epitopes
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Immunotherapy/methods
- Pandemics
- Protein Binding
- Protein Domains/genetics
- SARS-CoV-2/physiology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Margherita Passariello
- Ceinge - Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy
| | - Chiara Gentile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy
| | - Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy
| | - Emanuele Sasso
- Ceinge - Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Cinzia Vetrei
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici Naples, Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici Naples, Italy
| | - Sergio Brandi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici Naples, Italy
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici Naples, Italy
| | - Nicola Zambrano
- Ceinge - Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy.
| | - Massimo Zollo
- Ceinge - Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy.
| | - Claudia De Lorenzo
- Ceinge - Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy.
| |
Collapse
|
8
|
Heinz FX, Stiasny K. Profiles of current COVID-19 vaccines. Wien Klin Wochenschr 2021; 133:271-283. [PMID: 33725201 PMCID: PMC7962631 DOI: 10.1007/s00508-021-01835-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Franz X Heinz
- Center for Virology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| |
Collapse
|
9
|
Allen JD, Chawla H, Samsudin F, Zuzic L, Shivgan AT, Watanabe Y, He WT, Callaghan S, Song G, Yong P, Brouwer PJM, Song Y, Cai Y, Duyvesteyn HME, Malinauskas T, Kint J, Pino P, Wurm MJ, Frank M, Chen B, Stuart DI, Sanders RW, Andrabi R, Burton DR, Li S, Bond PJ, Crispin M. Site-specific steric control of SARS-CoV-2 spike glycosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.08.433764. [PMID: 33758835 PMCID: PMC7986994 DOI: 10.1101/2021.03.08.433764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity between the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against infectious virus S protein. We find patterns which are conserved across all samples and this can be associated with site-specific stalling of glycan maturation which act as a highly sensitive reporter of protein structure. Molecular dynamics (MD) simulations of a fully glycosylated spike support s a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.
Collapse
|