1
|
Rossan Mathews MG, Selvan Christyraj JRS, Subramaniam R, Venkatachalam S, Selvan Christyraj JD, Yesudhason BV, Venkatachalam K, Anandharaj JL. De-novo transcriptome of anterior epimorphic regeneration in Perionyx excavatus. Sci Data 2024; 11:1093. [PMID: 39375364 PMCID: PMC11458598 DOI: 10.1038/s41597-024-03941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Perionyx excavatus, an indigenous earthworm possesses exceptional regeneration capacity. Their anterior regeneration features wound closure, regeneration induction and morphogenesis of damaged organs. This study involved a complete analysis of their transcriptomic dataset, with an emphasis on identifying the genes expressed during regeneration and predicting their implications in the process of regeneration and morphogenesis. Control (first ten segments) and test (5th day blastema) RNA samples of biological replicates were isolated and sequenced on NovaSeq. 6000 using PE150 read length. An average of 98.64% of high-quality data was retained with assembly showing better continuity with the average transcript length with 823 bp and N50 value of 1,858 bp. This is the first report on the comparative transcriptome of P. excavatus during anterior regeneration and this study will shed light on the complexity of annelid regeneration.
Collapse
Affiliation(s)
- Melinda Grace Rossan Mathews
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India.
| | - Ravichandran Subramaniam
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Saravanakumar Venkatachalam
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Jackson Durairaj Selvan Christyraj
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India.
| | - Kesavamoorthy Venkatachalam
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Jenif Leo Anandharaj
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
2
|
Massri AJ, Berrio A, Afanassiev A, Greenstreet L, Pipho K, Byrne M, Schiebinger G, McClay DR, Wray GA. Single-cell transcriptomics reveals evolutionary reconfiguration of embryonic cell fate specification in the sea urchin Heliocidaris erythrogramma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591752. [PMID: 38746376 PMCID: PMC11092583 DOI: 10.1101/2024.04.30.591752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Altered regulatory interactions during development likely underlie a large fraction of phenotypic diversity within and between species, yet identifying specific evolutionary changes remains challenging. Analysis of single-cell developmental transcriptomes from multiple species provides a powerful framework for unbiased identification of evolutionary changes in developmental mechanisms. Here, we leverage a "natural experiment" in developmental evolution in sea urchins, where a major life history switch recently evolved in the lineage leading to Heliocidaris erythrogramma, precipitating extensive changes in early development. Comparative analyses of scRNA-seq developmental time courses from H. erythrogramma and Lytechinus variegatus (representing the derived and ancestral states respectively) reveals numerous evolutionary changes in embryonic patterning. The earliest cell fate specification events, and the primary signaling center are co-localized in the ancestral dGRN but remarkably, in H. erythrogramma they are spatially and temporally separate. Fate specification and differentiation are delayed in most embryonic cell lineages, although in some cases, these processes are conserved or even accelerated. Comparative analysis of regulator-target gene co-expression is consistent with many specific interactions being preserved but delayed in H. erythrogramma, while some otherwise widely conserved interactions have likely been lost. Finally, specific patterning events are directly correlated with evolutionary changes in larval morphology, suggesting that they are directly tied to the life history shift. Together, these findings demonstrate that comparative scRNA-seq developmental time courses can reveal a diverse set of evolutionary changes in embryonic patterning and provide an efficient way to identify likely candidate regulatory interactions for subsequent experimental validation.
Collapse
Affiliation(s)
- Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27701 USA
| | | | - Anton Afanassiev
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - Laura Greenstreet
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - Krista Pipho
- Department of Biology, Duke University, Durham, NC 27701 USA
| | - Maria Byrne
- School of Life and Environmental Sciences, Sydney University, Sydney, NSW Australia
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27701 USA
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27701 USA
| |
Collapse
|
3
|
Kostyuchenko RP, Nikanorova DD, Amosov AV. Germ Line/Multipotency Genes Show Differential Expression during Embryonic Development of the Annelid Enchytraeus coronatus. BIOLOGY 2023; 12:1508. [PMID: 38132334 PMCID: PMC10740902 DOI: 10.3390/biology12121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Germ line development and the origin of the primordial germ cells (PGCs) are very variable and may occur across a range of developmental stages and in several developmental contexts. In establishing and maintaining germ line, a conserved set of genes is involved. On the other hand, these genes are expressed in multipotent/pluripotent cells that may give rise to both somatic and germline cells. To begin elucidating mechanisms by which the germ line is specified in Enchytraeus coronatus embryos, we identified twenty germline/multipotency genes, homologs of Vasa, PL10, Piwi, Nanos, Myc, Pumilio, Tudor, Boule, and Bruno, using transcriptome analysis and gene cloning, and characterized their expression by whole-mount in situ hybridization. To answer the question of the possible origin of PGCs in this annelid, we carried out an additional description of the early embryogenesis. Our results suggest that PGCs derive from small cells originating at the first two divisions of the mesoteloblasts. PGCs form two cell clusters, undergo limited proliferation, and migrate to the developing gonadal segments. In embryos and juvenile E. coronatus, homologs of the germline/multipotency genes are differentially expressed in both germline and somatic tissue including the presumptive germ cell precursors, posterior growth zone, developing foregut, and nervous system.
