1
|
Safra M, Tamari Z, Polak P, Shiber S, Matan M, Karameh H, Helviz Y, Levy-Barda A, Yahalom V, Peretz A, Ben-Chetrit E, Brenner B, Tuller T, Gal-Tanamy M, Yaari G. Altered somatic hypermutation patterns in COVID-19 patients classifies disease severity. Front Immunol 2023; 14:1031914. [PMID: 37153628 PMCID: PMC10154551 DOI: 10.3389/fimmu.2023.1031914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction The success of the human body in fighting SARS-CoV2 infection relies on lymphocytes and their antigen receptors. Identifying and characterizing clinically relevant receptors is of utmost importance. Methods We report here the application of a machine learning approach, utilizing B cell receptor repertoire sequencing data from severely and mildly infected individuals with SARS-CoV2 compared with uninfected controls. Results In contrast to previous studies, our approach successfully stratifies non-infected from infected individuals, as well as disease level of severity. The features that drive this classification are based on somatic hypermutation patterns, and point to alterations in the somatic hypermutation process in COVID-19 patients. Discussion These features may be used to build and adapt therapeutic strategies to COVID-19, in particular to quantitatively assess potential diagnostic and therapeutic antibodies. These results constitute a proof of concept for future epidemiological challenges.
Collapse
Affiliation(s)
- Modi Safra
- Bio-engineering, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Zvi Tamari
- Bio-engineering, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Pazit Polak
- Bio-engineering, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Shachaf Shiber
- Emergency Department, Rabin Medical Center-Belinson Campus, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Matan
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Hani Karameh
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - Yigal Helviz
- Intensive Care Unit, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - Adva Levy-Barda
- Biobank, Department of Pathology, Rabin Medical Center-Belinson Campus, Petah Tikva, Israel
| | - Vered Yahalom
- Blood Services and Apheresis Institute, Rabin Medical Center, Petah Tikva, Israel
| | - Avi Peretz
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Eli Ben-Chetrit
- Infectious Diseases Unit, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - Baruch Brenner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Oncology, Rabin Medical Center-Belinson Campus, Petah Tikva, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering and The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Gur Yaari
- Bio-engineering, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
2
|
Ford ES, Mayer-Blackwell K, Jing L, Sholukh AM, St Germain R, Bossard EL, Xie H, Pulliam TH, Jani S, Selke S, Burrow CJ, McClurkan CL, Wald A, Holbrook MR, Eaton B, Eudy E, Murphy M, Postnikova E, Robins HS, Elyanow R, Gittelman RM, Ecsedi M, Wilcox E, Chapuis AG, Fiore-Gartland A, Koelle DM. CD8 + T cell clonotypes from prior SARS-CoV-2 infection predominate during the cellular immune response to mRNA vaccination. RESEARCH SQUARE 2022:rs.3.rs-2146712. [PMID: 36263073 PMCID: PMC9580387 DOI: 10.21203/rs.3.rs-2146712/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Almost three years into the SARS-CoV-2 pandemic, hybrid immunity is highly prevalent worldwide and more protective than vaccination or prior infection alone. Given emerging resistance of variant strains to neutralizing antibodies (nAb), it is likely that T cells contribute to this protection. To understand how sequential SARS-CoV-2 infection and mRNA-vectored SARS-CoV-2 spike (S) vaccines affect T cell clonotype-level expansion kinetics, we identified and cross-referenced TCR sequences from thousands of S-reactive single cells against deeply sequenced peripheral blood TCR repertoires longitudinally collected from persons during COVID-19 convalescence through booster vaccination. Successive vaccinations recalled memory T cells and elicited antigen-specific T cell clonotypes not detected after infection. Vaccine-related recruitment of novel clonotypes and the expansion of S-specific clones were most strongly observed for CD8+ T cells. Severe COVID-19 illness was associated with a more diverse CD4+ T cell response to SARS-CoV-2 both prior to and after mRNA vaccination, suggesting imprinting of CD4+ T cells by severe infection. TCR sequence similarity search algorithms revealed myriad public TCR clusters correlating with human leukocyte antigen (HLA) alleles. Selected TCRs from distinct clusters functionally recognized S in the predicted HLA context, with fine viral peptide requirements differing between TCRs. Most subjects tested had S-specific T cells in the nasal mucosa after a 3rd mRNA vaccine dose. The blood and nasal T cell responses to vaccination revealed by clonal tracking were more heterogeneous than nAb boosts. Analysis of bulk and single cell TCR sequences reveals T cell kinetics and diversity at the clonotype level, without requiring prior knowledge of T cell epitopes or HLA restriction, providing a roadmap for rapid assessment of T cell responses to emerging pathogens.
