1
|
Maruzani R, Brierley L, Jorgensen A, Fowler A. Benchmarking UMI-aware and standard variant callers for low frequency ctDNA variant detection. BMC Genomics 2024; 25:827. [PMID: 39227777 PMCID: PMC11370058 DOI: 10.1186/s12864-024-10737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Circulating tumour DNA (ctDNA) is a subset of cell free DNA (cfDNA) released by tumour cells into the bloodstream. Circulating tumour DNA has shown great potential as a biomarker to inform treatment in cancer patients. Collecting ctDNA is minimally invasive and reflects the entire genetic makeup of a patient's cancer. ctDNA variants in NGS data can be difficult to distinguish from sequencing and PCR artefacts due to low abundance, particularly in the early stages of cancer. Unique Molecular Identifiers (UMIs) are short sequences ligated to the sequencing library before amplification. These sequences are useful for filtering out low frequency artefacts. The utility of ctDNA as a cancer biomarker depends on accurate detection of cancer variants. RESULTS In this study, we benchmarked six variant calling tools, including two UMI-aware callers for their ability to call ctDNA variants. The standard variant callers tested included Mutect2, bcftools, LoFreq and FreeBayes. The UMI-aware variant callers benchmarked were UMI-VarCal and UMIErrorCorrect. We used both datasets with known variants spiked in at low frequencies, and datasets containing ctDNA, and generated synthetic UMI sequences for these datasets. Variant callers displayed different preferences for sensitivity and specificity. Mutect2 showed high sensitivity, while returning more privately called variants than any other caller in data without synthetic UMIs - an indicator of false positive variant discovery. In data encoded with synthetic UMIs, UMI-VarCal detected fewer putative false positive variants than all other callers in synthetic datasets. Mutect2 showed a balance between high sensitivity and specificity in data encoded with synthetic UMIs. CONCLUSIONS Our results indicate UMI-aware variant callers have potential to improve sensitivity and specificity in calling low frequency ctDNA variants over standard variant calling tools. There is a growing need for further development of UMI-aware variant calling tools if effective early detection methods for cancer using ctDNA samples are to be realised.
Collapse
Affiliation(s)
- Rugare Maruzani
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Waterhouse Building, Block F, Brownlow Street, Liverpool, L69 3GF, UK.
| | - Liam Brierley
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Waterhouse Building, Block F, Brownlow Street, Liverpool, L69 3GF, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Andrea Jorgensen
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Waterhouse Building, Block F, Brownlow Street, Liverpool, L69 3GF, UK
| | - Anna Fowler
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Waterhouse Building, Block F, Brownlow Street, Liverpool, L69 3GF, UK
| |
Collapse
|
2
|
Juraska M, Bai H, deCamp AC, Magaret CA, Li L, Gillespie K, Carpp LN, Giorgi EE, Ludwig J, Molitor C, Hudson A, Williamson BD, Espy N, Simpkins B, Rudnicki E, Shao D, Rossenkhan R, Edlefsen PT, Westfall DH, Deng W, Chen L, Zhao H, Bhattacharya T, Pankow A, Murrell B, Yssel A, Matten D, York T, Beaume N, Gwashu-Nyangiwe A, Ndabambi N, Thebus R, Karuna ST, Morris L, Montefiori DC, Hural JA, Cohen MS, Corey L, Rolland M, Gilbert PB, Williamson C, Mullins JI. Prevention efficacy of the broadly neutralizing antibody VRC01 depends on HIV-1 envelope sequence features. Proc Natl Acad Sci U S A 2024; 121:e2308942121. [PMID: 38241441 PMCID: PMC10823214 DOI: 10.1073/pnas.2308942121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/13/2023] [Indexed: 01/21/2024] Open
Abstract
In the Antibody Mediated Prevention (AMP) trials (HVTN 704/HPTN 085 and HVTN 703/HPTN 081), prevention efficacy (PE) of the monoclonal broadly neutralizing antibody (bnAb) VRC01 (vs. placebo) against HIV-1 acquisition diagnosis varied according to the HIV-1 Envelope (Env) neutralization sensitivity to VRC01, as measured by 80% inhibitory concentration (IC80). Here, we performed a genotypic sieve analysis, a complementary approach to gaining insight into correlates of protection that assesses how PE varies with HIV-1 sequence features. We analyzed HIV-1 Env amino acid (AA) sequences from the earliest available HIV-1 RNA-positive plasma samples from AMP participants diagnosed with HIV-1 and identified Env sequence features that associated with PE. The strongest Env AA sequence correlate in both trials was VRC01 epitope distance that quantifies the divergence of the VRC01 epitope in an acquired HIV-1 isolate from the VRC01 epitope of reference HIV-1 strains that were most sensitive to VRC01-mediated neutralization. In HVTN 704/HPTN 085, the Env sequence-based predicted probability that VRC01 IC80 against the acquired isolate exceeded 1 µg/mL also significantly associated with PE. In HVTN 703/HPTN 081, a physicochemical-weighted Hamming distance across 50 VRC01 binding-associated Env AA positions of the acquired isolate from the most VRC01-sensitive HIV-1 strain significantly associated with PE. These results suggest that incorporating mutation scoring by BLOSUM62 and weighting by the strength of interactions at AA positions in the epitope:VRC01 interface can optimize performance of an Env sequence-based biomarker of VRC01 prevention efficacy. Future work could determine whether these results extend to other bnAbs and bnAb combinations.
