1
|
Vu Manh TP, Gouin C, De Wolf J, Jouneau L, Pascale F, Bevilacqua C, Ar Gouilh M, Da Costa B, Chevalier C, Glorion M, Hannouche L, Urien C, Estephan J, Magnan A, Le Guen M, Marquant Q, Descamps D, Dalod M, Schwartz-Cornil I, Sage E. SARS-CoV2 infection in whole lung primarily targets macrophages that display subset-specific responses. Cell Mol Life Sci 2024; 81:351. [PMID: 39147987 PMCID: PMC11335275 DOI: 10.1007/s00018-024-05322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 08/17/2024]
Abstract
Deciphering the initial steps of SARS-CoV-2 infection, that influence COVID-19 outcomes, is challenging because animal models do not always reproduce human biological processes and in vitro systems do not recapitulate the histoarchitecture and cellular composition of respiratory tissues. To address this, we developed an innovative ex vivo model of whole human lung infection with SARS-CoV-2, leveraging a lung transplantation technique. Through single-cell RNA-seq, we identified that alveolar and monocyte-derived macrophages (AMs and MoMacs) were initial targets of the virus. Exposure of isolated lung AMs, MoMacs, classical monocytes and non-classical monocytes (ncMos) to SARS-CoV-2 variants revealed that while all subsets responded, MoMacs produced higher levels of inflammatory cytokines than AMs, and ncMos contributed the least. A Wuhan lineage appeared to be more potent than a D614G virus, in a dose-dependent manner. Amidst the ambiguity in the literature regarding the initial SARS-CoV-2 cell target, our study reveals that AMs and MoMacs are dominant primary entry points for the virus, and suggests that their responses may conduct subsequent injury, depending on their abundance, the viral strain and dose. Interfering on virus interaction with lung macrophages should be considered in prophylactic strategies.
Collapse
Affiliation(s)
- Thien-Phong Vu Manh
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13009, Marseille, France.
| | - Carla Gouin
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Julien De Wolf
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, 92150, Suresnes, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Florentina Pascale
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, 92150, Suresnes, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Meriadeg Ar Gouilh
- Department of Virology, Univ Caen Normandie, Dynamicure INSERM UMR 1311, CHU Caen, 14000, Caen, France
| | - Bruno Da Costa
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Matthieu Glorion
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, 92150, Suresnes, France
| | - Laurent Hannouche
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13009, Marseille, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Céline Urien
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Jérôme Estephan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Antoine Magnan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, 92150, Suresnes, France
| | - Morgan Le Guen
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Anesthesiology, Foch Hospital, 92150, Suresnes, France
| | - Quentin Marquant
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, 92150, Suresnes, France
- Delegation to Clinical Research and Innovation, Foch Hospital, 92150, Suresnes, France
| | - Delphyne Descamps
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13009, Marseille, France
| | | | - Edouard Sage
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, 92150, Suresnes, France
| |
Collapse
|
2
|
Marashian SM, Hashemian M, Pourabdollah M, Nasseri M, Mahmoudian S, Reinhart F, Eslaminejad A. Photobiomodulation Improves Serum Cytokine Response in Mild to Moderate COVID-19: The First Randomized, Double-Blind, Placebo Controlled, Pilot Study. Front Immunol 2022; 13:929837. [PMID: 35874678 PMCID: PMC9304695 DOI: 10.3389/fimmu.2022.929837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 01/03/2023] Open
Abstract
BackgroundBecause the major event in COVID-19 is the release of pre- and inflammatory cytokines, finding a reliable therapeutic strategy to inhibit this release, help patients manage organ damage and avoid ICU admission or severe disease progression is of paramount importance. Photobiomodulation (PBM), based on numerous studies, may help in this regard, and the present study sought to evaluate the effects of said technology on cytokine reduction.MethodsThis study was conducted in the 2nd half of 2021. The current study included 52 mild-to-moderately ill COVID-19, hospitalized patients. They were divided in two groups: a Placebo group and a PBM group, treated with PBM (620-635 nm light via 8 LEDs that provide an energy density of 45.40 J/cm2 and a power density of 0.12 W/cm2), twice daily for three days, along with classical approved treatment. 28 patients were in Placebo group and 24 in PBM group. In both groups, blood samples were taken four times in three days and serum IL-6, IL-8, IL-10, and TNF-α levels were determined.ResultsDuring the study period, in PBM group, there was a significant decrease in serum levels of IL-6 (-82.5% +/- 4, P<0.001), IL-8 (-54.4% ± 8, P<0.001), and TNF-α (-82.4% ± 8, P<0.001), although we did not detect a significant change in IL-10 during the study. The IL-6/IL-10 Ratio also improved in PBM group. The Placebo group showed no decrease or even an increase in these parameters. There were no reported complications or sequelae due to PBM therapy throughout the study.ConclusionThe major cytokines in COVID-19 pathophysiology, including IL-6, IL-8, and TNF-α, responded positively to PBM therapy and opened a new window for inhibiting and managing a cytokine storm within only 3-10 days.
