1
|
Tatham L, Kipar A, Sharp J, Kijak E, Herriott J, Neary M, Box H, Gallardo Toledo E, Valentijn A, Cox H, Pertinez H, Curley P, Arshad U, Rajoli RKR, Rannard S, Stewart JP, Owen A. Ronapreve (REGN-CoV; casirivimab and imdevimab) reduces the viral burden and alters the pulmonary response to the SARS-CoV-2 Delta variant (B.1.617.2) in K18-hACE2 mice using an experimental design reflective of a treatment use case. Microbiol Spectr 2024; 12:e0391623. [PMID: 39012120 PMCID: PMC11302283 DOI: 10.1128/spectrum.03916-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
With some exceptions, global policymakers have recommended against the use of existing monoclonal antibodies in COVID-19 due to loss of neutralization of newer variants. The purpose of this study was to investigate the impact of Ronapreve on compartmental viral replication using paradigms for susceptible and insusceptible variants. Virological efficacy and impact on pathogenicity was assessed in K18-hACE2 mice inoculated with either the Delta or BA.1 Omicron variants. Ronapreve reduced sub-genomic viral RNA levels in lung and nasal turbinate, 4 and 6 days post-infection, for the Delta variant but not the Omicron variant. It also blocked brain infection, which is seen with high frequency in K18-hACE2 mice after Delta variant infection. At day 6, the inflammatory response to lung infection with the Delta variant was altered to a multifocal granulomatous inflammation in which the virus appeared to be confined. The current study provides evidence of an altered tissue response to SARS-CoV-2 after treatment with a monoclonal antibody combination that retains neutralization activity. These data demonstrate that experimental designs that reflect treatment use cases are achievable in animal models for monoclonal antibodies. Extreme caution should be taken when interpreting prophylactic experimental designs that may not be representative of treatment.IMPORTANCEFollowing the emergence of the SARS-CoV-2 Omicron variant, the WHO recommended against the use of Ronapreve in its COVID-19 treatment guidelines due to a lack of efficacy based on current pharmacokinetic-pharmacodynamic understanding. However, the continued use of Ronapreve, specifically in vulnerable patients, was advocated by some based on in vitro neutralization data. Here, the virological efficacy of Ronapreve was demonstrated in both the lung and brain compartments using Delta as a paradigm for a susceptible variant. Conversely, a lack of virological efficacy was demonstrated for the Omicron variant. Comparable concentrations of both monoclonal antibodies were observed in the plasma of Delta- and Omicron-infected mice. This study made use of a reliable murine model for SARS-CoV-2 infection, an experimental design reflective of treatment, and demonstrated the utility of this approach when assessing the effectiveness of monoclonal antibodies.
Collapse
MESH Headings
- Animals
- Mice
- SARS-CoV-2/drug effects
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/physiology
- COVID-19/virology
- COVID-19/immunology
- Lung/virology
- Lung/pathology
- COVID-19 Drug Treatment
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Humans
- Disease Models, Animal
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Monoclonal/therapeutic use
- Viral Load/drug effects
- Angiotensin-Converting Enzyme 2/metabolism
- Angiotensin-Converting Enzyme 2/genetics
- Virus Replication/drug effects
- Female
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
Collapse
Affiliation(s)
- Lee Tatham
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jo Sharp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Edyta Kijak
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Joanne Herriott
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Megan Neary
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Helen Box
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Eduardo Gallardo Toledo
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Anthony Valentijn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Helen Cox
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Henry Pertinez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Paul Curley
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Usman Arshad
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Rajith Kumar Reddy Rajoli
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Steve Rannard
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Deo R, Choudhary MC, Moser C, Ritz J, Daar ES, Wohl DA, Greninger AL, Eron JJ, Currier JS, Hughes MD, Smith DM, Chew KW, Li JZ. Viral and Symptom Rebound in Untreated COVID-19 Infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.08.01.22278278. [PMID: 35982660 PMCID: PMC9387151 DOI: 10.1101/2022.08.01.22278278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background There are reports of viral RNA and symptom rebound in people with COVID-19 treated with nirmatrelvir/ritonavir. Since the natural course of viral and symptom trajectories of COVID-19 has not been well described, we evaluated the incidence of viral and symptom rebound in untreated outpatients with mild-moderate COVID-19. Methods The study population included 568 participants enrolled in the ACTIV-2/A5401 platform trial who received placebo. Anterior nasal swabs were collected for SARS-CoV-2 RNA testing on days 0-14, 21 and 28. Participants recorded the severity of 13 targeted symptoms daily from day 0 to 28. Viral rebound was defined as ≥0.5 log10 viral RNA copies/mL increase and symptom rebound was defined as a 4-point total symptom score increase from baseline. Baseline was defined as study day 4 (primary analysis) or 8 days from symptom onset (secondary analysis). Findings In both the primary and secondary analyses, 12% of participants had viral rebound. Viral rebounders were older than non-rebounders (median 54 vs 47 years, P=0.04). Symptom rebound occurred in 27% of participants after initial symptom improvement and in 10% of participants after initial symptom resolution. The combination of high-level viral rebound to ≥5.0 log10 RNA copies/mL and symptom rebound after initial improvement was observed in 1-2% of participants. Interpretation Viral RNA rebound or symptom relapse in the absence of antiviral treatment is common, but the combination of high-level viral and symptom rebound is rare.
