1
|
Ellis CA, Miller RL, Calhoun VD. Explainable fuzzy clustering framework reveals divergent default mode network connectivity dynamics in schizophrenia. Front Psychiatry 2024; 15:1165424. [PMID: 38495909 PMCID: PMC10941842 DOI: 10.3389/fpsyt.2024.1165424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/30/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Dynamic functional network connectivity (dFNC) analysis of resting state functional magnetic resonance imaging data has yielded insights into many neurological and neuropsychiatric disorders. A common dFNC analysis approach uses hard clustering methods like k-means clustering to assign samples to states that summarize network dynamics. However, hard clustering methods obscure network dynamics by assuming (1) that all samples within a cluster are equally like their assigned centroids and (2) that samples closer to one another in the data space than to their centroids are well-represented by their centroids. In addition, it can be hard to compare subjects, as in some cases an individual may not manifest a state strongly enough to enter a hard cluster. Approaches that allow a dimensional approach to connectivity patterns (e.g., fuzzy clustering) can mitigate these issues. In this study, we present an explainable fuzzy clustering framework by combining fuzzy c-means clustering with several explainability metrics and novel summary features. Methods We apply our framework for schizophrenia (SZ) default mode network analysis. Namely, we extract dFNC from individuals with SZ and controls, identify 5 dFNC states, and characterize the dFNC features most crucial to those states with a new perturbation-based clustering explainability approach. We then extract several features typically used in hard clustering and further present a variety of unique features specially designed for use with fuzzy clustering to quantify state dynamics. We examine differences in those features between individuals with SZ and controls and further search for relationships between those features and SZ symptom severity. Results Importantly, we find that individuals with SZ spend more time in states of moderate anticorrelation between the anterior and posterior cingulate cortices and strong anticorrelation between the precuneus and anterior cingulate cortex. We further find that individuals with SZ tend to transition more rapidly than controls between low-magnitude and high-magnitude dFNC states. Conclusion We present a novel dFNC analysis framework and use it to identify effects of SZ upon network dynamics. Given the ease of implementing our framework and its enhanced insight into network dynamics, it has great potential for use in future dFNC studies.
Collapse
Affiliation(s)
- Charles A. Ellis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Robyn L. Miller
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Vince D. Calhoun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
2
|
Chen J, Iraji A, Fu Z, Andrés-Camazón P, Thapaliya B, Liu J, Calhoun VD. Dynamic fusion of genomics and functional network connectivity in UK biobank reveals static and time-varying SNP manifolds. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.09.24301013. [PMID: 38260328 PMCID: PMC10802663 DOI: 10.1101/2024.01.09.24301013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Many psychiatric and neurological disorders show significant heritability, indicating strong genetic influence. In parallel, dynamic functional network connectivity (dFNC) measures functional temporal coupling between brain networks in a time-varying manner and has proven to identify disease-related changes in the brain. However, it remains largely unclear how genetic risk contributes to brain dysconnectivity that further manifests into clinical symptoms. The current work aimed to address this gap by proposing a novel joint ICA (jICA)-based "dynamic fusion" framework to identify dynamically tuned SNP manifolds by linking static SNPs to dynamic functional information of the brain. The sliding window approach was utilized to estimate four dFNC states and compute subject-level state-specific dFNC features. Each state of dFNC features were then combined with 12946 SZ risk SNPs for jICA decomposition, resulting in four parallel fusions in 32861 European ancestry individuals within the UK Biobank cohort. The identified joint SNP-dFNC components were further validated for SZ relevance in an aggregated SZ cohort, and compared for across-state similarity to indicate level of dynamism. The results supported that dynamic fusion yielded "static" and "dynamic" components (i.e., high and low across-state similarity, respectively) for SNP and dFNC modalities. As expected, the SNP components presented a mixture of static and dynamic manifolds, with the latter largely driven by fusion with dFNC. We also showed that some of the dynamic SNP manifolds uniquely elicited by fusion with state-specific dFNC features complemented each other in terms of biological interpretation. This dynamic fusion framework thus allows expanding the SNP modality to manifolds in the time dimension, which provides a unique lens to elicit unique SNP correlates of dFNC otherwise unseen, promising additional insights on how genetic risk links to disease-related dysconnectivity.
Collapse
Affiliation(s)
- Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, USA
| | - Pablo Andrés-Camazón
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain
| | - Bishal Thapaliya
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| |
Collapse
|