1
|
Tan VY, Timpson NJ. The UK Biobank: A Shining Example of Genome-Wide Association Study Science with the Power to Detect the Murky Complications of Real-World Epidemiology. Annu Rev Genomics Hum Genet 2022; 23:569-589. [PMID: 35508184 DOI: 10.1146/annurev-genom-121321-093606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome-wide association studies (GWASs) have successfully identified thousands of genetic variants that are reliably associated with human traits. Although GWASs are restricted to certain variant frequencies, they have improved our understanding of the genetic architecture of complex traits and diseases. The UK Biobank (UKBB) has brought substantial analytical opportunity and performance to association studies. The dramatic expansion of many GWAS sample sizes afforded by the inclusion of UKBB data has improved the power of estimation of effect sizes but, critically, has done so in a context where phenotypic depth and precision enable outcome dissection and the application of epidemiological approaches. However, at the same time, the availability of such a large, well-curated, and deeply measured population-based collection has the capacity to increase our exposure to the many complications and inferential complexities associated with GWASs and other analyses. In this review, we discuss the impact that UKBB has had in the GWAS era, some of the opportunities that it brings, and exemplar challenges that illustrate the reality of using data from this world-leading resource.
Collapse
Affiliation(s)
- Vanessa Y Tan
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom;
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Nicholas J Timpson
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom;
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Host genetic basis of COVID-19: from methodologies to genes. Eur J Hum Genet 2022; 30:899-907. [PMID: 35618891 PMCID: PMC9135575 DOI: 10.1038/s41431-022-01121-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 01/03/2023] Open
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is having a massive impact on public health, societies, and economies worldwide. Despite the ongoing vaccination program, treating COVID-19 remains a high priority; thus, a better understanding of the disease is urgently needed. Initially, susceptibility was associated with age, sex, and other prior existing comorbidities. However, as these conditions alone could not explain the highly variable clinical manifestations of SARS-CoV-2 infection, the attention was shifted toward the identification of the genetic basis of COVID-19. Thanks to international collaborations like The COVID-19 Host Genetics Initiative, it became possible the elucidation of numerous genetic markers that are not only likely to help in explaining the varied clinical outcomes of COVID-19 patients but can also guide the development of novel diagnostics and therapeutics. Within this framework, this review delineates GWAS and Burden test as traditional methodologies employed so far for the discovery of the human genetic basis of COVID-19, with particular attention to recently emerged predictive models such as the post-Mendelian model. A summary table with the main genome-wide significant genomic loci is provided. Besides, various common and rare variants identified in genes like TLR7, CFTR, ACE2, TMPRSS2, TLR3, and SELP are further described in detail to illustrate their association with disease severity.
Collapse
|
3
|
Moll T, Odon V, Harvey C, Collins MO, Peden A, Franklin J, Graves E, Marshall JN, Souza CDS, Zhang S, Azzouz M, Gordon D, Krogan N, Ferraiuolo L, Snyder MP, Shaw PJ, Rehwinkel J, Cooper-Knock J. Low expression of EXOSC2 protects against clinical COVID-19 and impedes SARS-CoV-2 replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.06.483172. [PMID: 35291294 PMCID: PMC8923113 DOI: 10.1101/2022.03.06.483172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New therapeutic targets are a valuable resource in the struggle to reduce the morbidity and mortality associated with the COVID-19 pandemic, caused by the SARS-CoV-2 virus. Genome-wide association studies (GWAS) have identified risk loci, but some loci are associated with co-morbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins; EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. Lung-specific eQTLs were identified from GTEx (v7) for each of the 332 host proteins. Aggregating COVID-19 GWAS statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19 which survived stringent multiple testing correction. EXOSC2 is a component of the RNA exosome and indeed, LC-MS/MS analysis of protein pulldowns demonstrated an interaction between the SARS-CoV-2 RNA polymerase and the majority of human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression, impeded SARS-CoV-2 replication and upregulated oligoadenylate synthase ( OAS) genes, which have been linked to a successful immune response against SARS-CoV-2. Reduced EXOSC2 expression did not reduce cellular viability. OAS gene expression changes occurred independent of infection and in the absence of significant upregulation of other interferon-stimulated genes (ISGs). Targeted depletion or functional inhibition of EXOSC2 may be a safe and effective strategy to protect at-risk individuals against clinical COVID-19.
Collapse
Affiliation(s)
- Tobias Moll
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Valerie Odon
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Calum Harvey
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Andrew Peden
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - John Franklin
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily Graves
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Jack N.G. Marshall
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - David Gordon
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|