Collapse
Affiliation(s)
- Seyed Mehran Marashian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihan Pourabdollah
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansour Nasseri
- Department of Immunology, School of Public Health, University of Medical Sciences, Tehran, Iran
| | - Saeed Mahmoudian
- National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Florian Reinhart
- Medical Research & Innovation Department, Medical and Biomedical Consultancy Office “Innolys”, Illkirch-Graffenstaden, France
- *Correspondence: Florian Reinhart,
| | - Alireza Eslaminejad
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Rasmi Y, Heidari N, Kübra Kırboğa K, Hatamkhani S, Tekin B, Alipour S, Naderi R, Farnamian Y, Akca I. The importance of neopterin in COVID-19: The prognostic value and relation with the disease severity. Clin Biochem 2022; 104:1-12. [PMID: 35307400 PMCID: PMC8929545 DOI: 10.1016/j.clinbiochem.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
Abstract
Coronavirus Disease 2019 [COVID-19], caused by severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], has rapidly evolved into a global health emergency. Neopterin [NPT], produced by macrophages when stimulated with interferon [IFN-]gamma, is an essential cytokine in the antiviral immune response. NPT has been used as a marker for the early assessment of disease severity in different diseases. The leading cause of NPT production is the pro-inflammatory cytokine IFN-. Macrophage activation has also been revealed to be linked with disease severity in SARS-CoV-2 patients. We demonstrate the importance of NPT in the pathogenesis of SARS-CoV-2 and suggest that targeting NPT in SARS-CoV-2 infection may be critical in the early prediction of disease progression and provision of timely management of infected individuals.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nadia Heidari
- Department of Biochemistry, School of Medicine, Gorgan University of Medical Sciences, Urmia, Iran
| | | | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Burcu Tekin
- Izmir Institute of Technology, Biotechnology Department, Izmir, Turkey
| | - Shahryar Alipour
- Department of Biochemistry and Applied Cell, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yeghaneh Farnamian
- Student Research Center, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ilknur Akca
- Mersin University, Faculty of Sciences, Department of Biotechnology, Mersin, Turkey
| |
Collapse
|
4
|
Weckbach LT, Schweizer L, Kraechan A, Bieber S, Ishikawa-Ankerhold H, Hausleiter J, Massberg S, Straub T, Klingel K, Grabmaier U, Zwiebel M, Mann M, Schulz C. Association of Complement and MAPK Activation With SARS-CoV-2-Associated Myocardial Inflammation. JAMA Cardiol 2021; 7:286-297. [PMID: 34910083 PMCID: PMC8674808 DOI: 10.1001/jamacardio.2021.5133] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Question What is the cardiac phenotype of patients with SARS-CoV-2 infection compared with viral and immune-mediated myocarditis and noninflammatory cardiomyopathy? Findings In this case series of 19 patients undergoing endomyocardial biopsies, cardiac specimens of patients with SARS-CoV-2 infection had a higher abundance of complement-associated factors and serine/threonine protein kinases, with mitogen-activated protein kinase–associated pathways having the highest abundance. Similarities in the cardiac immune signature were found among those with SARS-CoV-2 infection and viral myocarditis. Meaning In this study, the exploratory data, which characterized myocardial inflammation by deep phenotyping, have implications for the development of treatment strategies to reduce SARS-CoV-2–mediated tissue injury; these findings require confirmation in a prospective and extended cohort of patients. Importance Myocardial injury is a common feature of patients with SARS-CoV-2 infection. However, the cardiac inflammatory processes associated with SARS-CoV-2 infection are not completely understood. Objective To investigate the inflammatory cardiac phenotype associated with SARS-CoV-2 infection compared with viral myocarditis, immune-mediated myocarditis, and noninflammatory cardiomyopathy by integrating histologic, transcriptomic, and proteomic profiling. Design, Setting, and Participants This case series was a cooperative study between the Ludwig Maximilian University