1
|
Nasello C, Poppi LA, Wu J, Kowalski TF, Thackray JK, Wang R, Persaud A, Mahboob M, Lin S, Spaseska R, Johnson CK, Gordon D, Tissir F, Heiman GA, Tischfield JA, Bocarsly M, Tischfield MA. Human mutations in high-confidence Tourette disorder genes affect sensorimotor behavior, reward learning, and striatal dopamine in mice. Proc Natl Acad Sci U S A 2024; 121:e2307156121. [PMID: 38683996 PMCID: PMC11087812 DOI: 10.1073/pnas.2307156121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
Tourette disorder (TD) is poorly understood, despite affecting 1/160 children. A lack of animal models possessing construct, face, and predictive validity hinders progress in the field. We used CRISPR/Cas9 genome editing to generate mice with mutations orthologous to human de novo variants in two high-confidence Tourette genes, CELSR3 and WWC1. Mice with human mutations in Celsr3 and Wwc1 exhibit cognitive and/or sensorimotor behavioral phenotypes consistent with TD. Sensorimotor gating deficits, as measured by acoustic prepulse inhibition, occur in both male and female Celsr3 TD models. Wwc1 mice show reduced prepulse inhibition only in females. Repetitive motor behaviors, common to Celsr3 mice and more pronounced in females, include vertical rearing and grooming. Sensorimotor gating deficits and rearing are attenuated by aripiprazole, a partial agonist at dopamine type II receptors. Unsupervised machine learning reveals numerous changes to spontaneous motor behavior and less predictable patterns of movement. Continuous fixed-ratio reinforcement shows that Celsr3 TD mice have enhanced motor responding and reward learning. Electrically evoked striatal dopamine release, tested in one model, is greater. Brain development is otherwise grossly normal without signs of striatal interneuron loss. Altogether, mice expressing human mutations in high-confidence TD genes exhibit face and predictive validity. Reduced prepulse inhibition and repetitive motor behaviors are core behavioral phenotypes and are responsive to aripiprazole. Enhanced reward learning and motor responding occur alongside greater evoked dopamine release. Phenotypes can also vary by sex and show stronger affection in females, an unexpected finding considering males are more frequently affected in TD.
Collapse
Affiliation(s)
- Cara Nasello
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
| | - Lauren A. Poppi
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Junbing Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Tess F. Kowalski
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Joshua K. Thackray
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
| | - Riley Wang
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
| | - Angelina Persaud
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Mariam Mahboob
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School and Rutgers Biomedical and Health Sciences, Newark, NJ07103
| | - Sherry Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Rodna Spaseska
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - C. K. Johnson
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Derek Gordon
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha34110, Qatar
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels1200, Belgium
| | - Gary A. Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Jay A. Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Miriam Bocarsly
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School and Rutgers Biomedical and Health Sciences, Newark, NJ07103
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| |
Collapse
|