Collapse
|
3
|
Jing L, Wu X, Krist MP, Hsiang TY, Campbell VL, McClurkan CL, Favors SM, Hemingway LA, Godornes C, Tong DQ, Selke S, LeClair AC, Pyo CW, Geraghty DE, Laing KJ, Wald A, Gale M, Koelle DM. T cell response to intact SARS-CoV-2 includes coronavirus cross-reactive and variant-specific components. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.23.22269497. [PMID: 35118477 PMCID: PMC8811910 DOI: 10.1101/2022.01.23.22269497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2 provokes a brisk T cell response. Peptide-based studies exclude antigen processing and presentation biology and may influence T cell detection studies. To focus on responses to whole virus and complex antigens, we used intact SARS-CoV-2 and full-length proteins with DC to activate CD8 and CD4 T cells from convalescent persons. T cell receptor (TCR) sequencing showed partial repertoire preservation after expansion. Resultant CD8 T cells recognize SARS-CoV-2-infected respiratory cells, and CD4 T cells detect inactivated whole viral antigen. Specificity scans with proteome-covering protein/peptide arrays show that CD8 T cells are oligospecific per subject and that CD4 T cell breadth is higher. Some CD4 T cell lines enriched using SARS-CoV-2 cross-recognize whole seasonal coronavirus (sCoV) antigens, with protein, peptide, and HLA restriction validation. Conversely, recognition of some epitopes is eliminated for SARS-CoV-2 variants, including spike (S) epitopes in the alpha, beta, gamma, and delta variant lineages.
Collapse
|
4
|
Coyle PK, Gocke A, Vignos M, Newsome SD. Vaccine Considerations for Multiple Sclerosis in the COVID-19 Era. Adv Ther 2021; 38:3550-3588. [PMID: 34075554 PMCID: PMC8169434 DOI: 10.1007/s12325-021-01761-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
People with multiple sclerosis (MS) are at risk for infections that can result in amplification of baseline symptoms and possibly trigger clinical relapses. Vaccination can prevent infection through the activation of humoral and cellular immune responses. This is particularly pertinent in the era of emerging novel vaccines against severe acute respiratory syndrome coronavirus 2, the virus that causes coronavirus disease 2019 (COVID-19). MS disease-modifying therapies (DMTs), which affect the immune system, may impact immune responses to COVID-19 vaccines in people with MS. The objective of this article is to provide information on immune system responses to vaccinations and review previous studies of vaccine responses in people with MS to support the safety and importance of receiving currently available and emerging COVID-19 vaccines. Immunological studies have shown that coordinated interactions between T and B lymphocytes of the adaptive immune system are key to successful generation of immunological memory and production of neutralizing antibodies following recognition of vaccine antigens by innate immune cells. CD4+ T cells are essential to facilitate CD8+ T cell and B cell activation, while B cells drive and sustain T cell memory. Data suggest that some classes of DMT, including type 1 interferons and glatiramer acetate, may not significantly impair the response to vaccination. DMTs-such as sphingosine-1-phosphate receptor modulators, which sequester lymphocytes from circulation; alemtuzumab; and anti-CD20 therapies, which rely on depleting populations of immune cells-have been shown to attenuate responses to conventional vaccines. Currently, three COVID-19 vaccines have been granted emergency use authorization in the USA on the basis of promising interim findings of ongoing trials. Because analyses of these vaccines in people with MS are not available, decisions regarding COVID-19 vaccination and DMT choice should be informed by data and expert consensus, and personalized with considerations for disease burden, risk of infection, and other factors.
Collapse
Affiliation(s)
- Patricia K Coyle
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA
| | | | - Megan Vignos
- Biogen, Cambridge, MA, USA.
- US Medical MS Franchise and Interferons, Biogen, 133 Boston Post Rd, Weston, MA, 20493, USA.
| | - Scott D Newsome
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|