Kirkland JM, Patel I, Ardeshna MS, Kopec AM. Microglial synaptic pruning in the nucleus accumbens during adolescence sex-specifically influences splenic immune outcomes.
BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539317. [PMID:
37205376 PMCID:
PMC10187280 DOI:
10.1101/2023.05.03.539317]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Strong social support promotes a variety of positive health outcomes in humans and rodent models, while social isolation in rodents shortens lifespan, perceived social isolation (i.e. loneliness) can increase mortality by up to 50% in humans. How social relationships lead to these drastic health effects is unclear, but may involve modulation of the peripheral immune system. The reward circuitry of the brain and social behaviors undergo a critical period of development during adolescence. We published that microglia-mediated synaptic pruning occurs in the nucleus accumbens (NAc) reward region during adolescence to mediate social development in male and female rats. We hypothesized that if reward circuitry activity and social relationships directly impact the peripheral immune system, then natural developmental changes in the reward circuitry and social behaviors during adolescence should also directly impact the peripheral immune system. To test this, we inhibited microglial pruning in the NAc during adolescence, and then collected spleen tissue for mass spectrometry proteomic analysis and ELISA validation. We found that the global proteomic consequences of inhibiting microglial pruning in the NAc were similar between the sexes, but target-specific examination suggests that NAc pruning impacts Th1 cell-related immune markers in the spleen in males, but not females, and broad neurochemical systems in the spleen in females, but not males.
Collapse