Hospital Munich and the Cardiopathology Referral Center at the University of Tübingen in Germany. A cohort of 19 patients with suspected myocarditis was examined; of those, 5 patients were hospitalized with SARS-CoV-2 infection between March and May 2020. Cardiac tissue specimens from those 5 patients were compared with specimens from 5 patients with immune-mediated myocarditis, 4 patients with non–SARS-CoV-2 viral myocarditis, and 5 patients with noninflammatory cardiomyopathy, collected from January to August 2019. Exposures Endomyocardial biopsy. Main Outcomes and Measures The inflammatory cardiac phenotypes were measured by immunohistologic analysis, RNA exome capture sequencing, and mass spectrometry–based proteomic analysis of endomyocardial biopsy specimens. Results Among 19 participants, the median age was 58 years (range, 37-76 years), and 15 individuals (79%) were male. Data on race and ethnicity were not collected. The abundance of CD163+ macrophages was generally higher in the cardiac tissue of patients with myocarditis, whereas lymphocyte counts were lower in the tissue of patients with SARS-CoV-2 infection vs patients with non–SARS-CoV-2 virus-associated and immune-mediated myocarditis. Among those with SARS-CoV-2 infection, components of the complement cascade, including C1q subunits (transcriptomic analysis: 2.5-fold to 3.6-fold increase; proteomic analysis: 2.0-fold to 3.4-fold increase) and serine/cysteine proteinase inhibitor clade G member 1 (transcriptomic analysis: 1.7-fold increase; proteomic analysis: 2.6-fold increase), belonged to the most commonly upregulated transcripts and differentially abundant proteins. In cardiac macrophages, the abundance of C1q was highest in SARS-CoV-2 infection. Assessment of important signaling cascades identified an upregulation of the serine/threonine mitogen-activated protein kinase pathways. Conclusions and Relevance This case series found that the cardiac immune signature varied in inflammatory conditions with different etiologic characteristics. Future studies are needed to examine the role of these immune pathways in myocardial inflammation.
Collapse
Affiliation(s)
- Ludwig T Weckbach
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany.,Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| | - Lisa Schweizer
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Planegg-Martinsried, Germany
| | - Angelina Kraechan
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Stephanie Bieber
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany
| | | | - Jörg Hausleiter
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany.,Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany.,Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Karin Klingel
- Cardiopathology Department, Institute for Pathology and Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Ulrich Grabmaier
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany.,Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| | - Maximilian Zwiebel
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Planegg-Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Planegg-Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany.,Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| | | |
Collapse
|
5
|
Abstract
Long-read sequencing technologies have now reached a level of accuracy and yield that allows their application to variant detection at a scale of tens to thousands of samples. Concomitant with the development of new computational tools, the first population-scale studies involving long-read sequencing have emerged over the past 2 years and, given the continuous advancement of the field, many more are likely to follow. In this Review, we survey recent developments in population-scale long-read sequencing, highlight potential challenges of a scaled-up approach and provide guidance regarding experimental design. We provide an overview of current long-read sequencing platforms, variant calling methodologies and approaches for de novo assemblies and reference-based mapping approaches. Furthermore, we summarize strategies for variant validation, genotyping and predicting functional impact and emphasize challenges remaining in achieving long-read sequencing at a population scale.
Collapse
Affiliation(s)
- Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|