Collapse
Affiliation(s)
- Rinki Deo
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Carlee Moser
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - Justin Ritz
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - Eric S Daar
- Lundquist Institute at Harbor-University of California, Los Angeles Medical Center, Torrance, CA
| | | | | | | | - Judith S Currier
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | | | | | - Kara W Chew
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Boucau J, Chew KW, Choudhary M, Deo R, Regan J, Flynn JP, Crain CR, Hughes MD, Ritz J, Moser C, Dragavon JA, Javan AC, Nirula A, Klekotka P, Greninger AL, Coombs RW, Fischer WA, Daar ES, Wohl DA, Eron JJ, Currier JS, Smith DM, Li JZ, Barczak AK. Monoclonal antibody treatment drives rapid culture conversion in SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.12.25.21268211. [PMID: 35018382 PMCID: PMC8750705 DOI: 10.1101/2021.12.25.21268211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monoclonal antibodies (mAbs) are the treatment of choice for high-risk ambulatory persons with mild to moderate COVID-19. We studied viral culture dynamics post-treatment in a subset of participants receiving the mAb bamlanivimab in the ACTIV-2 trial. Viral load by qPCR and viral culture were performed from anterior nasal swabs collected on study days 0 (day of treatment), 1, 2, 3, and 7. Treatment with mAb resulted in rapid clearance of culturable virus in participants without treatment-emergent resistance. One day after treatment, 0 of 28 (0%) participants receiving mAb and 16 of 39 (41%) receiving placebo still had culturable virus (p <0.0001); nasal viral loads were only modestly lower in the mAb-treated group at days 2 and 3. Recrudescence of culturable virus was detected in three participants with emerging mAb resistance and viral load rebound. The rapid reduction in shedding of viable SARS-CoV-2 after mAb treatment highlights the potential role of mAbs in preventing disease transmission.
Collapse
Affiliation(s)
- Julie Boucau
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
| | - Kara W Chew
- University of California, Los Angeles, Los Angeles, CA
| | - Manish Choudhary
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rinki Deo
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - James Regan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - James P Flynn
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Charles R Crain
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Justin Ritz
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - Carlee Moser
- Harvard T.H. Chan School of Public Health, Boston, MA
| | | | | | | | | | | | | | | | - Eric S Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA
| | | | | | | | | | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Amy K Barczak
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
- Massachusetts General Hospital, Harvard Medical School, Boston MA
| |
Collapse
|
6
|
Focosi D, Maggi F, Franchini M, McConnell S, Casadevall A. Analysis of Immune Escape Variants from Antibody-Based Therapeutics against COVID-19: A Systematic Review. Int J Mol Sci 2021; 23:29. [PMID: 35008446 PMCID: PMC8744556 DOI: 10.3390/ijms23010029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022] Open
Abstract
The accelerated SARS-CoV-2 evolution under selective pressure by massive deployment of neutralizing antibody-based therapeutics is a concern with potentially severe implications for public health. We review here reports of documented immune escape after treatment with monoclonal antibodies and COVID-19-convalescent plasma (CCP). While the former is mainly associated with specific single amino acid mutations at residues within the receptor-binding domain (e.g., E484K/Q, Q493R, and S494P), a few cases of immune evasion after CCP were associated with recurrent deletions within the N-terminal domain of the spike protein (e.g., ΔHV69-70, ΔLGVY141-144 and ΔAL243-244). The continuous genomic monitoring of non-responders is needed to better understand immune escape frequencies and the fitness of emerging variants.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
- Laboratory of Microbiology, Azienda Socio Sanitaria Territoriale Sette Laghi, 21100 Varese, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy;
| | - Scott McConnell
- Department of Medicine, Johns Hopkins School of Public Health, Baltimore, MD 21218, USA; (S.M.); (A.C.)
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health, Baltimore, MD 21218, USA; (S.M.); (A.C.)
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|