Collapse
Affiliation(s)
- Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Hongjun Bai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Allan C. deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Craig A. Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Li Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Kevin Gillespie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Lindsay N. Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Elena E. Giorgi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - James Ludwig
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Cindy Molitor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Aaron Hudson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Brian D. Williamson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA98101
| | - Nicole Espy
- Science and Technology Policy Fellowships, American Association for the Advancement of Science, Washington, DC20005
| | - Brian Simpkins
- Department of Computer Science, Pitzer College, Claremont, CA91711
| | - Erika Rudnicki
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Danica Shao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Raabya Rossenkhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Dylan H. Westfall
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA98195
| | - Wenjie Deng
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA98195
| | - Lennie Chen
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA98195
| | - Hong Zhao
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA98195
| | | | - Alec Pankow
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna171 77, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna171 77, Sweden
| | - Anna Yssel
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - David Matten
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - Talita York
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - Nicolas Beaume
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - Asanda Gwashu-Nyangiwe
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - Nonkululeko Ndabambi
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - Ruwayhida Thebus
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - Shelly T. Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Lynn Morris
- HIV Virology Section, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg2192, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg2000, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban4041, South Africa
| | | | - John A. Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Myron S. Cohen
- Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Lawrence Corey
- Department of Medicine, University of Washington, Seattle, WA98195
- Department of Laboratory Medicine, University of Washington, Seattle, WA98195
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA98109
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Department of Biostatistics, University of Washington, Seattle, WA98195
- Department of Global Health, University of Washington, Seattle, WA98195
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, and Wellcome Centre for Infectious Diseases Research in Africa, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town7701, South Africa
| | - James I. Mullins
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA98195
- Department of Global Health, University of Washington, Seattle, WA98195
- Department of Microbiology, University of Washington, Seattle, WA98109
| |
Collapse
|
3
|
Williamson C, Lynch RM, Moore PL. Anticipating HIV viral escape - resistance to active and passive immunization. Curr Opin HIV AIDS 2023; 18:342-348. [PMID: 37678357 DOI: 10.1097/coh.0000000000000816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE Active and passive immunization strategies are challenged by the extraordinary diversity of HIV, and the need for high titers of neutralizing antibodies to confer protective immunity. This review summarises recent studies and the barrier that these interventions will need to overcome to prevent viral resistance. RECENT FINDINGS Studies from the antibody mediated prevention trial identified a measure of protective titers, finding that higher titers than anticipated will be needed to prevent infection. This benchmark has advanced our ability to predict combinations of broadly neutralizing antibodies (bNAbs) that will provide optimal coverage. To limit escape, these combinations should ensure that the majority of viruses are bound by a minimum of two antibodies. The characterization of currently circulating viruses has revealed increased resistance to some bNAbs over time, highlighting the need for continued surveillance, especially in under-studied populations and subtypes. Active vaccination will face similar challenges in combating diversity, although despite successes in germline targeting, this approach is not yet able to elicit bNAbs. SUMMARY Cumulatively these studies highlight the need to target multiple antibody epitopes for maximum coverage, but also to restrict escape pathways. Successful immunization strategies should anticipate viral escape and devise strategies to counteract this.
Collapse
Affiliation(s)
- Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Rebecca M Lynch
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|