Collapse
Affiliation(s)
- Roman P. Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia; (D.D.N.); (A.V.A.)
| | | | | |
Collapse
|
4
|
Piovani L, Marlétaz F. Single-cell transcriptomics refuels the exploration of spiralian biology. Brief Funct Genomics 2023; 22:517-524. [PMID: 37609674 PMCID: PMC10658179 DOI: 10.1093/bfgp/elad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Spiralians represent the least studied superclade of bilaterian animals, despite exhibiting the widest diversity of organisms. Although spiralians include iconic organisms, such as octopus, earthworms and clams, a lot remains to be discovered regarding their phylogeny and biology. Here, we review recent attempts to apply single-cell transcriptomics, a new pioneering technology enabling the classification of cell types and the characterisation of their gene expression profiles, to several spiralian taxa. We discuss the methodological challenges and requirements for applying this approach to marine organisms and explore the insights that can be brought by such studies, both from a biomedical and evolutionary perspective. For instance, we show that single-cell sequencing might help solve the riddle of the homology of larval forms across spiralians, but also to better characterise and compare the processes of regeneration across taxa. We highlight the capacity of single-cell to investigate the origin of evolutionary novelties, as the mollusc shell or the cephalopod visual system, but also to interrogate the conservation of the molecular fingerprint of cell types at long evolutionary distances. We hope that single-cell sequencing will open a new window in understanding the biology of spiralians, and help renew the interest for these overlooked but captivating organisms.
Collapse
Affiliation(s)
- Laura Piovani
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution & Environment, University College London, Gower Street, London, UK
| | - Ferdinand Marlétaz
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution & Environment, University College London, Gower Street, London, UK
| |
Collapse
|
5
|
Kostyuchenko RP, Smirnova NP. Vasa, Piwi, and Pl10 Expression during Sexual Maturation and Asexual Reproduction in the Annelid Pristina longiseta. J Dev Biol 2023; 11:34. [PMID: 37606490 PMCID: PMC10443295 DOI: 10.3390/jdb11030034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Naidids are tiny, transparent freshwater oligochaetes, which are well known for their ability to propagate asexually. Despite the fact that sexually mature individuals and cocoons with embryos are sometimes found in nature, in long-period laboratory cultures, worms reproduce agametically only. In this paper, we showed, for the first time, the expression of Vasa, Piwi, and Pl10 homologs in mature Pristina longiseta worms with well-developed reproductive system structures and germ cells. Although the animals have been propagated asexually by paratomic fission for over 20 years in our lab, some individuals become sexualized under standard conditions for our laboratory culture and demonstrate various stages of maturation. The fully matured animals developed a complete set of sexual apparatus including spermatheca, atrium, seminal vesicles, and ovisac. They also had a clitellum and were able to form cocoons. The cues for the initiation of sexual maturation are still unknown for P. longiseta; nevertheless, our data suggest that the laboratory strain of P. longiseta maintains the ability to become fully sexually mature and to establish germline products even after a long period of agametic reproduction. On the other hand, many of the sexualized worms formed a fission zone and continued to reproduce asexually. Thus, in this species, the processes of asexual reproduction and sexual maturation do not preclude each other, and Vasa, Piwi, and Pl10 homologs are expressed in both somatic and germline tissue including the posterior growth zone, fission zone, nervous system, germline cells, and gametes.
Collapse
Affiliation(s)
- Roman P. Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia;
| | - Natalia P. Smirnova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia;
- Unit for Cell Signaling, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0317 Oslo, Norway
- Hybrid Technology Hub-Centre for Organ on a Chip-Technology, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|