1
|
Sanders AE, Weatherspoon ED, Ehrmann BM, Soma PS, Shaikh SR, Preisser JS, Ohrbach R, Fillingim RB, Slade GD. Circulating polyunsaturated fatty acids, pressure pain thresholds, and nociplastic pain conditions. Prostaglandins Leukot Essent Fatty Acids 2022; 184:102476. [PMID: 35908377 PMCID: PMC10363286 DOI: 10.1016/j.plefa.2022.102476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Polyunsaturated fatty acids (PUFAs) play a role in pain regulation. This study sought to determine whether free PUFAs found in red blood cells also play a role in nociceptive processing. We examined associations between circulating PUFAs and nociceptive thresholds to noxious mechanical stimuli. We also determined whether nociceptive thresholds were associated with nociplastic pain conditions. METHODS This cross-sectional study used stored red bloods cells and data from 605 adult participants in the OPPERA-2 study of chronic overlapping pain conditions. In OPPERA-2 adults completed quantitative sensory testing in which pressure algometry measured deep muscular tissue sensitivity at six anatomical sites. Standardized protocols classified adults for presence or absence of five nociplastic pain conditions: temporomandibular disorder, headache, low back pain, irritable bowel syndrome and fibromyalgia. Liquid chromatography tandem mass spectroscopy quantified erythrocyte PUFAs. We conducted three sets of analyses. First, a multivariable linear regression model assessed the association between n-6/n-3 PUFA ratio and the number of overlapping nociplastic pain conditions. Second, a series of 36 multivariable linear regression models assessed covariate-adjusted associations between PUFAs and nociceptive thresholds at each of six anatomical sites. Third, a series of 30 multivariable linear regression models assessed covariate-adjusted associations between nociceptive thresholds at six anatomical sites and each of five pain conditions. RESULTS In multiple linear regression, each unit increase in n-6/n-3 PUFA ratio was associated with more pain conditions (β = 0.30, 95% confidence limits: 0.07, 0.53, p = 0.012). Omega-6 linoleic acid and arachidonic acid were negatively associated with lower nociceptive thresholds at three and at five, respectively, anatomical sites. In contrast, omega-3 alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid and the n-6/n-3 PUFA ratio were not associated with nociceptive thresholds at any site. Pain cases had significantly lower nociceptive thresholds than non-case controls at all anatomical sites. CONCLUSION A higher n-6/n-3 PUFA ratio was associated with more pain conditions. Omega-6 PUFAs may promote a generalized upregulation of nociceptive processing.
Collapse
Affiliation(s)
- Anne E Sanders
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| | - E Diane Weatherspoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brandie M Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paul S Soma
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Saame R Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - John S Preisser
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Richard Ohrbach
- Department of Oral Diagnostic Sciences, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL 32611, United States of America; Pain Research and Intervention Center of Excellence, Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL 32611, United States of America
| | - Gary D Slade
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| |
Collapse
|
2
|
Abstract
An elevated cholesterol concentration has been suspected to increase the susceptibility for SARS-COV-2 infection. Cholesterol plays a central role in the mechanisms of the SARS-COV-2 infection. In contrast, higher HDL-cholesterol levels seem to be protective. During COVID-19 disease, LDL-cholesterol and HDL-cholesterol appear to be decreased. On the other hand, triglycerides (also in different lipoprotein fractions) were elevated. Lipoprotein(a) may increase during this disease and is most probably responsible for thromboembolic events. This lipoprotein can induce a progression of atherosclerotic lesion formation. The same is suspected for the SARS-COV-2 infection itself. COVID-19 patients are at increased risk of incident cardiovascular diseases, including cerebrovascular disorders, dysrhythmias, ischemic and non-ischemic heart disease, pericarditis, myocarditis, heart failure, and thromboembolic disorders. An ongoing lipid-lowering therapy, including lipoprotein apheresis, is recommended to be continued during the COVID-19 disease, though the impact of lipid-lowering drugs or the extracorporeal therapy on prognosis should be studied in further investigations.
Collapse
Affiliation(s)
- Ulrich Julius
- Lipidology and Center for Extracorporeal Therapy, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Schatz
- Lipidology and Center for Extracorporeal Therapy, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sergey Tselmin
- Lipidology and Center for Extracorporeal Therapy, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Stahel VP, Blum SD, Anand P. The impact of immune dysfunction on perioperative complications in surgical COVID-19 patients: an imperative for early immunonutrition. Patient Saf Surg 2022; 16:14. [PMID: 35365199 PMCID: PMC8972719 DOI: 10.1186/s13037-022-00323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Surgical patients with coronavirus disease 2019 (COVID-19) are vulnerable to increased perioperative complications and postoperative mortality, independent of the risk for contracting COVID-19 pneumonia after endotracheal intubation for general anesthesia. The presumed root cause of postoperative infections, microvascular soft tissue injuries and thromboembolic complications is largely attributed to the profound immune dysfunction induced by COVID-19 as a result of complement activation and the "cytokine storm". The empirical therapy with anti-inflammatory agents has been shown to attenuate some of the adverse effects of systemic hyperinflammation in COVID-19 patients. In addition, the proactive concept of "immunonutrition" may represent a new promising avenue for mitigating the complex immune dysregulation in COVID-19 and thereby reduce the rates of surgical complications and postoperative mortality. This letter provides a narrative summary of the current state-of-the-art in the field of immunonutrition as it pertains to surgical patient safety in COVID-19 patients.
Collapse
Affiliation(s)
| | - Samson D Blum
- University of Colorado (CU), Boulder, CO, 80309, USA
| | - Pratibha Anand
- University of Colorado, School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|