1
|
Fang Y, Sun P, Xie X, Du M, Du F, Ye J, Kalveram BK, Plante JA, Plante KS, Li B, Bai XC, Shi PY, Chen ZJ. An antibody that neutralizes SARS-CoV-1 and SARS-CoV-2 by binding to a conserved spike epitope outside the receptor binding motif. Sci Immunol 2022; 7:eabp9962. [PMID: 35926067 PMCID: PMC9407945 DOI: 10.1126/sciimmunol.abp9962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/01/2022] [Indexed: 01/01/2023]
Abstract
The rapid evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), such as the Omicron variants that are highly transmissible and immune evasive, underscores the need to develop therapeutic antibodies with broad neutralizing activities. Here, we used the LIBRA-seq technology, which identified SARS-CoV-2-specific B cells via DNA barcoding and subsequently single-cell sequenced BCRs, to identify an antibody, SW186, which could neutralize major SARS-CoV-2 variants of concern, including Beta, Delta, and Omicron, as well as SARS-CoV-1. The cryo-EM structure of SW186 bound to the receptor binding domain (RBD) of the viral spike protein showed that SW186 interacted with an epitope of the RBD that is not at the interface of its binding to the ACE2 receptor but is highly conserved among SARS coronaviruses. This epitope encompasses a glycosylation site (N343) of the viral spike protein. Administration of SW186 in mice after they were infected with SARS-CoV-2 Alpha, Beta, or Delta variants reduced the viral loads in the lung. These results demonstrated that SW186 neutralizes diverse SARS coronaviruses by binding to a conserved RBD epitope, which could serve as a target for further antibody development.
Collapse
Affiliation(s)
- Yan Fang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Pengcheng Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0144, USA
| | - Mingjian Du
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Fenghe Du
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Birte K. Kalveram
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0144, USA
| | - Jessica A. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Bo Li
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao-chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0144, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zhijian J. Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| |
Collapse
|
2
|
Zou J, Xie X, Liu M, Shi PY, Ren P. Neutralization Titers in Vaccinated Patients with SARS-CoV-2 Delta Breakthrough Infections. mBio 2022; 13:e0199622. [PMID: 35924850 PMCID: PMC9426493 DOI: 10.1128/mbio.01996-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 01/11/2023] Open
Abstract
The continuous emergence of SARS-CoV-2 variants with increased transmission and immune evasion has caused breakthrough infections in the vaccinated population. It is important to determine the threshold of neutralizing antibody titers (NT50) that permit breakthrough infections in humans. Here, we tested the neutralization titers of vaccinated patients who contracted Delta variant. All 64 patients with Delta breakthrough infections exhibited NT50 of less than 70. When the breakthrough sera were tested against USA-WA1/2020 (a strain isolated in late January 2020), 82.8%, 15.6%, and 1.6% of them had the NT50 ranges of <20, 20 to 50, and 50 to 69, respectively. When the same breakthrough sera were tested against Delta-spike SARS-CoV-2, 68.7%, 26.6%, and 4.7% of them had the NT50 ranges of <20, 20 to 50, and 50 to 69, respectively. Overall, the results suggest NT50 of 70 as a potential neutralizing threshold required to prevent Delta breakthrough infections. These clinical laboratory results have implications in vaccine strategy and public health policy. IMPORTANCE Given that neutralizing antibodies play a key role in protection of SARS-CoV-2 infection, it is important to define the neutralization levels in vaccinated individuals when they contracted breakthrough infections. In this study, we analyzed the neutralization levels from 64 vaccinated patients on days 0 to 5 before they tested positive for Delta breakthrough infections. The neutralization titers in these vaccinated individuals were all lower than 70 when they contracted breakthrough infections. The results suggest a neutralization titer of 70 as the potential threshold required to prevent breakthrough infections of Delta variant.
Collapse
Affiliation(s)
- Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston Texas, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston Texas, USA
| | - Mingru Liu
- Department of Pathology, University of Texas Medical Branch, Galveston Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston Texas, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ping Ren
- Department of Pathology, University of Texas Medical Branch, Galveston Texas, USA
| |
Collapse
|
3
|
Port JR, Yinda CK, Riopelle JC, Weishampel ZA, Saturday TA, Avanzato VA, Schulz JE, Holbrook MG, Barbian K, Perry-Gottschalk R, Haddock E, Martens C, Shaia CI, Lambe T, Gilbert SC, van Doremalen N, Munster VJ. Infection- or vaccine mediated immunity reduces SARS-CoV-2 transmission, but increases competitiveness of Omicron in hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.07.29.502072. [PMID: 35982658 PMCID: PMC9387121 DOI: 10.1101/2022.07.29.502072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Omicron has demonstrated a competitive advantage over Delta in vaccinated people. To understand this, we designed a transmission chain experiment using naïve, intranasally (IN) or intramuscularly (IM) vaccinated, and previously infected (PI) hamsters. Vaccination and previous infection protected animals from disease and virus replication after Delta and Omicron dual challenge. A gradient in transmission blockage was observed: IM vaccination displayed moderate transmission blockage potential over three airborne chains (approx. 70%), whereas, IN vaccination and PI blocked airborne transmission in >90%. In naïve hamsters, Delta completely outcompeted Omicron within and between hosts after dual infection in onward transmission. Although Delta also outcompeted Omicron in the vaccinated and PI transmission chains, an increase in Omicron competitiveness was observed in these groups. This correlated with the increase in the strength of the humoral response against Delta, with the strongest response seen in PI animals. These data highlight the continuous need to assess the emergence and spread of novel variants in populations with pre-existing immunity and address the additional evolutionary pressure this may exert on the virus.
Collapse
Affiliation(s)
- Julia R. Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jade C. Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Zachary A. Weishampel
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Taylor A. Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Victoria A. Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G. Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kent Barbian
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rose Perry-Gottschalk
- Rocky Mountain Visual and Medical Arts Unit, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl. I. Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah C. Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
4
|
Cross-neutralization of Omicron BA.1 against BA.2 and BA.3 SARS-CoV-2. Nat Commun 2022; 13:2956. [PMID: 35618703 PMCID: PMC9135681 DOI: 10.1038/s41467-022-30580-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/13/2023] Open
Abstract
The Omicron SARS-CoV-2 has several distinct sublineages, among which sublineage BA.1 is responsible for the initial Omicron surge and is now being replaced by BA.2 worldwide, whereas BA.3 is currently at a low frequency. The ongoing BA.1-to-BA.2 replacement underscores the importance to understand the cross-neutralization among the three Omicron sublineages. Here we test the neutralization of BA.1-infected human sera against BA.2, BA.3, and USA/WA1-2020 (a strain isolated in late January 2020). The BA.1-infected sera neutralize BA.1, BA.2, BA.3, and USA/WA1-2020 SARS-CoV-2s with geometric mean titers (GMTs) of 445, 107, 102, and 16, respectively. Thus, the neutralizing GMTs against heterologous BA.2, BA.3, and USA/WA1-2020 are 4.2-, 4.4-, and 28.4-fold lower than the GMT against homologous BA.1, respectively. These findings have implications in COVID-19 vaccine strategy.
Collapse
|