1
|
Diallo K, Missa KF, Tuo JK, Amoikon TLS, Bla BK, Bonfoh B. Narrative review of application of metagenomic approaches to study the link between oropharyngeal microbiome and infectious diseases. Front Microbiol 2023; 14:1292526. [PMID: 38163063 PMCID: PMC10755466 DOI: 10.3389/fmicb.2023.1292526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Context Viral and bacterial infections are major causes of morbidity and mortality worldwide. The oropharyngeal microbiome could play an important role in preventing invasion of viral and bacterial pathogens by modulating its content and the host's innate immune response. Next Generation Sequencing (NGS) technologies now enable in-depth study of the genomes of microbial communities. The objective of this review is to highlight how metagenomics has contributed to establish links between changes in the oropharyngeal microbiome and emergence of bacterial and viral diseases. Method Two search engines, PubMed and Google scholar were used with filters to focus searches on peer-reviewed original articles published between January 2010 and September 2022. Different keywords were used and only articles with metagenomic approaches were included. Results This review shows that there were few articles studying the link between oropharyngeal microbiome and infectious diseases. Studies on viruses using metagenomic techniques have been growing exponentially in recent years due to the Covid-19 pandemic. This review shows that most studies still focus on the basic identification of microorganisms in different disease states and multiple microorganisms (Alloprevotella, Prevotella, Bacteroides, Haemophilus, Streptococcus, Klebsiella sp., Acinetobacter sp…), have been associated with development of infections such as childhood wheezing, influenza, Covid-19, pneumonia, meningitis, and tuberculosis. Conclusion The oropharyngeal microbiome, despite its importance, remains poorly studied. A limited number of articles were identified but this number has increased exponentially since 2020 due to research conducted on Covid-19. These studies have shown that metagenomic has contributed to the unbiased identification of bacteria that could be used as biomarkers of various diseases and that further research is now needed to capitalize on those findings for human health benefit.
Collapse
Affiliation(s)
- Kanny Diallo
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Kouassi Firmin Missa
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
- Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d’Ivoire
| | - Jeremie Kolotioloman Tuo
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
- Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), Yamoussoukro, Côte d’Ivoire
| | | | - Brice K. Bla
- Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d’Ivoire
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
| |
Collapse
|
2
|
Mehta P, Chattopadhyay P, Ravi V, Tarai B, Budhiraja S, Pandey R. SARS-CoV-2 infection severity and mortality is modulated by repeat-mediated regulation of alternative splicing. Microbiol Spectr 2023; 11:e0135123. [PMID: 37604131 PMCID: PMC10580830 DOI: 10.1128/spectrum.01351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023] Open
Abstract
Like single-stranded RNA viruses, SARS-CoV-2 hijacks the host transcriptional machinery for its own replication. Numerous traditional differential gene expression-based investigations have examined the diverse clinical symptoms caused by SARS-CoV-2 infection. The virus, on the other hand, also affects the host splicing machinery, causing host transcriptional dysregulation, which can lead to diverse clinical outcomes. Hence, in this study, we performed host transcriptome sequencing of 125 hospital-admitted COVID-19 patients to understand the transcriptomic differences between the severity sub-phenotypes of mild, moderate, severe, and mortality. We performed transcript-level differential expression analysis, investigated differential isoform usage, looked at the splicing patterns within the differentially expressed transcripts (DET), and elucidated the possible genome regulatory features. Our DTE analysis showed evidence of diminished transcript length and diversity as well as altered promoter site usage in the differentially expressed protein-coding transcripts in the COVID-19 mortality patients. We also investigated the potential mechanisms driving the alternate splicing and discovered a compelling differential enrichment of repeats in the promoter region and a specific enrichment of SINE (Alu) near the splicing sites of differentially expressed transcripts. These findings suggested a repeat-mediated plausible regulation of alternative splicing as a potential modulator of COVID-19 disease severity. In this work, we emphasize the role of scarcely elucidated functional role of alternative splicing in influencing COVID-19 disease severity sub-phenotypes, clinical outcomes, and its putative mechanism. IMPORTANCE The wide range of clinical symptoms reported during the COVID-19 pandemic inherently highlights the numerous factors that influence the progression and prognosis of SARS-CoV-2 infection. While several studies have investigated the host response and discovered immunological dysregulation during severe infection, most of them have the common theme of focusing only up to the gene level. Viruses, especially RNA viruses, are renowned for hijacking the host splicing machinery for their own proliferation, which inadvertently puts pressure on the host transcriptome, exposing another side of the host response to the pathogen challenge. Therefore, in this study, we examine host response at the transcript-level to discover a transcriptional difference that culminates in differential gene-level expression. Importantly, this study highlights diminished transcript diversity and possible regulation of transcription by differentially abundant repeat elements near the promoter region and splicing sites in COVID-19 mortality patients, which together with differentially expressed isoforms hold the potential to elaborate disease severity and outcome.
Collapse
Affiliation(s)
- Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Varsha Ravi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Liu TFD, Philippou E, Kolokotroni O, Siakallis G, Rahima K, Constantinou C. Gut and airway microbiota and their role in COVID-19 infection and pathogenesis: a scoping review. Infection 2021; 50:815-847. [PMID: 34671922 PMCID: PMC8528184 DOI: 10.1007/s15010-021-01715-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
Background The SARS-CoV-2 virus is responsible for the COVID-19 pandemic. Researchers have been studying the pathogenesis of the virus with the aim to improve our current diagnosis and management strategies. The microbiota have been proposed to play a key role in the pathogenesis of the disease. Purpose To investigate and report on the current available evidence on any associations between the gut and/or airway microbiota and the pathogenesis of COVID-19. Methods Using a predefined protocol in compliance with the PRISMA guidelines, a search was conducted on MEDLINE, Science Direct, DOAJ and Cochrane databases on primary research studies assessing the association between COVID-19 infection and the gut and/or airway microbiota. Results Twenty-two studies were included in the current review; nineteen studies concluded an association between the gut and/or airway dysbiosis and SARS-CoV-2, while 3 studies failed to observe a significant association between the airway microbiome and SARS-CoV-2 infection. Specifically, most studies reported a decrease in microbial diversity and therefore development of intestinal dysbiosis in COVID-19-positive patients compared to healthy controls as well as a possible association between increased intestinal dysbiosis and disease severity. Conclusion During infection with SARS-CoV-2, there are significant changes in the composition of the gut and airway microbiota. Furthermore, the gut microbiota may have a more important role than the airway microbiota in COVID-19 infection. In the future, studies should be more carefully designed to derive more conclusive evidence on the role of the gut and airway microbiota following infection with SARS-CoV-2 which will lead to the formulation of better management strategies in combating COVID-19. Supplementary Information The online version contains supplementary material available at 10.1007/s15010-021-01715-5.
Collapse
Affiliation(s)
- Tik Fung Dave Liu
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, 1700, Nicosia, Cyprus
| | - Elena Philippou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
- Department of Nutrition and Dietetics, King's College London, London, UK
| | - Ourania Kolokotroni
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, 1700, Nicosia, Cyprus
| | - Georgios Siakallis
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, 1700, Nicosia, Cyprus
| | - Kenan Rahima
- Queen Elizabeth The Queen Mother Hospital, Margate, UK
| | - Constantina Constantinou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, 1700, Nicosia, Cyprus.
| |
Collapse
|
4
|
Nesbitt H, Burke C, Haghi M. Manipulation of the Upper Respiratory Microbiota to Reduce Incidence and Severity of Upper Respiratory Viral Infections: A Literature Review. Front Microbiol 2021; 12:713703. [PMID: 34512591 PMCID: PMC8432964 DOI: 10.3389/fmicb.2021.713703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
There is a high incidence of upper respiratory viral infections in the human population, with infection severity being unique to each individual. Upper respiratory viruses have been associated previously with secondary bacterial infection, however, several cross-sectional studies analyzed in the literature indicate that an inverse relationship can also occur. Pathobiont abundance and/or bacterial dysbiosis can impair epithelial integrity and predispose an individual to viral infection. In this review we describe common commensal microorganisms that have the capacity to reduce the abundance of pathobionts and maintain bacterial symbiosis in the upper respiratory tract and discuss the potential and limitations of localized probiotic formulations of commensal bacteria to reduce the incidence and severity of viral infections.
Collapse
Affiliation(s)
- Henry Nesbitt
- Discipline of Pharmacy, Graduate School Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Catherine Burke
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Mehra Haghi
- Discipline of Pharmacy, Graduate School Health, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Abstract
The current frequency of COVID-19 in a pandemic era ensures that co-infections with a variety of co-pathogens will occur. Generally, there is a low rate of bonafide co-infections in early COVID-19 pulmonary infection as currently appreciated. Reports of high co-infection rates must be tempered by limitations in current diagnostic methods since amplification technologies do not necessarily confirm live pathogen and may be subject to considerable laboratory variation. Some laboratory methods may not exclude commensal microbes. Concurrent serodiagnoses have long been of concern for accuracy in these contexts. Presumed virus co-infections are not specific to COVID-19. The association of influenza viruses and SARS-CoV-2 in co-infection has been considerably variable during influenza season. Other respiratory virus co-infections have generally occurred in less than 10% of COVID-19 patients. Early COVID-19 disease is more commonly associated with bacterial co-pathogens that typically represent usual respiratory micro-organisms. Late infections, especially among severe clinical presentations, are more likely to be associated with nosocomial or opportunistic pathogens given the influence of treatments that can include antibiotics, antivirals, immunomodulating agents, blood products, immunotherapy, steroids, and invasive procedures. As anticipated, hospital care carries risk for multi-resistant bacteria. Overall, co-pathogen identification is linked with longer hospital stay, greater patient complexity, and adverse outcomes. As for other viral infections, a general reduction in the use of empiric antibiotic treatment is warranted. Further insight into co-infections with COVID-19 will contribute overall to effective antimicrobial therapies and disease control.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, Canada.,Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Vancouver, B.C. V6H3V4 Canada
| |
Collapse
|